

Multithreading Programming II

Content

• Review Multithreading programming

• Race conditions

• Semaphores

• Thread safety

• Deadlock

Review: Resource Sharing

• Access to shared resources need to be controlled
to ensure deterministic operation

• Synchronization objects: mutexes, semaphores,
read/write locks, barriers

• Mutex: simple single lock/unlock mechanism
– int pthread_mutex_init(pthread_mutex_t mutex, ∗

const pthread_mutexattr_t attr); ∗

– int pthread_mutex_destroy(pthread_mutex_t mutex); ∗

– int pthread_mutex_lock (pthread_mutex_t mutex); ∗

– int pthread_mutex_trylock (pthread_mutex_t mutex); ∗

– int pthread_mutex_unlock (pthread_mutex_t mutex); ∗

Review: Condition Variables

• Lock/unlock (with mutex) based on run-time condition
variable.

• Allows thread to wait for condition to be true.
• Other thread signals waiting thread(s), unblocking them

– int pthread_cond_init(pthread_cond_t cond, ∗

const pthread_condattr_t attr); ∗

– int pthread_cond_destroy(pthread_cond_t cond); ∗

– int pthread_cond_wait(pthread_cond_t cond, ∗

 pthread_mutex_t mutex); ∗

– int pthread_cond_broadcast(pthread_cond_t cond); ∗

– int pthread_cond_signal(pthread_cond_t cond); ∗

Multithreaded Programming

• OS implements scheduler – determines which threads
execute when

• Scheduling may execute threads in arbitrary order
• Without proper synchronization, code can execute non-

deterministically
• Suppose we have two threads:

– 1 reads a variable,
– 2 modifies that variable

• Scheduler may execute
– 1, then 2,
– or 2 then 1

• Non-determinism creates a race condition – where the
behavior/result depends on the order of execution

Race conditions

• Race conditions occur when multiple threads share a
variable, without proper synchronization

• Synchronization uses special variables, like a mutex, to
ensure order of execution is correct

• Example: thread T1 needs to do something before
thread T2
– condition variable forces thread T2 to wait for thread T1
– producer-consumer model program

• Example: two threads both need to access a variable
and
– modify it based on its valuesurround access and modification

with a mutex
– mutex groups operations together to make them atomic – treated

as one unit

Example

Consider the following program race.c:
unsigned int cnt = 0;
void count (∗ void arg) { / thread body / ∗ ∗ ∗
 int i ;
 for (i = 0; i < 100000000; i ++)
 cnt ++;
 return NULL ;
}
int main (void) {
 pthread_t t i d s [4] ;
 int i ;
 for (i = 0; i < 4; i ++)
 pthread_create (& t i d s [i] , NULL, count , NULL) ;
 for (i = 0; i < 4; i ++)
 pthread _join (t i d s [i] , NULL) ;
 p r i n t f (" cnt=%u \ n " , cnt) ;
 return 0;
}

What is the value of cnt?

[Bryant and O’Halloran. Computer Systems: A Programmer’s Perspective. Prentice Hall, 2003.]
© Prentice Hall. All rights reserved.

Example Results

Ideally, should increment cnt 4 × 100000000 times, so cnt =
400000000. However, running our code gives:

athena% ./race.o
cnt=137131900
athena% ./race.o
cnt=163688698
athena% ./race.o
cnt=163409296
athena% ./race.o
cnt=170865738
athena% ./race.o
cnt=169695163

So, what happened?

Race Conditions

• C not designed for multithreading
• No notion of atomic operations in C
• Increment cnt++; maps to three assembly

operations:
– load cnt into a register
– increment value in register
– save new register value as new cnt

• So what happens if thread interrupted in the
middle?

Race condition!

Race Conditions
Let’s fix our code:

pthread_mutex_t mutex;
unsigned int cnt = 0;

void count (∗ void arg) {/ thread body / ∗ ∗ ∗
 int i;
 for (i = 0; i < 100000000; i ++) {
 pthread_mutex_lock(&mutex);
 cnt++;
 pthread_mutex_unlock(&mutex);
 }
 return NULL ;
}
int main (void){
 pthread_t tids [4];
 int i;
 pthread_mutex_init(&mutex, NULL);
 for (i =0; i<4; i++)
 pthread_create(&tids[i], NULL, count, NULL);
 for (i =0; i<4; i++)
 pthread _join(tids[i], NULL);
 pthread_mutex_destroy(&mutex);
 printf ("cnt=%u\n " ,cnt);
 return 0;
}

Race Conditions

• Note that new code functions correctly, but is
much slower

• C statements not atomic – threads may be
interrupted at assembly level, in the middle of a
C statement

• Atomic operations like mutex locking must be
specified as atomic using special assembly
instructions

• Ensure that all statements accessing/modifying
shared variables are synchronized

Semaphores

• Semaphore – special nonnegative integer
variable s, initially 1, which implements two
atomic operations:
– P(s) – wait until s> 0, decrement s and return
– V(s) – increment s by 1, unblocking a waiting thread

• Mutex –
– locking calls P(s) and
– unlocking calls V(s)

• Implemented in <semaphore.h>, part of library
rt, not pthread

Using Semaphores

• Initialize semaphore to value:
int sem_init(sem_t sem, ∗ int pshared, unsigned int value);

• Destroy semaphore:
int sem_destroy(sem_t sem); ∗

• Wait to lock, blocking:
int sem_wait(sem_t sem); ∗

• Try to lock, returning immediately (0 if now locked, −1
otherwise):

int sem_trywait(sem_t sem); ∗

• Increment semaphore, unblocking a waiting thread:
int sem_post(sem_t sem);∗

Producer and Consumer Revisited

• Use a semaphore to track available slots in shared
buffer

• Use a semaphore to track items in shared buffer

• Use a semaphore/mutex to make buffer operations

synchronous

Producer and Consumer Revisited

Other Challenges

• Synchronization objects help solve race conditions

• Improper use can cause other problems

• Some common issues:
• thread safety and reentrant functions
• deadlock

• starvation

Thread Safety

• Function is thread safe if it always behaves correctly
when called from multiple concurrent threads

• Unsafe functions fail in several categories:
– accesses/modifies unsynchronized shared variables

– functions that maintain state using static variables –
like rand(), strtok()

– functions that return pointers to static memory – like
gethostbyname()

– functions that call unsafe functions may be unsafe

Reentrant functions

• Reentrant function – does not reference any shared
data when used by multiple threads

• All reentrant functions are thread-safe
• Reentrant versions of many unsafe C standard library

functions exist:

Thread safety

To make your code thread-safe:
• Use synchronization objects around shared

variables
• Use reentrant functions
• Use synchronization around functions returning

pointers to shared memory (lock-and-copy):
1. lock mutex for function
2. call unsafe function
3. dynamically allocate memory for result; (deep) copy result

into new memory
4. unlock mutex

Deadlock
#include <assert.h>
#include <pthread.h>

static void * simple_thread(void *);

pthread_mutex_t mutex_1= PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex_2= PTHREAD_MUTEX_INITIALIZER;

int main()
{
pthread_t tid = 0;

pthread_create(&tid, 0, &simple_thread, 0); // create a thread

pthread_mutex_lock(&mutex_1); // acquire mutex_1
pthread_mutex_lock(&mutex_2); // acquire mutex_2
pthread_mutex_unlock(&mutex_2); // release mutex_2
pthread_mutex_unlock(&mutex_1); // release mutex_1

pthread_join(tid, NULL);

return 0;
}

static void * simple_thread(void * dummy)
{
pthread_mutex_lock(&mutex_2); // acquire mutex_2
pthread_mutex_lock(&mutex_1); // acquire mutex_1
pthread_mutex_unlock(&mutex_1); // release mutex_1
pthread_mutex_unlock(&mutex_2); // release mutex_2

return NULL;
}

Deadlock

• Deadlock – happens when every thread is
waiting on another thread to unblock

• Usually caused by improper ordering of
synchronization objects

• Tricky bug to locate and reproduce, since
schedule-dependent

• Can visualize using a progress graph – traces
progress of threads in terms of synchronization
objects

Deadlock

• Defeating deadlock extremely difficult in general
• When using only mutexes, can use the “mutex

lockordering rule” to avoid deadlock scenarios:
A program is deadlock-free if,

for each pair of mutexes (s, t) in the program,
each thread that uses both s and t simultaneously
locks them in the same order

Starvation and Priority Inversion

• Starvation is similar to deadlock

• Scheduler never allocates resources (e.g. CPU time) for a thread to
complete its task

• Happens during priority inversion
• example:

– highest priority thread T1 waiting for low priority thread
T2 to finish using a resource,

– while thread T3, which has higher priority than T2, is
allowed to run indefinitely

• thread T1 is considered to be in starvation

Thank you,

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24

