
Pablo Serrano Yáñez-Mingot

Scaling resources for sustainable
provision of URLLC services
Static and dynamic optimization

Brescia, October 10, 2025

Acknowledgements
This presentation is partly supported by

The Project TUCAN6-CM (TEC-2024/COM-460), funded by
CM (ORDEN 5696/2024)

The Project 6GINSPIRE PID2022-137329OB-C42, funded by
MCIN/AEI/10.13039/501100011033/

The SNS JU EU’s HE research and innovation programme
under Grant Agreement No. 101192035 (AMAZING-6G)

Context
Network Softwarization

• Network slicing: efficient provision of
multiple heterogeneous services on the
same infrastructure [1]

• Virtualization (softwarization) of
network functions

1. P. Serrano, «Tutorial: A Primer on 5G Network Slicing: Concepts, Algorithms, and Practice», IEEE CAMAD 2018, Barcelona,
2. G. Garcia-Aviles et al. «Nuberu: Reliable RAN Virtualization in Shared Platforms», ACM Mobicom '21
3. G. Garcia-Aviles et al. «ACHO: A Framework for Flexible Re-Orchestration of Virtual Network Functions», Computer Networks, 2020

• Dynamically allocate and share resources (e.g., Nuberu [2])

• Migrate between servers without disruption (e.g., ACHO [3])

3

Ideal

URLLC

Efficiency with a URLLC service
Very high reliability

• Efficiency: allocate strictly necessary resources

• Obstacle 1: Resource bootstrapping is not instantaneous

• Bursts of requests: they may have to wait

• Obstacle 2: Life spans are finite [1]

• Relocate tasks from servers that are about to fail

• Best effort vs. URLLC [2] (five 9s)

1. Fung Po Tso et al. «The Glasgow Raspberry Pi cloud: A scale model for cloud computing infrastructures». IEEE 33rd International
Conference on Distributed Computing Systems Workshops, 2013.

2. W. Nakimuli et al. «Deployment and Evaluation of an Industry 4.0 Use Case over 5G», IEEE Communications Magazine, July 2021

Requests

Resources

Best effort

4

Example

Load
Balancer

Migration
Manager

PM
Manager

Queue

Queue

Infrastructure manager

Monitoring
platform

5

Example

Load
Balancer

Migration
Manager

PM
Manager

Queue

Queue

Infrastructure manager

Monitoring
platform

6

Example

Load
Balancer

Migration
Manager

PM
Manager

Queue

Queue

Infrastructure manager

Monitoring
platform

Activation and
deactivation policy

7

Example

Load
Balancer

Migration
Manager

PM
Manager

Queue

Queue

Infrastructure manager

Monitoring
platform

8

Example

Load
Balancer

Migration
Manager

PM
Manager

Queue

Queue

Infrastructure manager

Monitoring
platform

9

Example

Load
Balancer

Migration
Manager

PM
Manager

Queue

Queue

Infrastructure manager

Monitoring
platform

10

Example

Load
Balancer

Migration
Manager

PM
Manager

Queue

Queue

Infrastructure manager

Monitoring
platform

11

Example

Load
Balancer

Migration
Manager

PM
Manager

Queue

Queue

Infrastructure manager

Monitoring
platform

Activation and
deactivation policy

Objective: to minimize resource
consumption (w) and limit Pf

12

Static optimization

System
Modeling hypotheses

• Tasks arrive following Poisson and exponential service times

• A server can serve up to N tasks, there are M servers

• Exponential boot up times: Immediate shut downs.

• Server lifetimes are exponential [1]

• Energy consumption: 0 off, Pidle when on, Pload proportional to load [2]

• Tasks can be moved between servers before crashing

1. K. S. Trivedi y A. Bobbio, «Reliability and Availability Engineering: Modeling, Analysis, and Applications», Cambridge University Press, 2017
2. Gong Chen et al. «Energy-Aware Server Provisioning and Load Dispatching for Connection-Intensive Internet Services». NSDI’08.

14

System
De/Activation Policy

• Activation threshold ton(m) : Number of tasks on the system that initiates
activation of the m-th server

• Deactivation threshold toff(m) : Number of tasks on the system that causes a
server to be disabled when there are m active servers

• Example

• ton(2) = 3, ton(3) = 6

• toff(2) = 1, toff(3) = 3
2 Servers1 server 3 Servers

3 Tasks 6 Tasks

3 Tasks1 task

15

Analytical model: Markov chain
Quasi-Birth-Death process

Tasks # Active
Servers

16

Analytical model: Markov chain
Quasi-Birth-Death process

17

Analytical model: Markov chain
Quasi-Birth-Death process

18

Analytical model: Markov chain
Quasi-Birth-Death process

ton(2) = 2

19

Analytical model: Markov chain
Quasi-Birth-Death process

20

Analytical model: Markov chain
Quasi-Birth-Death process

toff(2) = 0

21

Analytical model: Markov chain
Quasi-Birth-Death process

22

Birth-Death vs. Quasi-Birth-Death
Birth death process

Nivel

23

Birth-Death vs. Quasi-Birth-Death
Quasi-birth-death process

Fase

Nivel

24

Markov chain
Various initial levels

25

Theorem
Convergence Assurance

• Theorem 1. The QBD process is stable if it holds

• Proof: the drift of the system to the higher levels has to be less than the drift
to the lower levels [1]

• Distribution Vector

1. Marcel F. Neuts, «Matrix-Geometric Solutions in Stochastic Models: An Algorithmic
Approach», Dover Publications, 1995. ISBN: 978-0486683423

MTBF

MTBF MTTR
Interpretation:

26

Metrics
Power Consumption (w)

• Markov chain solved

• Average power consumed

Carga

Potencia

Pidle

∆ = Pload

27

Metrics
Probability of failure (Pf)

• Assuming Probabilities ≈ 0

• Failure bc wait on arrival (PASTA)

• Failure bc server crash

Server crash rate

Number of Tasks Affected Capacity after crash

Indicator function

Task drop rate

28

Validation
Simulation parameters

1. TPCDB: http://www.tpcdb.com/product.php?id=2325
2. G. L. Santos et al., «Analyzing the IT subsystem failure impact on availability of cloud services». ISCC 2017
3. TPCDB: http://www.tpcdb.com/product.php?id=4417

Rack

Nano

8 Servers Dell Power Edge 32 GB
Pmax 270 W y Pidle 150 W [1]
Boot up: 3 min [measured]
MTBF: 768 hours [2]

64 Servers Raspberry Pi 4b 4 GB
Pmax 7.6 W y Pidle 4.6 W [3]
Boot up: 20 s [measured]
MTBF: 1/4 of the above

29

http://www.tpcdb.com/product.php?id=2325

Validation
Power On and Off Policies

Green

Red

Yellow

Turn on if all active servers are busy
Turn off if, doing so, leaves room for a task

Turn on when occupancy exceeds 95%
Turn off if occupancy would fall below 85%

Turn on when occupancy exceeds 95%
Turn off if occupancy would fall below 95%

ton(5) = 128
toff(5) = 127

Example
Serv. rack (M=32)

ton(5) = 122
toff(5) = 121

ton(5) = 122
toff(5) = 108

30

Results
Failure probability & Power consumption

31

Optimal configuration
Formulation

• Model allows predicting performance for a given configuration

• Challenge: meeting a reliability criterion (prob. failure) and minimizing
consumption

• Problem: Large space size of possible combinations

Bound for Pf
Target failure probability

32

Optimal configuration (approach)
Assumptions

• Threshold policy:

• Server crash and activation does not affect task distribution

• Behaves as a classical M/M/C, C = MxN

• Power consumed as a function of thresholds

• Decoupling the effect of each threshold on Pf:

33

Optimal configuration (approach)
Assumptions

• Threshold policy:

• Server crash and activation does not affect task distribution

• Behaves as a classical M/M/C, C = MxN

• Power consumed as a function of thresholds

• Decoupling the effect of each threshold on Pf:

34

Computing the optimal configuration
Multiple-choice knapsack problem

1 if the threshold ‘m’ is equal to ‘k’

Post - optimization
Threshold adjustment tm

If Pf > Tf, lower it

If Pf < Tf, increase it

35

Evaluation
Validation of the proposed configuration

• Different load and Tf values

• Complexity

• Algorithm: 20 s -- 37 s

• Search: 3 h (rack), 10 d (nano)

• Nano servers are more efficient

Pseudo exhaustive

36

Evaluation
Comparison with other strategies

1. A. Beloglazov et al. «Energy-aware resource allocation heuristics
for efficient management of data centers for cloud computing»,
Future generation computer systems 28.5 (2012), págs. 755-768.

2. S. Telenyk et al. «Modeling of the Data Center Resource
Management Using Reinforcement Learning», PIC S&T 2018

Heuristic
[1]

Q-learning
[2]

Two threshold sets to de/activate
Minimization of migrations (MM)
Threshold: {50%, 90%} y {40%, 80%}

State: # tasks, # servers
Actions: Power on/off/keep
Penalty: failures y consumption

37

Dynamic optimization

• Dynamic optimization: changing thresholds as a reaction

• Lower thresholds

• Raise thresholds

Motivation
Static vs. Dynamic

• Static optimization: calculation of thresholds a priori

• Need to estimate parameters

• Based on certain modeling hypotheses
Poisson Arrivals
Exponential service
Exponential boots

System Reaction

Measure Pf

Adjust

Control theory

39

System Design: A3S

Servers
Pf

-

Tf

Controlador
e = Pf - Tfc

Thresholds

Mapeo

System H

40

System Design: A3S
Mapping: from ‘c’ to thresholds

• Threshold Policy

• Error

• Positive Error -> Lower Thresholds

• Negative Error -> Raising Thresholds

• Minimum thresholds: all on

• Maximum thresholds: only turns on when full (green)

41

System Design: A3S
Mapping: from ‘c’ to thresholds

• Threshold Policy

• Error

• Positive Error -> Lower Thresholds

• Negative Error -> Raising Thresholds

• Minimum thresholds: all on

• Maximum thresholds: only turns on when full (green)

42

c t1 t2 t3 t4
0 0 3 6 9
1 0 2 6 9
2 0 2 5 9
3 0 2 5 8
4 0 1 5 8
… … … … …
18 0 0 0 0

Example
M=4, N=3

System Design: A3S
Controller: Proportional Integral (PI)

• Control signal

• Parameter values (Ziegler–Nichols) [1, 2]

1. A. Garcia-Saavedra et al., «Adaptive Mechanism for Distributed Opportunistic Scheduling»,
IEEE Transactions on Wireless Communications, 2015

2. P. Serrano et al., «Control Theoretic Optimization of 802.11 WLANs: Implementation and
Experimental Evaluation», Elsevier Computer Networks, 2013

43

Validation
Efficiency and Configuration

44

Evaluation
Vs. Search & Static Optimal

• Comprehensive threshold search

• Vs. Static configuration

• Three 24-hour periods of Google
Workflow trace [1]

• M x N = 128

• I = {30, 44, 64} Erlangs

•

1. Google, «Workflow Trace Archive Google trace»,
Zenodo, Jun. 24, 2019. doi: 10.5281/zenodo.3254540.

45

Comparison
Vs. Reinforcement learning (RL)

• Same technique as before [1]

• Status: # tasks, # servers

• Action: Turn on/off/hold

• Numerical search to achieve Tf

• Convergence: 90% Qvalues

1. S. Telenyk et al. «Modeling of the Data Center
Resource Management Using Reinforcement
Learning», PIC S&T 2018

46

Conclusiones y Trabajo futuro

• The softwarization of networks poses
opportunities and challenges

• Sustainable operation but
guaranteeing high performance

• Two solutions

• Static: Estimation

• Dynamic: adaptation

• Advantages vs. RL

• Other service models: heterogeneous
requests

• Optimizing the Farm Design

• Support for different services with
different requirements

• Impact of the transmission medium

Conclusiones Trabajo futuro

47

Additional information
Publications

• J. Ortín et al., «Analysis of scaling policies for NFV providing 5G/6G reliability levels
with fallible servers», IEEE Transactions on Network and Service Management
(JCR Q2), Junio 2022

• J. Perez-Valero et al., «Energy-Aware Adaptive Scaling of Server Farms for NFV
with Reliability Requirements», IEEE Transactions on Mobile Computing (JCR
Q1), Junio 2023

• J. Perez-Valero et al., «Performance Trade-offs of Auto Scaling Schemes for NFV
with Reliability Requirements», Computer Communications (JCR Q1), Diciembre
2023

• J. Pérez-Valero et al. «Minimum-Cost Design of Auto-Scaling Server Farms
Providing Reliability Guarantees», IEEE Open Journal of the Communications
Society (JCR Q1), Julio 2025

Static
optimization

Dynamic
optimization

Other
scenarios

Design
optimization

48

