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Motivation
Analyzing RCM in the Campus WLAN

* The wireless activity of mobile devices leaves a trail of information that can be
used to unequivocally identify users.

* Four spatio-temporal points are enough to identify 95% of individuals in a
large mobile cellular network [1]

* Randomized and Changing MAC Address (RCM): different MAC per SSID
* Persistent: one per SSID

* Non-persistent: change every 24 h

[1] Montjoye, Yves-Alexandre & Verleysen, Michel & Blondel, Vincent. (2013). Unique in the Crowd:
The Privacy Bounds of Human Mobility. Scientific reports. 3. 1376. 10.1038/srep01376.



The Campus WLAN

Eduroam @ UC3M (Leganes)

* 278 access points (APs)

* 7 buildings

* 10k users

* 16k devices

* Are devices “unique in the crowd”?

* 100x less users

* 8x higher density



Data collection process

Eduroam - federated Radius

®_,
* Each time a device @ (((I)))\
* Associates, or % T ((‘[’)) 2
* reassociates with an AP &—> ((‘I)))/

the RADIUS server logs it

The status is updated at least every 15 minutes.

Each entry:

<timestamp, user identifier, client addresses, AP address, traffic info>
MD5 hash MD5 hash



(also) Unique in the Campus WLAN

‘P’ random spatio-temporal APs vs top ‘p’ APs
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Conclusions (1/3)
High uniqueness in the Campus WLAN

* Despite the differences vs. “Unique in the crowd” [1]
* In size & density
* And population and schedule
* There seems to be strong individualizing information in the logs
* Can we identify some patterns and unequivocally identify users?
* This would render (non-persistent) RCM useless

* Explainable identification -> design better schemes



XD-RCM: eXplainable Deanonymization of RCM
Approach

* Analyze a set of explainable features during some time

* Arrival and departure times
* Number of different APs visited
* Most frequent Aps
* Downloaded traffic
* Use them to re-identify devices after they changed the MAC

* l.e., we assume that at some point the user activates non persistent RCM



Small data set

Following (strict) data protection guidelines

28 explicit volunteers

* Mostly faculty members

98 different devices

5 months of data

We restrict the analysis to a single building
* 3 floors + basement

* 47 APs
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Arrival, Departure, & Total times

* Majority of devices appear
around 8AM

* Most departures concentrate
around 6PM

* A lot of devices are always
connected (permanent)

* And in many cases, to the
same AP (static)
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Number of different APs visited

For different time periods

* For those devices that visit more 20 -

than 1 AP (i.e., non static) w 15
A,

* One day: ~ 3 APs i 10

5 _

* One week: ~ 6 APs 0 -

1 day 1 Week 2 Weeks 1 Month

Time span

2 weeks: ~ 10 APs

1 month: ~ 10 APs

(Note that we consider 1 building)
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Entropy (different APs + relative time)

For the same time periods
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“k” most frequent APs

Idea: the k-tuple will identify users

* Collect the 6 most frequent APs < 100 ===
* Compute the cumulative time in §
decreasing order -
g
5

* Devices spend 90% time on 2 Aps

With k=2, 88% devices are unique
for a window of 1 day



Downloaded traffic per day

* On average, 350 MB/day
* Spain: 400 MB/day

Distribution of Traffic
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eXplainable DE-anonymization of RCM

Approach
Profile: x; = (T, t,, #APs, H,[APs], D)

* Train the model with a
labeled dataset to learn
whether two user DE-RCM

profiles, observed on

different days, belong to R —°j
. ==Y > same userr:
t h e Sa m e d eV I Ce . de-randl(l)zir'nation}
History eglsm

* Once trained, the model e T [ianations
compares a given profile '
of a user with the
historical profiles stored

in the dataset (AX; j,0; ;% Same/different
device




Comparison

Three algorithms

e XD-RCM: based on Random Forests

* Decision tree

* Heuristic: the top k=2 APs
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Results

Deanonymized Devices [%]
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Results

B DE-RCM B Decision Tree B0 Heuristic
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We used LIME (Local Interpretable
Model-agnostic Explanations),
which approximates the model's
predictions with an interpretable
model around specific instances.

Same Device Correct Different Device Correct

[[APs]|=2 — [ Ato=6.8
AJ#APs|=1 — [ AData=7783.7
AT,=15 - ] AH=08
AH=04 i AT,=11
AData=97.8 | A|#APs|=4
Atp=0.6 | | |[APs]|=0 ﬂ-
—6.4—(;.2 (I) oﬁz 0!4 —6.4—6.2 (l) oﬁz 014
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Conclusions (2/3)

* (For the case of our small dataset...)
* Devices are “less entropic” after 2 weeks
* Non persistent MAC is not enough to hide uniqueness

* Human-interpretable variables can be used to re-identify users with 80%
accuracy

* Explainability could help design better de-anonymization techniques

* We need sound approaches to ensure privacy



20

DiWi: A Transformer-Based DT for WLANSs

The use of existing datasets is tricky (privacy considerations)

Adding noise may reduce the utility

But spatio-temporal datasets are useful, e.qg.,

* Anticipatory networking (caching, AP on demand, mobility)
* Heating, ventilation, and air conditioning systems (HVAC)

* Approach: synthetic generation

* For simplicity: discrete time
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DiWIi: motivation

* Qur goal is to model the activity of users connected to the network
* Sequences of discrete spatiotemporal points (i.e., Access Points).

* Large Language Models (LLMs) learn from sequential data => we adopt a
similar architecture to model these sequences of APs

* LLMs rely on a specific encoding of tokens (APs) and its relative position in
the sequence.

* These embeddings are then processed through self-attention layers, which
learn the relationships between elements across time and space.



DiWi: desing

Overall architecture

* Sequentially encoding spatial
and temporal components of
device connectivity traces

* These are merged into a unified
spatiotemporal representation

* The model predicts the next
connectivity state: whether the
device will remain connected to
the same AP, transition to a
different AP, or disconnect
entirely.

OUT |OUT AP, |AP, |AP, |AP, |AP; 6 | 6 IRZANETE TS TaNT 50 55 0
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DiWi: spatial embedding

* We focus on the time between 6 AM and 10 PM (16 hours)
* Time is discretized in 5 minutes interval
* Position:

* A user in one day: sequence of 192 tokens

* Token vocabulary: 278 APs (campus) + "OUT” token
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DiWi: time embedding

* Relative positional embeddings are ok in natural language processing (e.g., to
preserve word order)

* Absolute embeddings are better suited for mobility data, since the absolute
position of a token within the timeline provides critical contextual information.

* For example, being disconnected at 7 AM # being disconnected at 2 PM
* Time is decomposed in hours (H) and minutes (M)
* More scalable than “absolute minute”

* Avoids loss of temporal semantics and degradation on long sequences.



DiWi: spatio temporal embedding
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More details

* We use the complete pseudonymized dataset (MD5 hashes, 30k users)

* J. M. Montes-Lopez, P. Serrano, M. Gramaglia, A. Banchs, “DiWi: A
Transformer-Based Digital Twin for Wireless Mobility,”, Elsevier Computer
Networks, October 2025. 10.1016/j.comnet.2025.111571
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Performance Evaluation
DiWi as mobility predictor

* Ability to predict the next AP Model Campus1 Campus 2
Acc. [%] Acc. [%]
* Benchmarks LSTM Network 91.2 89.8
GPT-2 91.8 91.9
* A standard LSTM network DiWi 92.3 92.4

* GPT-2 model without absolute time

* Better performance => Ability to identify temporal information (GPT2, with a
flat encoding, cannot easily capture)
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Performance evaluation

DiWi as synthetic traffic generator

* Each synthetic trace (device) starts with a token drawn from the distribution of
first states seen in the real data (i.e., 82% in OUT)

* From that “seed” the model produces a probability vector for the next state

* We sample a token from it, slide the context window to keep only the most
recent tokens, and repeat the process.

* Generation stops when the trace reaches a length of 192 tokens (one day)



Performance evaluation

Mobility statistics
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Metric LSTM GPT2 DiWi
N° visited APs 0.26 0.13 0.015
AP rank 0.083 0.076 0.036
Time spent 0.62 0.65 0.017
Time of arrival  0.078  0.059 0.032
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Performance evaluation
Design of HVAC systems
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Performance evaluation

Uniqueness of synthetic traces
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* Three heuristic analyses Figure 7: Hamming Distance between races.
* Average probability of generating a real trace: 10/ {-120}
* Synth traces are as similar to real traces as real traces are to each other
* Membership inference attack: ~ random guess (50%)

* Formal guarantees

* DiWi can be extended with differential privacy (worse performance)
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Conclusions (3/3) and Future work

* LLMs are good at capturing relations * Continuous time
* Use of absolute time is convenient * Real HVAC systems
* H+ T encoding * Public tool

Formal privacy guarantees
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Additional information

* Juan Manuel Montes-Lopez, Pablo Serrano, Marco Gramaglia, Aruna Prem
Bianzino, “DE-RCM: Desanonimizacion Explicable de MACs Aleatorias en
802.11 WLANSs,” Jornadas de Ingenieria Telematica (Jitel 2025), Caceres,
Noviembre 2025

* Lucia Cabanillas, Juan Manuel Montes-Lopez, Diego R. Lopez, Pablo

Serrano, "DEBAC: Dynamic Explainable Behavior-Based Access Control,”
2025 EuCNC & 6G Summit, June, 2025

* J. M. Montes-Lopez, P. Serrano, M. Gramaglia, A. Banchs, “DiWi: A
Transformer-Based Digital Twin for Wireless Mobility,”, Elsevier Computer
Networks, October 2025. 10.1016/j.comnet.2025.111571



