Control theoretic optimization of 802.11 WLANs: Design, implementation and experimental evaluation of two schemes

Pablo Serrano

Dept. Ing. Telemática Univ. Carlos III de Madrid (UC3M) http://www.it.uc3m.es/pablo/

Jointly with...

1. Paul Patras

THE UNIVERSITY of EDINBURGH

- 2. Albert Banchs
- 3. Andrea Mannocci
- 4. Vincenzo Mancuso

Motivation

- IEEE 802.11: access scheme whose performance depends on the *Contention Window (CW)*
- "Slotted ALOHA": Given the number of stations, there exists a CW* that maximizes performance

Previous works

- Adjust the CW based on conditions
 - A lot of activity: increase the CW
 - Less activity: decrease the CW
- Two types of solutions
 - Centralized approaches (e.g., [3-5]) AP computes the configuration and distributes it (now a standard feature)
 - Distributed approaches (e.g., [6-8]) stations compute their configuration independently → suitable also for ad-hoc mode

(some) Previous works

[1] G. Bianchi, "Performance Analysis of the IEEE 802.11 Distributed Coordination Function", IEEE Journal on Selected Areas in Communications, vol. 18, no. 3, pp. 535–547, March 2000.

[2] P. Serrano, A. Banchs, P. Patras, and A. Azcorra, "Optimal Configuration of 802.11e EDCA for Real-Time and Data Traffic", IEEE Transactions on Vehicular Technology, vol. 59, pp. 2511–2528, June 2010.

[3] A. Nafaa and A. Ksentini and A. Ahmed Mehaoua and B. Ishibashi and Y. Iraqi and R. Boutaba, "Sliding Contention Window (SCW): Towards Backoff Range-Based Service Differentiation over IEEE 802.11 Wireless LAN Networks", IEEE Network, vol. 19, pp. 45–51, July 2005.

[4] J. Freitag and N. L. S. da Fonseca and J. F. de Rezende, "Tuning of 802.11e Network Parameters", IEEE Communications Letters, vol. 10, pp. 611–613, August 2006.

[5] Y. Xiao, H. Li, and S. Choi, "Protection and guarantee for voice and video traffic in IEEE 802.11e wireless LANs", in Proc. IEEE INFOCOM, vol. 3, pp. 2152–2162, March 2004.

[6] G. Bianchi, L. L. Fratta, and M. Oliveri, "Performance evaluation and enhancement of the CSMA/ CA MAC protocol for 802.11 wireless LANs", in Proceedings of PIMRC '96, Taipei, Taiwan, October 1996.

[7] M. Heusse, F. Rousseau, R. Guillier, and A. Duda, "Idle Sense: an optimal access method for high throughput and fairness in rate diverse wireless LANs", in Proceedings of SIGCOMM. New York, NY, USA, August 2005.

[8] F. Cali, M. Conti, and E. Gregori, "IEEE 802.11 protocol: design and performance evaluation of an adaptive backoff mechanism", IEEE Journal on Selected Areas in Communications, vol. 18, no. 9, September 2000.

- Require modifications of the hardware and/or firmware
- Their performance has not been assessed in real deployment
- Based on heuristics

Motivation, revisited

• Bianchi's seminal work [1]: in saturation

$$\tau_{opt} \approx \frac{1}{n} \sqrt{\frac{2T_e}{T_c}}$$

This results in a "constant" (conditional) collision probability

$$p_{opt} = 1 - (1 - \tau_{opt})^{n-1} = 1 - \left(1 - \frac{1}{n}\sqrt{\frac{2T_e}{T_c}}\right)^{n-1} \approx 1 - e^{-\sqrt{\frac{2T_e}{T_c}}}$$

Centralized Algorithm

- Use this popt as a reference signal
 - No need to estimate the number of stations

The Controller

- Well established scheme from discrete-time control theory: Proportional Integrator (PI) controller
- Takes as input an error signal
- The AP computes and distributes the *CW* configuration to the stations

Simulation: it works!

Validation of the designed controller

- A large $\{K_p, K_i\}$ setting yields unstable behavior
- A smaller $\{K_p, K_i\}$ setting gains stability but induces slow response

Distributed Approach

- A different (more challenging) approach to performance optimization
 - Each station computes its own configuration by observing the current WLAN conditions (no coordination)
 - Reasons
 - Eliminates single point of failure
 - No need for additional signaling
 - Can operate without an Access Point

Challenge: Short-sightedness

 Driving the WLAN's collision probability to an "optimal" value can result in fairness problems

Nodes should use the same CW to ensure **fairness**

Pablo Serrano – Control theoretic... – Trinity College Dublin, June 10th, 2015

Restoring fairness: two error terms

 Similar to the centralized solution, first term ensures that the collision probability in the network is driven to the optimal value

$$e_{collision,i} = p_{obs,i} - p_{opt}$$

• If two stations do not share the bandwidth fairly due to having different $CW_{min,i}$, the error should be large

$$e_{fairness,i} = p_{obs,i} - p_{own,i}$$

• Hence,

$$e_i = 2 \cdot p_{obs,i} - p_{own,i} - p_{opt}$$

Mechanism

Distributed implementation, but same vision of the WLAN

Simulation: it also works!

Pablo Serrano – Control theoretic... – Trinity College Dublin, June 10th, 2015

Time for experimentation

Practice what you know, and it will help to make clear what now you do not know.

Rembrandt

Test-bed

- Under raised floor
- 17 clients, 1 AP
- ≠ link qualities

Pablo Serrano – Control theoretic... – Trinity College Dublin, June 10th, 2015

Total UDP throughput

CAC: Validation – real-hw limitations

Pablo Serrano – Control theoretic... – Trinity College Dublin, June 10th, 2015

DAC: Validation

Per-station UDP throughput

Throughput vs. SNR

Real-life: Capture effect

- EDCA: Better link quality results in higher throughput.
- CAC: reduces the number of collisions, the impact of the capture effect is reduced.
- DAC: nodes with high capture probability will experience smaller collision rates than the others, acting "more gentle".

$$e_{fairness,i} = p_{obs,i} - p_{own,i}$$

TCP transfers (10 MB) – non sat. cond.

Summary

- CAC and DAC: two schemes to adapt the CW to optimize performance
 - Based on analysis (vs. heuristics)
 - Distributed: need to account for fairness
- Tested with real-life devices
 - DAC suffers from link heterogeneity
 - CAC works for sat. & non-sat conditions

Many Thanks!

Control theoretic optimization of 802.11 WLANs: Design, implementation and experimental evaluation of two schemes

Pablo Serrano Yáñez-Mingot pablo@it.uc3m.es http://www.it.uc3m.es/pablo/

