Universidad

ucdm | Carlosllil
de Madrid

Miscellaneous C-programming
Issues

Content

Pointers to functions

Function pointers
Callback functions

Arrays of functions pointers

External libraries

Symbols and Linkage
Static vs Dynamic Linkage
Linking External Libraries
Creating Libraries Data

Function pointers

* In some programming languages, functions are first
class variables (can be passed to functions,
returned from functions etc.).

 In C, function itself is not a variable. But it is possible
to declare pointer to functions.

e Question: What are some scenarios where you want
to pass pointers to functions?

e Declaration examples:
— int (*xfp)(int)/*notice the () */
— int (*xfp) (void*,voidx)

e Function pointers can be assigned, pass to and from
functions, placed in arrays.

Callbacks

 Definition: Callback is a piece of running code passed to
functions. In C, callbacks are implemented by passing
function pointers.

Example:
void gsort(void* arr, int num,int size,
int(*fp)(voidx* pa, void* pb))
» gsort() function from the standard library can be sort an
array of any datatype.
- Question: How does it do that? callbacks.

» gsort() calls a function whenever a comparison needs to
be done.

* The function takes two arguments and returns (<0,0,>0)
depending on the relative order of the two items.

Callback: gsort example

/ * array definitionx* /
int arr[]={10,9,8,1,2,3,5};
/ * callbackx* /
int asc(voidx* pa, void* pb)
{ return(*(int *)pa - *(int *)pb);}
/* callback */
int desc(void* pa, voidx* pb)

{ return(*(int *x)pb -*(intx*)pa);}

/* sort in ascending order x*/
gsort(arr,sizeof(arr)/sizeof(int),sizeof(int),asc);

/* sort in descending order x/

Callback: Apply example

eConsider a linked list with nodes defined as follows:

struct node {int data ;
struct nodex*x next ; };

Also consider the function 'apply’ defined as follows:
void apply(struct node* phead, void (* fp)
(void* , void*), volidx arg)

/* only fp has to be named */

{ struct node* p=phead ;

while (p !=NULL) {

fp(p,arg); /* or (* fp)(p,arg) */
p=p—->next ; }

Callback: Apply example (cont.)

elterating:

/* called back function */

void print(void* p, void* arqg)
{struct nodex*x np =(struct node *)p;

printf ("$d ", np->data);
}

struct nodex phead ;

/* populate somewhere */

apply(phead,print ,NULL);

Array of function pointers

Example:Consider the case where different functions
are called based on a value.
enum TYPE{SQUARE,RECT,CIRCILE ,POLYGON};

struct shape {float params[MAX];
enum TYPE type ;};

void draw(struct shapex*x ps)/{
switch (ps—->type){
case SQUARE: draw_square(ps);break ;

case RECT: draw rect (ps); break;

.t}

Array of function pointers (‘ed)

*The same can be done using an array of function pointers

Instead.

void (*fp[4])(struct shapex* ps)=
{&draw_square,&draw_rec,&draw_circle,&draw_poly};

typedef void(*fp) (struct shape* ps) drawfn;

drawfn fp[4]
={&draw_square, &draw _rec,&draw circle, &draw poly};

void draw(struct shape* ps){

(* fp[ps—>type])(ps); /* call the correct function */}

Symbols and libraries

« External libraries provide a wealth of functionality
Example: C standard library

e Programs access libraries’ functions and variables
via identifiers known as symbols

» Header file declarations/prototypes mapped to
symbols at compile time

e Symbols linked to definitions in external libraries
during linking

Functions and variables as symbols

eConsider the simple hello world program written
below:

#include <stdio.h>
const char msg[] = "Hello, world." ;
int main (void)/{

puts(msqg);

return 0;

}

 What variables and functions are declared
globally? msg, main(), puts(), others in
stdio.h

Functions and variables as symbols

 Let’'s compile, but not link, the file hello.c to create
hello.o:

athena% gcc -Wall -c hello.c -o hello.o

e —c: compile, but do not link hello.c; result will
compile the code into machine instructions but not
make the program executable

 addresses for lines of code and static and global
variables not yet assigned

e need to perform link step on hello.o (using gcc or 1d)
to assign memory to each symbol

e linking resolves symbols defined elsewhere (like the
C standard library) and makes the code executable

Functions and variables as symbols

Let’s look at the symbols in the compiled file hello.o:
athena% nm hello.o

e Output:
0000000000000000 T main
0000000000000000 R msg U puts

o 'T": (text) code; 'R’: read-only memory; 'U’:
undefined symbol

» Addresses all zero before linking; symbols not
allocated memory yet

» Undefined symbols are defined externally, resolved
during linking

Functions and variables as symbols

 Why aren’t symbols listed for other declarations
INn stdio.h?

e Compiler does not bother creating symbols for
unused function prototypes (saves space)

e What happens when we link?
athena% gcc -Wall hello.o -o hello

 Memory allocated for defined symbols

e Undefined symbols located in external libraries
(like libc for C standard library

Functions and variables as symbols

 Let’s look at the symbols now:
athena% nm hello
e Output: (other default symbols)

0000000000400524 T main
000000000040062c R msg

U puts@@GLIBC 2.2.5
» Addresses for static (allocated at compile time) symbols

« Symbol puts located in shared library GLIBC 2.2.5 (GNU
C standard library)

« Shared symbol puts not assigned memory until run time

Static and dynamic linkage

e Functions, global variables must be allocated
memory before use

« Can allocate at compile time (static) or at run time
(shared)

» Advantages/disadvantages to both

e Symbols in same file, other .o files, or static libraries
(archives, .a files) — static linkage

e Symbols in shared libraries (. so files) — dynamic
linkage

 gcc links against shared libraries by default, can
force static linkage using -static flag

Static linkage

 What happens if we statically link against
the library?

athena% gcc -Wall -static hello.o -0
hello

Now contains the symbol puts:
00000000004014c0 W puts
0000000000400304 T main

000000000046cd04 R msg
 'W’: linked to another defined symbol

Static linkage

At link time, statically linked symbols added to
executable

e Results in much larger executable file
(static — 688K, dynamic — 10K)

* Resulting executable does not depend on
locating external library files at run time

* To use newer version of library, you have to
recompile

Dynamic linkage

 Dynamic linkage occurs at run-time

e During compile, linker just looks for symbol in external
shared libraries

e Shared library symbols loaded as part of program startup
(before main())

* Requires external library to define symbol exactly as
expected from header file declaration

e Changing function in shared library can break your
program

 Version information used to minimize this problem

 Reason why common libraries like 1ibc rarely modify or
remove functions, even broken ones like gets()

Linking external libraries

* Programs linked against C standard library by default

e To link against library 1ibnamespec.so or
libnamespec.a, use compiler flag -lInamespec to
link against library

e Library must be in library path (standard library
directories + directories specified using -L directory
compiler flag)

» Use -static for force static linkage

 This is enough for static linkage; library code will be
added to resulting executable

Loading shared libraries

«Shared library located during compile-time linkage,
out needs to be located again during run-time
oading

» Shared libraries located at run-time using linker
library 1d.so

 Whenever shared libraries on system change, need
to run 1dconfig to update links seen by 1d.so

 During loading, symbols in dynamic library are
allocated memory and loaded from shared library
file

Loading shared libraries on demand

* In Linux, can load symbols from shared libraries
on demand using functions in dl1fcn.h

e Open a shared library for loading:

void * dlopen(const char *xfile, int mode);

Modes:
RTLD LAZY(lazy loading of library),
RTLD NOW(load now), RTLD LOCAL,
RTLD GLOBAL

Loading shared libraries on demand

» Get the address of a symbol loaded from the library:

void* dlsym(void * handle,
const char* symbol name);

handle from call to dlopen; returned address Is pointer
to variable or function identified by symbol name

* Need to close shared library file handle after done with
symbols in library:

int dlclose(void x* handle);

» These functions are not part of C standard library; need to
link against library 1ibdl: -1d1 compiler flag

Creating libraries

e Libraries contain C code like any other program

o Static or shared libraries compiled from (un-linked) object
files created using gcc

« Compiling a static library:
- Compile, but do not link source files:

athena% gcc -g -Wall -c infile.c -o outfile.o
- collect compiled (unlink ed) files into an archive:

athena% ar -rcs libname.a outfilel.o outfile2.o

Creating shared libraries

 Compile and do not link files using gcc:
athena% gcc -g -Wall -fPIC -c infile.c -o
outfile.o

« —-fPIC option: create position-independent code,
since code will be repositioned during loading

e Link files using Id to create a shared object (.so) file:
athena% ld -shared -soname libname.so -0

libname.so.version -1lc outfilel.o outfile2.0

e If necessary, add directory t0 LD _LIBRARY PATH
environment variable, so 1d.so can find file when
loading at run-time

e Configure 1d.so for new (or changed) library:
athena% ldconfig -v

Universidad

ucdm | Carloslil
de Madrid

Thank you

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24
	Página 25
	Página 26

