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Review: Resource Sharing

• Access to shared resources need to be controlled 
to ensure deterministic operation 

• Synchronization objects: mutexes, semaphores, 
read/write locks, barriers 

• Mutex: simple single lock/unlock mechanism 
– int pthread_mutex_init(pthread_mutex_t mutex,          ∗

const pthread_mutexattr_t  attr); ∗

– int pthread_mutex_destroy(pthread_mutex_t mutex); ∗

– int pthread_mutex_lock     (pthread_mutex_t mutex); ∗

– int pthread_mutex_trylock (pthread_mutex_t mutex); ∗

– int pthread_mutex_unlock (pthread_mutex_t mutex); ∗



  

Review: Condition Variables

• Lock/unlock (with mutex) based on run-time condition 
variable.

• Allows thread to wait for condition to be true.
• Other thread signals waiting thread(s), unblocking them 

– int pthread_cond_init( pthread_cond_t cond, ∗

const pthread_condattr_t attr ); ∗

– int pthread_cond_destroy( pthread_cond_t cond ); ∗

– int pthread_cond_wait( pthread_cond_t cond, ∗

                                                   pthread_mutex_t mutex ); ∗

– int pthread_cond_broadcast( pthread_cond_t cond ); ∗

– int pthread_cond_signal( pthread_cond_t cond ); ∗



  

Multithreaded Programming

• OS implements scheduler – determines which threads 
execute when 

• Scheduling may execute threads in arbitrary order 
• Without proper synchronization, code can execute non-

deterministically 
• Suppose we have two threads: 

– 1 reads a variable, 
– 2 modifies that variable 

• Scheduler may execute 
– 1, then 2, 
– or 2 then 1 

• Non-determinism creates a race condition – where the 
behavior/result depends on the order of execution 



  

Race conditions

• Race conditions occur when multiple threads share a 
variable, without proper synchronization 

• Synchronization uses special variables, like a mutex, to 
ensure order of execution is correct 

• Example: thread T1 needs to do something before 
thread T2
– condition variable forces thread T2 to wait for thread T1 
– producer-consumer model program 

• Example: two threads both need to access a variable 
and 
– modify it based on its valuesurround access and modification 

with a mutex
– mutex groups operations together to make them atomic – treated 

as one unit 



  

Example

Consider the following program race.c: 
unsigned int cnt = 0; 
void count ( ∗ void arg ) { /  thread body / ∗ ∗ ∗
  int i ; 
  for ( i = 0; i < 100000000; i ++) 
      cnt ++; 
  return NULL ; 
} 
int main ( void ) { 
  pthread_t t i d s [ 4 ] ; 
  int i ; 
  for ( i = 0; i < 4; i ++) 
    pthread_create (& t i d s [ i ] , NULL, count , NULL ) ;
  for ( i = 0; i < 4; i ++)
     pthread _join ( t i d s [ i ] , NULL ) ;
  p r i n t f ( " cnt=%u \ n " , cnt ) ;
  return 0;
} 

What is the value of cnt? 

[Bryant and O’Halloran. Computer Systems: A Programmer’s Perspective. Prentice Hall, 2003.] 
© Prentice Hall. All rights reserved. 



  

Example Results

Ideally, should increment cnt 4 × 100000000 times, so cnt = 
400000000. However, running our code gives: 

athena% ./race.o 
cnt=137131900 
athena% ./race.o 
cnt=163688698 
athena% ./race.o 
cnt=163409296 
athena% ./race.o 
cnt=170865738 
athena% ./race.o 
cnt=169695163 

So, what happened? 



  

Race Conditions

• C not designed for multithreading 
• No notion of atomic operations in C 
• Increment cnt++; maps to three assembly 

operations: 
– load cnt into a register 
– increment value in register 
– save new register value as new cnt 

• So what happens if thread interrupted in the 
middle?

Race condition! 



  

Race Conditions
Let’s fix our code: 

pthread_mutex_t mutex; 
unsigned int cnt = 0; 

void count ( ∗ void arg) {/  thread body /   ∗ ∗ ∗
  int i; 
  for ( i = 0; i < 100000000; i ++) { 
    pthread_mutex_lock(&mutex );
     cnt++;
    pthread_mutex_unlock(&mutex );
  } 
  return NULL ; 
} 
int main ( void ){ 
  pthread_t tids [4];
  int i; 
  pthread_mutex_init(&mutex, NULL); 
  for (i =0; i<4; i++) 
    pthread_create(&tids[i], NULL, count, NULL); 
  for (i =0; i<4; i++) 
   pthread _join(tids[i], NULL);
  pthread_mutex_destroy(&mutex );
  printf ("cnt=%u\n " ,cnt );
  return 0;
} 



  

Race Conditions

• Note that new code functions correctly, but is 
much slower 

• C statements not atomic – threads may be 
interrupted at assembly level, in the middle of a 
C statement 

• Atomic operations like mutex locking must be 
specified as atomic using special assembly 
instructions 

• Ensure that all statements accessing/modifying 
shared variables are synchronized 



  

Semaphores

• Semaphore – special nonnegative integer 
variable s, initially 1, which implements two 
atomic operations: 
– P(s) – wait until s> 0, decrement s and return 
– V(s) – increment s by 1, unblocking a waiting thread 

• Mutex – 
– locking calls P(s) and 
– unlocking calls V(s) 

• Implemented in <semaphore.h>, part of library 
rt, not pthread 



  

Using Semaphores

• Initialize semaphore to value: 
int sem_init(sem_t sem, ∗ int pshared, unsigned int value); 

• Destroy semaphore: 
int sem_destroy(sem_t sem); ∗

• Wait to lock, blocking: 
int sem_wait(sem_t sem); ∗

• Try to lock, returning immediately (0 if now locked, −1 
otherwise): 

int sem_trywait(sem_t sem); ∗

• Increment semaphore, unblocking a waiting thread: 
int sem_post(sem_t sem);∗



  

Producer and Consumer Revisited

• Use a semaphore to track available slots in shared 
buffer 

• Use a semaphore to track items in shared buffer 

• Use a semaphore/mutex to make buffer operations 

synchronous 



  

Producer and Consumer Revisited



  

Other Challenges

• Synchronization objects help solve race conditions 

• Improper use can cause other problems

• Some common issues: 
• thread safety and reentrant functions
• deadlock

• starvation 



  

Thread Safety

• Function is thread safe if it always behaves correctly 
when called from multiple concurrent threads 

• Unsafe functions fail in several categories: 
– accesses/modifies unsynchronized shared variables 

– functions that maintain state using static variables – 
like rand(), strtok() 

– functions that return pointers to static memory – like 
gethostbyname() 

– functions that call unsafe functions may be unsafe 



  

Reentrant functions

• Reentrant function – does not reference any shared 
data when used by multiple threads 

• All reentrant functions are thread-safe
• Reentrant versions of many unsafe C standard library 

functions exist: 



  

Thread safety

To make your code thread-safe: 
• Use synchronization objects around shared 

variables 
• Use reentrant functions 
• Use synchronization around functions returning 

pointers to shared memory (lock-and-copy): 
1. lock mutex for function 
2. call unsafe function 
3. dynamically allocate memory for result; (deep) copy result 

into new memory 
4. unlock mutex 



  

Deadlock
#include <assert.h>
#include <pthread.h>

static void * simple_thread(void *);

pthread_mutex_t mutex_1= PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex_2= PTHREAD_MUTEX_INITIALIZER;

int main()
{
pthread_t tid = 0;

pthread_create(&tid, 0, &simple_thread, 0); // create a thread

pthread_mutex_lock(&mutex_1);                 // acquire mutex_1
pthread_mutex_lock(&mutex_2);                 // acquire mutex_2
pthread_mutex_unlock(&mutex_2);             // release mutex_2
pthread_mutex_unlock(&mutex_1);             // release mutex_1

pthread_join(tid, NULL); 

return 0;
}

static void * simple_thread(void * dummy)
{
pthread_mutex_lock(&mutex_2);                // acquire mutex_2
pthread_mutex_lock(&mutex_1);                // acquire mutex_1
pthread_mutex_unlock(&mutex_1);            // release mutex_1
pthread_mutex_unlock(&mutex_2);            // release mutex_2

return NULL;
}



  

Deadlock

• Deadlock – happens when every thread is 
waiting on another thread to unblock 

• Usually caused by improper ordering of 
synchronization objects 

• Tricky bug to locate and reproduce, since 
schedule-dependent 

• Can visualize using a progress graph – traces 
progress of threads in terms of synchronization 
objects 



  

Deadlock

• Defeating deadlock extremely difficult in general 
• When using only mutexes, can use the “mutex 

lockordering rule” to avoid deadlock scenarios:
A program is deadlock-free if, 

for each pair of mutexes (s, t) in the program, 
each thread that uses both s and t simultaneously 
locks them in the same order



  

Starvation and Priority Inversion

• Starvation is similar to deadlock 

• Scheduler never allocates resources (e.g. CPU time) for a thread to 
complete its task 

• Happens during priority inversion 
• example: 

–  highest priority thread T1 waiting for low priority thread 
T2 to finish using a resource, 

–  while thread T3, which has higher priority than T2, is 
allowed to run indefinitely 

• thread T1 is considered to be in starvation 



  

Thank you,
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