
Using Real-Time Java in Distributed Systems: Problems and Solutions [draft

version] ... 2
Introduction ... 3
Approaches to Distributed Real-Time Java ... 4

Main control-flow approaches to Distributed Real-Time Java...................... 6
RT-CORBA and RTSJ ... 6
RMI and RTSJ .. 7

A data-flow approach: DDS and RTSJ ... 8
Distributed Real-Time Java ... 8

DRTSJ: The Distributed Real-Time Specification for Java 9
Distributable Real-Time Threads .. 9
Different integration levels ... 11

Architectures for RT-RMI ... 12
DREQUIEMI .. 12
A RT-RMI framework for the RTSJ ... 16

Programming Profiles for RT-RMI ... 17
Real-time component models for RT-RMI ... 19

Supplements for DRTJava ... 19
Embedded Distributed Real-Time Java ... 19
Real-time networking .. 20
Multi-core support for Distributed Real-Time Java 20
Models based on CSP formalism .. 21

Augmented technologies: benefits and approaches ... 21
RT-OSGi ... 22
RT-EJBs .. 22
RT-Jini .. 22

Conclusions ... 23
References ... 23

2

Using Real-Time Java in Distributed Systems:

Problems and Solutions [draft version]

Pablo Basanta-Val

DREQUIEM Lab.

Universidad Carlos III de Madrid

Avda. Universidad nº 30- Leganés (Madrid) SPAIN- 28911

pbasanta@it.uc3m.es

Jonathan Stephen Anderson

ECE Dept.

Virginia Tech.

Blacksburg, VA 24061

andersoj@anderson.org

Abstract Many real-time systems are distributed, i.e. they use a network to inter-

connect different Java nodes. The current RTSJ specification is itself insufficient

to address this challenge; it requires distributed facilities to control the network

and maintain end-to-end real-time performance. To date, the real-time Java com-

munity worked in DRTSJ (The Distributed Real-Time Java), the main effort in the

area, though a wide variety of other distributed real-time Java efforts exist. The

goal of this chapter is to analyze them globally, looking for the problems they ad-

dressed and their solutions, defining when possible their mutual relationships. This

chapter is of special relevance for researchers interested in the state-of-the-art in

distributed real-time Java. They are approached to the most related work and the

chapter may help them identify current alternatives and research niches.

Acknowledgments This work was supported in part by the iLAND Project (100026) of Call 1 of

EU ARTEMIS JU and also in part by ARTISTDesign NoE (IST-2007-214373) of the EU 7
th
 FP

programme. We also thank Marisol García-Valls (mvalls@it.uc3m.es) for her comments on a

previous draft of this chapter.

3

Introduction

Next generation real-time systems are likely to be cyber-physical [1][2], meaning

that they are more distributed and embedded than before and with coupled interac-

tion with physical systems. From the point of view of real-time Java, it is not suf-

ficient to rely solely on centralized timeliness specifications like the RTSJ (Real-

time Specification for Java) [3]. Programmers require solutions that allow inter-

connection of these isolated virtual machines to offer real-time support on myriad

networks and applications. The kinds of networks that should be addressed in-

clude, among others, automotive networking, industrial networks, aviation busses,

and the Internet, offering each system different domain challenges.

The evolution of centralized and distributed real-time specifications has been

conducted at different rates. Whereas there are commercial implementations for

centralized systems based on RTSJ, distributed systems still lack this kind of sup-

port.

On the one hand, centralized systems have an important infrastructure they can

use to develop their real-time Java applications using a common specification: the

RTSJ (Real-Time Specification for Java). Designers can build their systems using

Oracle’s Java RTS implementation [4, 5], IBM’s WebSphere RT [6], Aicas’ Ja-

maica [7] or Apogee’s Aphelion [8]. Each implementation extends the normative

model in one or more ways. For instance, many of the aforementioned commercial

implementations support real-time garbage collection, one feature that it is not

mandatory in the RTSJ; many have plug-ins for common IDEs. There are also ex-

perimental platforms that include JTime [8] (the RT-JVM implemented as the ref-

erence implementation for the RTSJ), and free source-code implementations like

JRate [9, 10] OVM [11], and Flex [12].

On the other hand, distributed real-time application practitioners suffer from a

lack of normative implementations and specifications on which they may develop

their systems. Most efforts toward a distributed real-time specification address one

of two different technologies: Java’s RMI (Remote Method Invocation) [13] and

OMG’s RT-CORBA (Real-Time Common Object Request Broker Architecture)

[14-16]. Neither process is complete (i.e. no specification and implementation that

developers may use have emerged).

For RMI, a natural choice for pure Java systems, the primary work has been

drafted as a specification under the JSR-50 umbrella. The name given to the speci-

fication is the DRTSJ (Distributed Real-Time Specification for Java) [14-16]. Un-

fortunately, the work is unfinished, inactive, and requires significant effort to pro-

duce implementations similar in quality and performance to those available in the

RTSJ. In a wider context, some partial implementation efforts have been carried

out in some initiatives (e.g. DREQUIEMI [17]) to test different architectural as-

pects; however, current implementations cannot be used in their current form in

commercial applications.

RT-CORBA [18] was mapped to RTSJ [19-21] to take advantage of the real-

time performance offered by the real-time virtual machine. The mapping is far

4

from trivial because many features of RTSJ have to be combined with the real-

time facilities of CORBA which offer similar support. The main implementation

supporting RTSJ and RT-CORBA mapping [22, 23], RTZen, has produced a par-

tial implementation which cannot be used in its current form to develop real-time

applications, and requires additional implementation effort to produce a commer-

cial product.

Apart from these two control-flow efforts there are other options for distributed

real-time Java based on emerging standards like DDS [24]. For instance, the inte-

gration of distributed Java with the real-time distribution paradigm is being lively

investigated in the context of the iLAND project [25-27]. Many practical distri-

buted real-time systems implemented with RTSJ include DDS products like RTI’s

DDS or PrismTech’s Open Splice.

The rest of this chapter explores previous work in differing depth depending on

importance and the amount of publically accessible information. Before entering

into the discussion of the main work carried out in distributed real-time Java, the

chapter analyzes different Java technologies that may be used to support Java dis-

tribution. After that, it focuses the attention on DRTSJ and other real-time RMI

(RT-RMI) approaches. Then, extra support for distributed real-time Java that

ranges from the use of specific hardware to the use of formal methods and multi-

core infrastructure are discussed. The chapter continues with a set of technologies

that augment distributed real-time with additional abstractions and new services.

The chapter ends with conclusions and future work.

Approaches to Distributed Real-Time Java

Before entering into any particular approach, the section explores different alter-

natives for distributed real-time Java from a technological perspective identifying

a set of candidate technologies. The leading effort, DRTSJ, is included as part of

the discussion. For each category, the authors analyze advantages and inconve-

niences stemmed from the use of each technology.

Although there are many distributed abstractions and categories, from the point

of view of real-time systems, they may be classified at least in the following types

[16, 28, 29]:

– Control-flow. This category includes systems that use method invocation in

simple request-response fashion. Java’s RMI (Remote Method Invocation),

remote invocations or any remote procedure call (RPC) belong to this cate-

gory. The basic idea of them is to move both application data and the ex-

ecution point of the application among remote entities.

– Data-flow. This category includes the publish/subscribe model that is sup-

ported in technologies like the OMG’s DDS (Data Distribution Service)

[24]. The goal of DDS is the movement of data without an execution point

among application entities following publisher/subscriber patterns which

communicate through shared topics.

5

– Networked. Comprises systems that exchange asynchronous or synchron-

ous movement of messages, without a clear execution point among their

entities. IPC and message passing mechanisms included in many operating

systems fall in this category. Java’s JMS (Java’s Message System) [30]

could be included in the list too.

The list of distributed models for Java is more extensive [31], including mobile

objects, autonomous agents, tuple-spaces, and web-services.

A comprehensive distributed real-time Java need not provide all of them; any

(networked, data-flow, or control-flow) is powerful enough to develop a

straightforward technology.

The impact of the three models on Java is quite different and it is in an uneven

state. Control flow solutions, like DRTSJ and other RT-RMI technology, are the

most addressed approaches because they were integrated previously in other tech-

nologies like RT-CORBA.

Data flow approaches are another alternative for building a real-time technolo-

gy (with technologies like DDS). However, despite significant practical use, they

have not been addressed by the real-time Java community in depth. Rather, the

community has focused mainly on control-flow abstractions.

The use of networked solutions provides flexibility but requires cooperation

from higher-level abstractions which should instead deal with end-to-end timeli-

ness. Nevertheless, networked solutions are one of the most used approaches with

several specific proprietary frameworks.

Other Java’s technologies like Jini [32], JavaSpaces [33], and Voyager [34] of-

fer augmented distribution models that enhance current infrastructures but they are

silent about real-time issues. In many cases, these technologies require a predicta-

ble end-to-end communication model on which to build their enhanced models.

For instance, Jini offers distributed service management (with three stages dis-

covery, join, and leasing) in which communications rely on RMI. JavaSpaces

offers an abstraction similar to object oriented databases (without persistence)

with read, write, and take primitives which have to be accessed from remote

nodes. Voyager supports mobile code and agents that may migrate in the platform

at discretion among several virtual machines that communicate agents.

In the three cases described, the challenge is to characterize the augmented ab-

straction from the point-of-view of a real-time infrastructure. For instance, in one

possible RT-Jini [35] the services could publish their real-time characterization

which could be used in the discovery process by clients that require access to re-

mote services. However, other alternative RT-Jini approaches may offer bounded

discovery processes and enhanced composition.

Among these, three distributed technologies are of special interest for distri-

buted real-time Java: RT-CORBA, RMI and DDS. The rest of this section analys-

es pros and cons of using each one of these three technologies when they are used

as basic support for distributed real-time Java.

6

Main control-flow approaches to Distributed Real-Time Java

Assuming a control flow abstraction, an implementation for distributed real-

time Java may chose among two primary technologies: RT-CORBA and RMI.

RT-CORBA and RTSJ

The RT-CORBA standard enhances CORBA for real-time applications. The

specification is divided into two parts: RT-CORBA 1.0 for static systems and RT-

CORBA 2.0 for dynamic environments. One way to provide distributed real-time

Java is to map these two models to RTSJ, as has been done previously for many

other programming languages. For instance, a similar mapping has been carried

out before for Ada and C/C++.

Defining a mapping from RT-CORBA to RTSJ is not as simple as it seems at a

first glance. One may think that it is a simple process but it requires some kind of

reconciliation between RT-CORBA and RTSJ in order to match and map abstrac-

tions for real-time parameterization, scheduling parameters and underlying enti-

ties.

For instance, using RT-CORBA with RTSJ, the programmer has two alterna-

tives to control concurrency: one given by the RT-CORBA’s mutex and another

by using the synchronized statement and monitors included in RTSJ.

Choosing one or another alternative is equivalent to select one of the following

target infrastructures:

1. RTSJ with a remote invocation facility given by RT-CORBA.

2. RT-CORBA enhanced with the predictability model of RTSJ.

The first choice corresponds to using the synchronized statement and the

second to use a RT-CORBA’s mutex (and probably discard the synchronized

statement of Java).

Both approaches have implications from the point-of-view of the programming

abstraction and architecture. The first choice distorts the abstract programming

model of RT-CORBA, which is trimmed for a particular purpose. The second al-

ternative is more conservative and maintains RT-CORBA interoperability among

different programming languages and platforms, partially removing some support

given by Java and the RTSJ.

In the second case, the price paid for it is high because many good properties of

RTSJ have to be discarded. One example of this is the dual-thread model based on

RealTimeThreads and NoHeapRealtimeThreads. RT-CORBA only defines

one kind of thread whereas RTSJ has two threads: real-time and non-heap threads.

The RTZen project [22] followed the second choice improving the internals of

the ORB using RTSJ facilities. The project has generated also specific tools and

programming patterns that may be used to build real-time systems. Among the

main contributions carried out to distributed real-time Java are:

7

– A CORBA architecture that is compatible with the RTSJ [23][36]. This ar-

chitecture removes the garbage collector from the internals of the middle-

ware using regions inside its internal architecture. However, it still main-

tains the GC’s interference in the endpoints of the communication.

– Programming patterns [37] which are used in the implementation of a mid-

dleware and in other general programming abstractions.

– Tools for configuring applications [38]. They allow designers to select a

subset from the whole middleware and reduce the application footprint.

– A component model (COMPARES [38-40]) for distributed real-time Java

which relies on the RT-CORBA’s resource model. It is based on CCM, the

CORBA’s component model [41].

RMI and RTSJ

RMI [13] is the main distributed object abstraction for Java. It offers remote

invocation and other services like connection management, distributed garbage

collection, distributed class downloading and a naming service. Some of these

services, like naming and connection management, are also available in the

CORBA world; while others (class downloading and distributed garbage collec-

tion) have a clear Java orientation. This extra characterization reduces the devel-

opment time in comparison to other alternatives.

The Java orientation of these services brings in advanced features like system

deployment, automated update and avoids remote object memory leaks in distri-

buted real-time systems. However, all these services are sources of unbounded in-

terference and their interaction with the real-time Java virtual machine and run-

time libraries must be better specified in order to avoid unwanted or unpredictable

delay. This indeterminism has induced many researchers to avoid or forbid their

use in specific environments like high-integrity applications.

Another interesting feature of RMI is the lack of a real-time remote invocation

model that may produce a seamless integration with RTSJ. The remote objects

may be characterized by using the model provided by RTSJ which includes sche-

duling, release, and processing-group parameters. From the point of view of a base

technology for distributed real-time Java, a RMI-and-RTSJ tandem should be

more synergic than a RTSJ-and-RT-CORBA solution.

It should be noted that the RMI-and-RTSJ in tandem approach is close to the

first choice in the integration of RTSJ-and-RT-CORBA. In both cases the com-

munication technology (RMI and RT-CORBA) is modified in order to be adapted

to the model proposed by RTSJ. However, even in this case, RMI is closer to Java

than RT-CORBA because RMI extends the Java’s object model with genuine ser-

vices like distributed garbage collection and class downloading, which are not

available for CORBA.

8

A data-flow approach: DDS and RTSJ

Alternatively, distributed real-time Java may be implemented with DDS-and-

RTSJ in tandem, defining a distributed real-time technology based on these two

technologies.

The Data Distribution Service (DDS) offers another alternative to build real-

time systems under the publish-subscribe paradigm with certain guarantees in

message transmission and reception using topics and providing a quality-of-

service model for messaging. However, it is unclear how to provide end-to-end

Java abstractions on top of a publisher-subscriber abstraction efficiently. Such sys-

tems today require substantial developer intervention and explicit context man-

agement in application code to provide end-to-end abstractions and mechanisms

for resource management and timeliness assurance.

One solution is to build simple request-response abstractions on DDS, similar

to those available in RMI, or use isolated communication channels -as proposed in

ServiceDDS [42] and the iLAND project [25, 26]- to replicate a synchronous

communication. However, neither ServiceDDS nor the iLAND project has defined

integration of RTSJ as its main goal. Both consider RTSJ to be a suitable pro-

gramming language for use in their developments; however, the integration be-

tween RTSJ and DDS is not its primary goal.

Another solution is to provide optimized end-to-end models to run under the

real-time publisher-subscriber paradigm. The authors consider this an open chal-

lenge in the distributed real-time Java context.

Distributed Real-Time Java

This section considers the main approaches defined for distributed real-time Java.

It first describes the leading approach, DRTSJ, and then concentrates on other RT-

RMI frameworks and approaches that are related to DRTSJ.

Before continuing, we clarify the following acronyms:

- DRTJava stands for any distributed real-time Java technology. It may refer

to the Distributed Real-Time Specification for Java (DRTSJ), any other

RT-RMI approach (like DREQUIEMI) and even to RT-CORBA ap-

proaches like RTZen.

- DRTSJ stands for the Distributed Real-time Specification for Java, a speci-

fication led by JSR-50.

- RT-RMI refers to approaches towards distributed based on extending the

Java’s RMI distribution model. DREQUIEMI is, for example, RT-RMI

technology.

9

DRTSJ: The Distributed Real-Time Specification for Java

The leading effort is DRTSJ, its main goal is to enhance RTSJ with trans-node

real-time end-to-end support, using as distribution mechanism RMI.

In its initial position papers [14-16, 28, 29], DRTSJ is defined to have two goals:

- The primary aim is to offer end-to-end timeliness by guaranteeing that an

application’s trans-node has its timeliness properties explicitly employed

during resource management. Provide for and express propagation, re-

source acquisition/contention and storage and failure management in the

programming abstraction.

- The second goal is to enhance the programming model with control flow

facilities that model real-time operations composed of local activities. The

activity-control actions include: suspend, abort, changes propagation, fail-

ure propagation, consistency mechanisms, and event notification. The re-

sult of this activity is distributable real-time threads.

Among the general guiding principles of DRTSJ are:

- bring distributed real-time to Java

- distributed objects and operations

- maintain the flavor of RTSJ

- not dictate the use of an RTSJVM for every node, nor any specific real-

time transport

- provide coherent support for end-to-end application properties

Distributable Real-Time Threads

The foundational abstraction for DRTSJ is the distributable thread, which is a

single logical thread with a globally unique identity that extends and retracts

through local and remote objects (see Figure 1). Distributable threads extend and

retract performing remote invocations (RPC’s) to remote objects via RMI, and

maintain an effective distributed stack.

Object A Object B Object C

distributed thread 1 distributed thread 2

Action

on B
Action

on C

Action

on A

Action

on B

Time constraint

 DT2

Fig. 1. : Distributable threads used as an end-to-end flow abstraction

10

It is noteworthy that distributable threads may have end-to-end time con-

straints, typically deadlines. However, other policies may be enforced in each

segment through specific schedulers. Distributable threads are expected to carry

their timeliness contexts (e.g., deadlines, priorities, or more complex parameters)

with them as they extend and retract through the distributed system in the same

manner as local threads.

Non-trivial distributed systems must consider themselves to be continually in a

state of (suspected or real) partial failure; therefore fault detection, consistency,

and recovery policies must be provided. DRTSJ anticipates providing these recov-

ery policies, but also anticipates application-specific policies which provide suita-

ble engineering trades between consistency, performance, and timeliness.

Specification

The DRTSJ’s expert group has drafted an internal specification for DRTSJ. It

deals with the changes required in the current RTSJ infrastructure, new scheduling

policies, new programming entities and asynchronous communications. Although

describing the whole model is out of the scope of this chapter, the authors high-

light several low-level details that clarify some key issues:

– DRTSJ requires changes to RTSJ classes and some modifications to Java in

order to support distributable threads, specifically marking some RTSJ

classes as Serializable.

– DRTSJ does not include any particular new scheduler. Its default behavior

is based on the priority based scheduler currently included in RTSJ.

– DRTSJ defines DistributableThread as its main abstraction.

– DRTSJ is silent regarding use of the memory model offered by RTSJ, spe-

cifically scoped or immortal memory.

– In the past, DRTSJ provided distributed AsyncEventHandlers as a

lightweight mechanism to transfer failures. This mechanism is not current-

ly considered defined as a part of the specification.

Software Suite

The JSR-50 expert group also described a software suite that consists of a mod-

ified RTSJ virtual machine with support for:

– Distributable threads with support for real-time performance.

– Thread integrity mechanisms like orphan detection and elimination policies

which detect partial failures.

– An optional meta-scheduler component which allows the use of arbitrary

scheduling policies.

11

Specific problems and solutions

Some of the core members of the JSR 50 Expert Group carried out a series of con-

tributions to distributed real-time Java which are focused on the definition of

scheduling algorithms for distributable threads:

– Implementation of Distributable Threads via local proxy threads, solving

the ABA deadlock problem by servicing all local distributable thread seg-

ments using a single thread with re-entrant state management.

– Scheduling algorithms for distributed real-time Java based on distributable

threads. Their contributions to this topic [14, 43-46, 46-48] use distributa-

ble threads as the main programming abstraction. The list of algorithms

developed includes DUA-CLA [43], and ACUA [45]. DUA-CLA is a con-

sensus-driven utility accrual scheduling algorithm for distributed threads.

DUA-CLA detects [47] system failures and proposes recovery mechanisms

for distributable threads ([48][49]).

– Distributable Thread Integrity policies, sometimes called Thread Mainten-

ance and Repair (TMAR). Building on precursor work from the Alpha and

Mach projects, a number of timely thread failure and consistency manage-

ment protocols have been proposed [47, 50].

Different integration levels

The position paper for DRTSJ was refined in [28] defining three integration le-

vels (L0, L1 and L2). Each level requires some support from the underlying sys-

tem and offers some benefit to the programmer.

– L0 is the minimal integration level. The level considers the use of RMI

without changes; this is its main advantage. In L0, applications cannot de-

fine any parameters for the server-side and a predictable end-to-end remote

invocation is not feasible. The remote invocation should be used during in-

itialization or non time-constrained phases of the distributed real-time ap-

plication.

– L1 is the first “real-time” level. L1 requires mechanisms to bind the trans-

mission and reception of messages and some kind of real-time remote in-

vocation. To achieve this goal, DRTSJ would extend the remote object

model with real-time characterization, and modified development tools. In

L1, the remote invocation to a remote method creates objects that may be

invoked from remote clients offering a predictable real-time remote invoca-

tion. For L1, additional changes are required in the serialization of some

classes to be transferred through the network. As a result of this design,

client and server do not require a shared clock (i.e., using clock synchroni-

zation) and failures in the server are propagated to the client as a result of

the remote invocation (i.e. synchronously).

12

– L2 offers a transactional model for RMI. The transactional model is based

an entity called distributable real-time threads; these entities transfer in-

formation from one node into another. L2 requires clock synchronization

among RMI nodes and changes in class serialization in some Java classes.

The model also offers asynchronous events that provide an asynchronous

mechanism and distributed asynchronous transfer-of-control. Using this

support the server may notify changes to clients asynchronously.

Architectures for RT-RMI

Another set of works have targeted RT-RMI from a different angle producing a

real-time version for RMI similar to RT-CORBA without having distributable

threads as the main entities. This section introduces two frameworks:

DREQUIEMI and another previous framework designed at the University of

York.

DREQUIEMI

Researchers at Universidad Carlos III de Madrid worked on extensions for dis-

tributed real-time Java [17]. The resulting framework is named DREQUIEMI.

DREQUIEMI integrates common-off-the-shelf techniques and patterns in its core

architecture. The major influences to the model are RMI, the RTSJ, RT-CORBA,

and some time-triggered principles. The reference architecture designed could be

used to deploy distributed real-time threads on it and offers support for DRTSJ’s

L1. It also incorporates some elements taken from L2.

Its goal is to detect and analyze sources of unpredictability in a distributed Java

architecture based on RTSJ and RMI. In DREQUIEMI many of the explored is-

sues deal with a triple perspective: the impact on the programmer, the infrastruc-

ture and the run-time benefit stemmed from its adoption.

The current architecture has five layers:

 Resources. Collectively, they define the foundations for the architecture

which includes the list of resources that participate in the model. The mod-

el takes from real-time Java two key resources: memory and processor and

from RMI the network resource.

 Infrastructure. These three resources are typically accessed through inter-

faces (via an RTOS and a RT-JVM) shaping an infrastructure layer. In

DREQUIEMI, the access to the infrastructure is given through a set of

primitives. It is important to highlight that to be compliant with the model,

the current RTSJ requires the inclusion of classes for the network. Fortu-

13

nately, these classes are already available in standard Java (and in other

packages), so that they may be added to a new network profile.

 Distribution. On top of this layer, the programmer may use a set of com-

mon structures useful for building distributed applications. There is one

new type of element corresponding to each key resource, namely: connec-

tion pool, memory-area pool, and thread pool.

 Common services. There are four services:

o a stub/skeleton service,

o a DGC (Distributed Garbage Collection) service,

o a naming service,

o and a synch/event service.

The first allows the carrying out of a remote invocation while maintaining

a certain degree of predictability.

Memory Processor Network

Memory
management

Processor
management

Network
management

DGC Naming Synch

events

Distributed
Memory

Management

Distributed
Processor

management

Distributed
Connection

management

...

Stub/
Skeleton

Infraestructure
middleware

Distribution
middleware

Resources

connection pool thread pool memory pool

Common
services

middleware

Memory Processor Network

Memory
management

Processor
management

Network
management

DGC Naming Synch

events

Distributed
Memory

management

Distributed
Processor

management

Distributed
Connection
management

...

Stub/
Skeleton

Infraestructure
middleware

Distribution
middleware

Resources

connection pool thread pool memory pool

Common
services

middleware

Application module

Fig. 2. DREQUIEMI’s architecture for real-time distributed systems

The DGC service eliminates unreferenced remote objects in a predictable

way; that is, introducing a limited interference on other tasks of the system.

The naming service offers a local white page service to the programmers,

enabling the use of user-friendly names for remote objects.

The synch/event service is a novel service (not included currently in RMI)

for data-flow communications.

 Application. Lastly, the specific parts of the application functionality are

found at the uppermost layer, drawn as modules. The modules are based on

components, promote reuse of pieces of other applications (see [51]) and

may be supported by other augmented technologies.

14

The architecture defines two management levels:

- One centralized manager which handles memory, CPU and network re-

sources at a centralized level (i.e. the real-time virtual machine).

- Another distributed manager which handles how these resources are as-

signed to distributed applications.

Scheduling and end-to-end performance

From the point of view of end-to-end programming abstractions, in

DREQUIEMI, there is no first class main entity such as DRTSJ’s distributable

threads. Instead, a real-time thread with certain deadline that invokes a remote me-

thod in a remote object establishes an end-to-end requirement for the application

which comprises three stages (see Figure 3):

1. The local client-side pre invocation (Cli_pre)

2. The server-side invocation (Server_inv)

3. The client-side post invocation (Cli_pos)

The characterization is enough to use well-known end-to-end scheduling mod-

els with precedence rules. Currently, the types of techniques addressed are based

on end-to-end response time analysis for fixed priority-based scheduling (e.g. di-

rect synchronization (DS), release guards (RG) and sporadic servers (SS) [52-55]).

This model is also flexible enough to support other abstractions like the distri-

butable threads described in the previous section on DRTSJ. However, its inclu-

sion in DREQUIEMI requires extensions to the architecture to support new ser-

vices similar to those defined for DRTSJ.

Client Server

Cli_pre

Cli_pos

Server

_inv

Cli_posServ_InvCli_pre

End to end constraint

Fig. 3. End-to-end constraints in DREQUIEMI

15

Specific problems and solutions

Using the DREQUIEMI framework, the following general distributed real-time

Java issues have been addressed:

 No-heap remote objects. On this architecture ([56-58]) the authors de-

signed a model, which is called no-heap remote object, to leave out the pe-

nalty of the garbage collector from the end-to-end path of the remote invo-

cation. The model requires changes on the internals of the middleware and

certain programming constraints called the no-heap remote object para-

digm. From the point of view of distributed real-time Java, the no-heap

remote object is useful to offer end-to-end real-time communications that

do not suffer garbage collector interactions.

 Non-functional information patterns. Another problem addressed in

DREQUIEMI is how to transfer non-functional information in distributed

real-time Java. The authors identified different alternatives, evaluated their

complexity and proposed a simple framework for priority-based systems

([59]).

 Asynchronous remote invocations. The authors also analyzed the remote

invocation model and proposed an asynchronous remote invocation which

can be used to offer efficient signaling ([60]). This mechanism avoids

blocking at the client and requires changes in the transport protocol of

RMI, namely JRMP.

 Time-triggered integration. Some real-time systems -like TTA (the Time

Triggered Architecture)- use time-triggered communications to avoid net-

work collisions and offer predictable communications. The authors devel-

oped a time triggered approach compatible with the unicast nature of RMI

in [61] and [62]. By using it, programmers may increase the predictability

of their communications.

 Protocol optimizations. The communication protocol of RMI, namely

JRMP, has been optimized to offer efficient multiplexing facilities that re-

duce the number of open connections necessary to carry out a remote invo-

cation [63][64].

As a result of implementing RT-RMI with RTSJ, DREQUIEMI has revealed

three optimizations for the RTSJ, namely: RealTimeThread++ [65][66], Exten-

dedPortal [67], and AGCMemory [68, 69]. The first extension generalizes the

concurrency model of RTSJ proposing a unique type of thread that may be used

by all applications; it also includes enhanced synchronization protocols (MCP:

memory ceiling protocol and MIP: memory inheritance protocol). ExtendedPor-

tal offers an API mechanism able to violate the assignment-rule of RTSJ in a

safe way, thus reducing the complexity of having to implement RT-RMI. Lastly,

AGCMemory enhances the region model of RTSJ with a new type of region that

enables partial object recycling.

16

A RT-RMI framework for the RTSJ

Some members of the real-time systems group of York University are involved in

the DRTSJ expert group and they carried out relevant work on how to develop a

real-time RMI framework for DRTSJ’s L1. In [70] and [71] they addressed the de-

finition of a real-time RMI framework for RTSJ. The goal in this work is to build

a model for the real-time remote invocation for RMI using the support given by

RTSJ. The authors also defined a set of open issues related to the support for RMI.

For the remote invocation issue, the authors defined solutions for the client, the

server and the network. The client-side remains almost unchanged while the server

suffers several modifications. The authors proposed new classes to handle incom-

ing remote invocations. At the server, the extra support added allowed defining

scheduling parameters and a thread-pool which were attached to each remote ob-

ject. The implementation considered assumes a TCP/IP network with a RSVP

management infrastructure.

The framework supports propagation of parameters between client and server.

The authors defined three policies to generate client-side parameters. These para-

meters are transferred to the server in each remote invocation. The set of parame-

ters considered includes scheduling parameters and the relationship with the gar-

bage collector.

The authors also considered memory issues regarding the implementation. At

the client-side the implementation is easier than at the server, which requires the

use of different types of memory.

Specific problems and solutions

The list of open issues described by York includes important issues related to

certain L1 features and others stemmed from L2 requirements:

– Class downloading. RMI can download classes transparently from other

virtual machines. However, this support introduces an important interfe-

rence on the application that may have to wait for one of these classes to

conclude its downloading. This is an important cost that should be removed

from the remote invocation or at least be under application control.

– The registry. RMI has a naming mechanism that helps find other objects

available in the system. However, the indirection given by this service is

also another source of indeterminism and its integration in a real-time plat-

form should be clarified.

– The distributed garbage collector. RMI extends the garbage collection

support from a local virtual machine to multiple machines which recycle

remote objects using a distributed garbage collector algorithm. However,

the integration of this mechanism in a distributed architecture should be

clarified in order to reduce its interference in real-time applications.

– Object serialization. RMI uses a general purpose object serialization model

to marshal and unmarshal remote object parameters. From the computa-

17

tional point overview, the mechanism is complex and its overhead for the

remote invocation could be quite high.

– Asynchronously interrupted exceptions (AIEs). The support defined for L2

requires that one thread may raise an asynchronously interrupted exception

in another. However, this action consumes network, memory, and CPU re-

sources that have to be modeled and integrated in the core of RMI.

– Asynchronous event handlers. L2 allows a thread to raise an event that is

handled in another node, requiring extra resources to carry out such an ac-

tion. As in the previous case (AIEs) the platform should model and inte-

grate the interaction of this interference in the distributed model.

Programming Profiles for RT-RMI

Another relevant contribution has been done by the Universidad Politécnica de

Madrid (UPM) [72]. UPM worked in profile definition for RT-RMI and also ad-

dressed certain support issues related to improving the predictability and efficien-

cy of RMI for real-time systems.

The authors considered that not all distributed real-time applications fit in the

same distributed real-time Java profile; different applications may require differ-

ent RT-RMI profiles.

Three different environments are considered:

– Safety critical systems. This type of system refers to systems where dead-

line misses can cost human lives or cause fatal errors. In this type of sys-

tem, the behavior has to be correct and highly deterministic.

– Business-critical systems. This kind of profile refers to soft real-time sys-

tems whose anomalous behavior may have financial costs. In this kind of

systems efficiency and robustness are extra-functional requirements.

– Flexible business-critical systems. The last profile is similar to the previous

one but with a great deal of flexibility (e.g. future ambient intelligent sys-

tems and mission critical systems with survivability).

Four features define each profile:

– Computational model. The computational model refers to the abstraction

used to design programs. In all cases, the abstraction chosen is a linear

model described with an end-to-end predictable behavior. This end-to-end

representation is used by the three models adjusting their computational

features.

– Adaptation required on RMI. Each profile defines specific classes and hie-

rarchies of objects for specific domains which have to be supported inside

the core of the middleware.

– Concurrency model in the remote invocation. This feature refers to the

rules that govern the handling of the remote invocation at both client and

server.

18

– Memory considerations. Finally, each profile has different memory re-

quirements and can use certain types of memory during its execution.

The first profile (RMI-HRT) is based on preemptive priority-driven scheduling

and requires the use of priority ceiling protocols. It also considers two execution

phases: initialization and mission; the first initializes the system and the second

has real-time constraints. The profile defines the use of immortal memory for in-

itialization and scoped memory in mission. An additional constraint introduced by

the model in RMI is that clients cannot share the same reference to a remote object

and dynamic allocation of objects is not allowed. The profile forbids the use of

some dynamic mechanisms of RMI, removing among others: class downloading,

firewalls, distributed garbage collection and security. RMI requires specific

classes to handle real-time remote invocations and the interface compiler should

be extended. The concurrency model defines handler threads at the server and a

blocking thread at the client. The use of memory is constrained to regions –the

garbage collector is disabled- and only one nesting level is allowed.

The second profile (RMI-QoS) has also end-to-end constraints. However, it

does not have to rely on a worst-case response time analysis as RMI-HRT does.

RMI-QoS accepts certain deadline misses if they fit in the quality-of-service pat-

tern. The profile relies on the full-blown RTSJ and targets at soft-real-time appli-

cations. Its computational model has to support local and global negotiations. The

computational model is also more complex than the previous; it includes: server

initialization, reference phase, negotiation, and data transactions. Another key dif-

ference is that clients may share references to remote objects. The support given

by the virtual machine has been extended with negotiations and specific classes to

code remote objects. At the server side, the concurrency model has three threads:

listener, acceptor and handlers. The memory restrictions placed on this model are

fewer than in RMI-HRT.

The third profile considers a support based on OSGi with bundles that manage

certain resources. Some features of RTSJ like the asynchronous interrupted excep-

tion are not considered in the framework. The profile may use real-time garbage

collection to reduce the development cost of its applications.

Specific problems and solutions

A specific contribution has been done on the serialization currently available

for RMI [73]. The authors distinguish two cases: one that transfers primitive types

and another for references to Java objects. In the case of objects, the authors de-

tected the problem of having acyclic structures which may require a complex

analysis when they are used in a hard real-time system. The new mechanisms pro-

posed have an impact on the serialization, which is extended with additional

classes.

Many of the previous results described in the profiles have their origin in a pre-

vious article that defines solutions to make RMI real-time [74]. In this work the

19

author based his solution on reservation protocols currently used in the Internet.

The author also identified some indeterminism sources and proposed solutions for

the client and server-side. As a result of his approach, the resulting RT-RMI archi-

tecture is more predictable.

Real-time component models for RT-RMI

The list of RT-RMI related initiatives finishes with a component model de-

signed at the Texas A&M University. As a part of a high mobility hard real-time

component [75, 76] they proposed an approach for a real-time remote invocation

server-centric service. The framework uses the total bandwidth server (TBS) algo-

rithm to guarantee the allocation of CPU to tasks performed at the server side. The

authors focus their analysis on CPU and are silent on network and memory man-

agement issues.

The impact of this work on distributed real-time Java is high. DRTSJ and

DREQUIEMI may use the technique described, or another similar, to control and

limit the CPU consumed at the server side.

Supplements for DRTJava

There are some supplements that enhance DRJava with general support intended

to offer enhanced support or simply better performance. The list included in this

section refers to three functionalities: ability to use embedded and hardware plat-

forms, the use of specific networks, and the use of formal models. They can be

used in combination with many of the techniques described previously. For each

of them the section explores key contributions carried out in each work and their

specific contribution to distributed real-time Java.

Embedded Distributed Real-Time Java

Some pieces of work ([77-79]) considered the issue of producing solutions for

restricted performance and tight memory resources by using low-level communi-

cation facilities. Their work complements DRTJava with an embedded orientation

and specific protocol communications.

One of these hardware optimized platforms is described in [80]. The platform is

built on FemtoJava which was expanded with a RTSJ-based support. In this

framework different Java nodes are connected using APICOM. This API provides

communication via a network interface by using several services that establish

connections, exchange messages, establish a logical local address, and broadcast

20

messages. The model described in APICOM supports two main communication

paradigms: point-to-point and publisher-subscriber.

Another alternative analyzed by the authors is the use of time-triggered models

in their framework which could run on CAN [81] networks or the IEEE 802.154

wireless standard. These two communication facilities were integrated in hardware

providing an interface to communicate Java nodes more efficiently.

Real-time networking

Implicitly, DRTSJ requires some predictability from the network: the messages

exchanged among different nodes have to be time-bounded in order to offer

bounded end-to-end response-time. Several authors have carried out different

pieces of work that may contribute to this goal.

In order to enhance DRTSJ’s communications there are two main approaches:

local-area network integration and Internet communication facilities. The first in-

cludes integration of techniques such as time-triggered protocols (like the TTA

[82]) and the second improves the predictability in packet transmission in open IP-

based networks.

For the Internet approach, some pieces of work [83] addressed the definition of

a technique to mark packets with a priority which is enforced in special routers us-

ing tools designed for Linux, once it is properly configured for hard real-time sys-

tems.

Another mechanism that has been analyzed in distributed real-time Java is

RSVP, the resource reservation protocol of the Internet. In [74] the author defined

a set of changes in RMI to use this transport protocol as part of his solutions for

distributed real-time Java.

Multi-core support for Distributed Real-Time Java

Many current infrastructures are multi-core systems with several processors

that interconnect one each other using shared memory or have some kind of spe-

cial bus that interconnect multiple cores. As a result of this change, current tech-

niques defined for centralized real-time Java are being extended to profit from a

multi-core infrastructure (see [84] or [85]). The changes have effects on current

centralized infrastructures and scheduling algorithms that have to be redefined in

order to consider multiple processors in a single chip and different core hierar-

chies.

From the perspective of distributed real-time Java two issues should be hig-

hlighted:

 The first is related to the scheduling techniques that both infrastructures

share. To some extent, both models consider multiple nodes with precedence

constraints on the activation of several tasks. The main difference is the pos-

21

sibility of having or not having shared memory. Systems like DRTSJ do not

consider nodes that may have shared memory while traditional multi-core

systems do have shared memory.

 The second important issue is that very probably future DRTJava implemen-

tations will run on multi-core infrastructures. So that, the internal scheduling

algorithms that support DRTSJ should be designed with a multi-core infra-

structure in mind. For instance, current end-to-end techniques defined for

DRTSJ and DREQUIEMI are silent on how to integrate a multi-core infra-

structure as part of their infrastructures.

Models based on CSP formalism

As an alternative to the programming model defined by the DRTSJ, applica-

tions may use CSP. CSP is a formal description language for describing concur-

rent systems that can be used to describe distributed real-time Java systems written

in JCSP. Some researchers have produced an alternative model for distributed

real-time Java entirely based on this formalism [86]. CSP supports sequential, pa-

rallel and alternative constructs that communicate using channels. The framework

allows the use of priorities attached to processes so that users may use classical

scheduling algorithms to assign priorities to concurrent entities. In this model,

special channels transfer data among nodes using arbitrary communication

frameworks like TCP/IP and CORBA.

DRTJava may profit from two characteristics of CSP: it may be modeling its

behavior using CSP [87] and also may be modifying its communication model in

order to include this abstraction within its core. In the first case, the choice enables

the use of verification tools typically associated with CSP. In the second, the pro-

gramming model is augmented with additional communication mechanisms which

interconnect different threads and provide an additional programming abstraction

not included currently in DRTSJ.

Augmented technologies: benefits and approaches

In relationship to the approaches defined in the previous sections, there are other

real-time Java technologies that can be part of cyber-physical infrastructures [51].

The current list of candidates includes names such as RT-OSGi, RT-EJBs, and

RT-Jini. Each technology complements and augments distributed real-time Java in

a different aspect, offering different enhanced facilities to RT-RMI. In addition,

RT-RMI may be a requirement in the development of these technologies. For each

technology, the rest of this section outlines its goals and the role played by distri-

buted real-time Java in meeting them.

22

RT-OSGi

The first candidate is RT-OSGi [88] (real-time open services gateway initia-

tive). OSGi offers life cycle management to deploy, start, stop and undeploy

bundles automatically at runtime. These bundles may have interactions with local

and remote entities. The real-time prefix should control local resources by assum-

ing an underlying RTSJ framework and using DRTSJ in remote communications

as required. In addition, the bundles have standard services and may define system

dependencies.

Some specific contributions to the definition of this technology include: a hybr-

id model (C and Java) [88] which declares a real-time component model; and sev-

eral platform optimizations to provide centralized isolation [89] and admission

control [90]. So far, the integration of distributed real-time support in RT-OSGi

has been addressed only partially in some preliminary works ([91]).

Readers interested in the integration of the RTSJ and OSGi are referred to

Chapter \ref{tom}which considers in greater depth this issue.

RT-EJBs

In Java, Enterprise Java Beans (EJBs) [92] define a component model for dis-

tributed Java applications with persistence, naming and remote communication

services. Internally, EJBs may use RMI to carry out a remote invocation. Unfortu-

nately, the model lacks a real-time (i.e. RT-EJBs) specification that provide a

quality-of-service framework and enhanced services, similar to those proposed for

the CORBA’s component model (CCM)[41].

Some interesting steps have been given in terms of characterizing a container

model for RTSJ services [93] and other RTSJ-based component models (e.g. the

one described in [94]). In both approaches, the container runs on a real-time Java

virtual machine that offers real-time predictability. In addition to the centralized

support, the container may introduce a distribution service based on distributed

real-time Java technology.

Readers interested in component-oriented development for real-time Java are

referred to Chapter \ref{tom} of this book which considers in greater depth this is-

sue.

RT-Jini

Jini offers the possibility of registering, finding and downloading services in a

centralized service. When services are distributed, the application may use remote

invocations to communicate remote virtual machines. A real-time version (RT-

Jini) could improve the basic support in several ways including [35]: quality-of-

service parameterization of services, predictable execution (which could be built

23

upon RTSJ and DRTSJ) and predictable lookup and composition. Some initial

steps in service characterization [35] and composition [95] have been given in

CoSeRT [35].

In addition, some previous work on real-time tuples that use real-time Java [96]

may help to refine the RT-Jini’s model.

Conclusions

This chapter has covered the current state of distributed real-time Java, addressing

different technologies and giving the status of each the main. It has also focused

on DRTSJ, the leading effort towards a distributed real-time Java technology. It

also introduces other related efforts that may be considered as alternative ap-

proaches, such as RT-CORBA alternatives (e.g. RTZen) or predictable infrastruc-

tures based on RT-RMI (e.g. DREQUIEMI) and the use of a DDS-and-RTSJ in

tandem. For all of them, the chapter outlines primary issues addressed highlighting

general contributions to distributed real-time Java.

For the support required to implement distributed real-time Java, the chapter

addressed the use of hardware infrastructures, real-time networking, multi-core in-

frastructures and formal models that help validate applications. All these tech-

niques may enhance distributed real-time Java in different ways.

Lastly, the chapter considered the use of distributed real-time Java as some

kind of support to other upcoming real-time technologies. The list of outlined

technologies includes RT-Jini, RT-EJBs and RT-OSGi.

A final note should be written regarding the next step to be given in distributed

real-time Java. To date, there is no publicly-available distributed real-time Java

reference implementation nor a specification. The next efforts should be driven in

this direction, i.e. producing a public reference implementation for distributed

real-time Java. To achieve the goal, much of the work described in this chapter

(e.g distributable threads and architectures for RT-RMI as DREQUIEMI) may be

helpful. This support is also crucial for other augmented Java technologies that re-

quire end-to-end predictable communications as part of their specification.

References

[1] E.A. Lee, "Cyber Physical Systems: Design Challenges," in International Symposium on Ob-

ject/Component/Service-Oriented Real-Time Distributed Computing (ISORC), 2008.

[2] B. Bouyssounouse and J. Sifakis, Embedded systems design: the ARTIST roadmap for re-

search and development, Springer, 2005, pp. 492.

[3] Greg Bollella et al., "The Real-Time Specification for Java," online at http://www.rtsj.org/.

2001.

http://www.rtsj.org/

24

[4] G. Bollella, B. Delsart, R. Guider, C. Lizzi and F. Parain, "Mackinac: Making Hotspot Real-

Time," in 8th IEEE International Symposium on Object-Oriented Real-Time Distributed

Computing (ISORC'05), pp. 45-54, 2005.

[5] Sun Microsystems, "Mackinac white paper," online at

http://research.sun.com/projects/mackinac/mackinacwhitepaper.pdf. 2005.

[6] IBM, "IBM WebSphere Real-Time," online at http://www-

306.ibm.com/sotfware/webservers/realtime/. 2006.

[7] Siebert, "The Jamaica VM," available on http://www.aicas.com. 2004.

[8] Apogee, "Aphelion," online at http://www.apogee.com/aphelion.html. 2004.

[9] A. Corsaro and D.C. Schmidt, "The Design and Performance of the jRate Real-Time Java

Implementation," in CoopIS/DOA/ODBASE, pp. 900-921, 2002.

[10] A. Corsaro, "JRate," online at http://jrate.sourceforge.net/. 2004.

[11] H.D.e. al., "The OVM project," online at http://www.ovmj.org/,. 2004.

[12] M. Rinard, "FLEX Compiler Infraestructure," available at http://www.flex-

compiler.lcs.mit.edu/Harpoon/. 2004.

[13] Sun Microsystems, "Java Remote Method Invocation," online at

http://java.sun.com/j2se/1.5/pdf/rmi-spec-1.5.0.pdf. 2004.

[14] J.S. Anderson and E.D. Jensen, "Distributed real-time specification for Java: a status report

(digest)," in JTRES '06: Proceedings of the 4th international workshop on Java technologies

for real-time and embedded systems, pp. 3-9, 2006.

[15] E.D. Jensen, "A Proposed Initial Approach to Distributed Real-Time Java," in ISORC, pp.

2-6, 2000.

[16] E.D. Jensen, "The distributed real-time specification for Java: an initial proposal," Com-

put.Syst.Sci.Eng., vol. 16, pp. 65-70, 2001.

[17] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Ayres, "A neutral architecture for distri-

buted real-time Java based on RTSJ and RMI," in 15th IEEE Conference on Emerging Tech-

nologies and Factory Communication, pp. 1-8, 2010.

[18] D.C. Schmidt and F. Kuhns, "An Overview of the Real-Time CORBA Specification," IEEE

Computer, vol. 33, pp. 56-63, 2000.

[19] I. Objective Interface Systems, "JCP RTSJ and Real-time CORBA Synthesis: Initial Submi-

sion," 2002.

[20] I. Objective Interface Systems, "JCP RTSJ and Real-time CORBA Synthesis: Request For

Proposal," 2001,.

[21] V. Giddings, "Recommendations for a CORBA Languange Mapping for RTSJ," online at

www.omg.org/news/meetings/workshops/RT_2005/04-3_Giddings.pdf. 2005.

[22] DOC, "RTZen project home page," online at http://doc.ece.uci.edu/rtzen/. 2005.

[23] K. Raman, Y.Z. 0001, M. Panahi, J.A. Colmenares, R. Klefstad and T. Harmon, "RTZen:

Highly Predictable, Real-Time Java Middleware for Distributed and Embedded Systems," in

Middleware, pp. 225-248, 2005.

[24] G. Pardo-Castellote, "OMG Data-Distribution Service: Architectural Overview," in ICDCS

Workshops, pp. 200-206, 2003.

[25] M. Garcia-Valls, I. Rodriguez-Lopez, L. Fernandez-Villar, I. Estevez-Ayres and P. Basanta-

Val, "Towards a middleware architecture for deterministic reconfiguration of service-based

networked applications," in 15th IEEE Conference on Emerging Technologies and Factory

Communication, pp. 1-4, 2010.

[26] iLAND, "mIddLewAre for deterministic dynamically reconfigurable NetworkeD embedded

systems," On line [2010] at http://www.iland-artemis.org. 2010.

[27] M. Garcia-Valls, P. Basanta-Val and I. Estevez-Ayres, "Adaptive real-time video transmis-

sion over DDS," in Industrial Informatics (INDIN), 2010 8th IEEE International Conference

on, pp. 130-135, 2010.

[28] A.J. Wellings, R. Clark, E.D. Jensen and D. Wells, "A Framework for Integrating the Real-

Time Specification for Java and Java's Remote Method Invocation," in Symposium on Ob-

ject-Oriented Real-Time Distributed Computing, pp. 13-22, 2002.

http://research.sun.com/projects/mackinac/mackinacwhitepaper.pdf
http://www-306.ibm.com/sotfware/webservers/realtime/
http://www-306.ibm.com/sotfware/webservers/realtime/
http://www.aicas.com/
http://www.apogee.com/aphelion.html
http://jrate.sourceforge.net/
http://www.ovmj.org/,
http://www.flex-compiler.lcs.mit.edu/Harpoon/
http://www.flex-compiler.lcs.mit.edu/Harpoon/
http://java.sun.com/j2se/1.5/pdf/rmi-spec-1.5.0.pdf
http://www.omg.org/news/meetings/workshops/RT/_2005/04-3/_Giddings.pdf
http://doc.ece.uci.edu/rtzen/
http://www.iland-artemis.org/

25

[29] A.J. Wellings, R. Clark, E.D. Jensen and D. Wells, "The Distributed Real-Time Specifica-

tion for Java: A status report," in Embedded Systems Conference, pp. 13-22, 2002.

[30] Sun Microsystems, "Java Messaging System," online on

http://java.sun.com/products/jms/jms1_0_2-spec.pdf. 2002.

[31] M. Boger, Java in Distributed Systems: Concurrency,Distribution,and Persistence, New

York, NY, USA: John Wiley & Sons, Inc, 2001, .

[32] W.K. Edwards, Core Jini with Book, Prentice Hall Professional Technical Reference, 1999,

.

[33] Sun Microsystems, "JavaSpaces Service Specification, Version 1.1," avaliable from ja-

va.sun.com. October 2000.

[34] Recursion Software, "Voyager," online at

http://www.recursionsw.com/Products/voyager.html. 2010.

[35] M. García-Valls, I. Estévez-Ayres, P. Basanta-Val and C. Delgado-Kloos, "CoSeRT: A

framework for Composing Service-Based Real-time Applications," in Business Process Man-

agement Workshops 2005, pp. 329-341, 2005.

[36] A.S. Krishna, D.C. Schmidt, K. Raman and R. Klefstad, "Enhancing Real-Time CORBA

Predictability and Performance," in CoopIS/DOA/ODBASE, pp. 1092-1109, 2003.

[37] K. Raman, Y. Zhang, M. Panahi, J.A. Colmenares and R. Klefstad, "Patterns and Tools for

Achieving Predictability and Performance with Real-Time Java," in RTCSA '05: Proceedings

of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems

and Applications (RTCSA'05), pp. 247-253, 2005.

[38] S. Gorappa, J.A. Colmenares, H. Jafarpour and R. Klefstad, "Tool-based Configuration of

Real-time CORBA Middleware for Embedded Systems," in Proceedings of the 8th IEEE In-

ternational Symposium on Object-Oriented Real-Time Distributed Computing (ISORC'05),

pp. 342-349, 2005.

[39] S. Gorappa and R. Klefstad, "Empirical evaluation of OpenCCM for Java-based distributed,

real-time, and embedded systems," in SAC, pp. 1288-1292, 2005.

[40] J. Hu, S. Gorappa, J.A. Colmenares and R. Klefstad, "Compadres: A Lightweight Compo-

nent Middleware Framework for Composing Distributed Real-Time Embedded Systems with

Real-Time Java," in Middleware, pp. 41-59, 2007.

[41] OMG, "Corba Component Model," online at http://www.omg.org/cgi-bin/doc?formal/02-

06-65. 2002.

 J.A. Dianes, M. D az and B. Rubio, "ServiceDDS: A Framework for Real-Time P2P Sys-

tems Integration," in Object/Component/Service-Oriented Real-Time Distributed Computing

(ISORC), 2010 13th IEEE International Symposium on, pp. 233-237, 2010.

[43] J.S. Anderson, B. Ravindran and E.D. Jensen, "Consensus-driven distributable thread sche-

duling in networked embedded systems," in EUC'07: Proceedings of the 2007 international

conference on Embedded and ubiquitous computing, pp. 247-260, 2007.

[44] U. Balli, H. Wu, B. Ravindran, J.S. Anderson and E. Douglas Jensen, "Utility Accrual Real-

Time Scheduling under Variable Cost Functions," IEEE Trans.Comput., vol. 56, pp. 385-401,

2007.

[45] S.F. Fahmy, B. Ravindran and E.D. Jensen, "Scheduling distributable real-time threads in

the presence of crash failures and message losses," in Proceedings of the 2008 ACM sympo-

sium on Applied computing - SAC '08, pp. 294-301, 2008.

[46] B. Ravindran, J.S. Anderson and E.D. Jensen, "On distributed real-time scheduling in net-

worked embedded systems in the presence of crash failures," in SEUS'07: Proceedings of the

5th IFIP WG 10.2 international conference on Software technologies for embedded and ubi-

quitous systems, pp. 67-81, 2007.

[47] B. Ravindran, E. Curley, J.S. Anderson and E.D. Jensen, "Assured-timeliness integrity pro-

tocols for distributable real-time threads with in dynamic distributed systems," in EUC'07:

Proceedings of the 2007 conference on Emerging direction in embedded and ubiquitous com-

puting, pp. 660-673, 2007.

[48] B. Ravindran, E. Curley, J.S. Anderson and E.D. Jensen, "On Best-Effort Real-Time Assur-

ances for Recovering from Distributable Thread Failures in Distributed Real-Time Systems,"

http://java.sun.com/products/jms/jms1_0_2-spec.pdf
http://www.recursionsw.com/Products/voyager.html
http://www.omg.org/cgi-bin/doc?formal/02-06-65
http://www.omg.org/cgi-bin/doc?formal/02-06-65

26

in ISORC '07: Proceedings of the 10th IEEE International Symposium on Object and Com-

ponent-Oriented Real-Time Distributed Computing, pp. 344-353, 2007.

[49] E. Curley, J. Anderson, B. Ravindran and E.D. Jensen, "Recovering from Distributable

Thread Failures with Assured Timeliness in Real-Time Distributed Systems," in SRDS '06:

Proceedings of the 25th IEEE Symposium on Reliable Distributed Systems, pp. 267-276,

2006.

[50] J. Goldberg, I. Greenberg, R. Clark, E.D. Jensen, K. Kim and a.D.M. Wells, "Adaptive

Fault-Resistant Systems," 1995.

[51] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Ayres, "Towards a Cyber-Physical Archi-

tecture for Industrial Systems via Real-Time Java Technology," Computer and Information

Technology, International Conference on, vol. 0, pp. 2341-2346, 2010.

[52] K. Tindell, A. Burns and A.J. Wellings, "Analysis of Hard Real-Time Communications,"

Real-Time Syst., vol. 9, pp. 147-171, 1995.

[53] J. Sun, M.K. Gardner and J.W.S. Liu, "Bounding Completion Times of Jobs with Arbitrary

Release Times, Variable Execution Times, and Resource Sharing," IEEE Trans.Softw.Eng.,

vol. 23, pp. 603-615, 1997.

[54] J.C.P. Gutierrez and M.G. Harbour, "Schedulability Analysis for Tasks with Static and Dy-

namic Offsets," in IEEE Real-Time Systems Symposium, pp. 26-35, 1998.

[55] J. Sun, "Fixed-Priority End-To-End Scheduling In Distributed Real-Time Systems," 1997.

[56] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Ayres, "No-Heap remote objects for distri-

buted real-time Java," ACM Trans.Embed.Comput.Syst., vol. 10, pp. 1-25, 2010.

[57] P. Basanta-Val, M. García-Valls and I. Estévez-Ayres, "No Heap Remote Objects: Leaving

Out Garbage Collection at the Server Side," in OTM Workshops, pp. 359-370, 2004.

[58] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Ayres, "Towards the Integration of Scoped

Memory in Distributed Real-Time Java," in ISORC '05: Proceedings of the 8th IEEE Interna-

tional Symposium on Object-Oriented Real-Time Distributed Computing (ISORC'05), pp.

382-389, 2005.

[59] P. Basanta-Val, M. Garc a-Valls and I. Estevez-Ayres, "Towards Propagation of Non-

functional Information in Distributed Real-Time Java," in Object/Component/Service-

Oriented Real-Time Distributed Computing (ISORC), 2010 13th IEEE International Sympo-

sium on, pp. 225-232, 2010.

[60] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Ayres, "Simple Asynchronous Remote In-

vocations for Distributed Real-Time Java," Industrial Informatics, IEEE Transactions on, vol.

5, pp. 289-298, Aug. 2009.

[61] P. Basanta-Val, I. Estevez-Ayres, M. Garcia-Valls and L. Almeida, "A Synchronous Sche-

duling Service for Distributed Real-Time Java," Parallel and Distributed Systems, IEEE

Transactions, vol. 21, pp. 506, apr. 2010.

[62] P. Basanta-Val, L. Almeida, M. Garcia-Valls and I. Estevez-Ayres, "Towards a Synchron-

ous Scheduling Service on Top of a Unicast Distributed Real-Time Java," in Real Time and

Embedded Technology and Applications Symposium, 2007.RTAS '07.13th IEEE, pp. 123-

132, 2007.

[63] P. Basanta-Val, M. García-Valls, I. Estévez-Ayres and J. Fernandez-Gonzalez, "Integrating

Multiplexing Facilities in the Set of JRMP Subprotocols," Latin America Transactions, IEEE

(Revista IEEE America Latina), vol. 7, pp. 107-113, March. 2009.

[64] P. Basanta-Val, M. García-Valls, J. Fernandez-Gonzalez and I. Estevez-Avres, "Fine tuning

of the multiplexing facilities of Java’s Remote Method Invocation," Concurrency and Com-

putation: Practice and Experience, accepted [2010] for publication.

[65] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Avres, "Extending the Concurrency Model

of the Real-Time Specification for Java," Concurrency and Computation: Practice and Expe-

rience, accepted [2010] for publication.

[66] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Ayres, "Simplifying the Dualized Threading

Model of RTSJ," in Object Oriented Real-Time Distributed Computing (ISORC), 2008 11th

IEEE International Symposium on, pp. 265-272, 2008.

27

[67] P. Basanta-Val, M. García-Valls and I. Estévez-Ayres, "ExtendedPortal: violating the as-

signment rule and enforcing the single parent one," in 4th International Workshop on Java

Technologies for Real-Time and Embedded Systems, pp. 37, 2006.

[68] P. Basanta-Val, M. García-Valls and I. Estévez-Ayres, "AGCMemory: A new Real-Time

Java Region Type for Automatic Floating Garbage Recycling," ACM SIGBED, vol. 2, July.

2005.

[69] P. Basanta-Val, M. García-Valls and I. Estévez-Ayres, "Enhancing the region model of real-

time Java for large-scale systems," in 2nd Workshop on High Performance, Fault Adaptative,

Large Scale Embedded Real-Time Systems, 2005.

[70] A. Borg, "A Real-Time RMI Framework for the RTSJ," Available from:

http://www.cs.york.ac.uk/ftpdir/reports/. 2003.

[71] A. Borg and A.J. Wellings, "A Real-Time RMI Framework for the RTSJ," in Real-Time

Systems, 2003. Proceedings. 15th Euromicro Conference on, pp. 238-246, 2003.

[72] D. Tejera, R. Tolosa, M.A.d. Miguel and A. Alonso, "Two Alternative RMI Models for

Real-Time Distributed Applications," in ISORC '05: Proceedings of the 8th IEEE Interna-

tional Symposium on Object-Oriented Real-Time Distributed Computing (ISORC'05), pp.

390-397, 2005.

[73] D. Tejera, A. Alonso and M.A. de Miguel, "Predictable Serialization in Java," in Object and

Component-Oriented Real-Time Distributed Computing, 2007.ISORC '07.10th IEEE Interna-

tional Symposium on, pp. 102-109, 2007.

[74] M.A.d. Miguel, "Solutions to Make Java-RMI Time Predictable," in Object-Oriented Real-

Time Distributed Computing, 2001. ISORC - 2001. Proceedings. Fourth IEEE International

Symposium on, pp. 379-386, 2001.

[75] S. Rho, "A Distributed Hard Real-Time Java for High Mobility Components," December.

2004.

[76] S. Rho, B. Choi and R. Bettati, "Design Real-Time Java Remote Method Invocation: A

Server-Centric Approach," in International Conference on Parallel and Distributed Compu-

ting Systems, PDCS 2005, November 14-16, 2005, Phoenix, AZ, USA, pp. 269-276, 2005.

[77] E.T. Silva, D. Andrews, C.E. Pereira and F.R. Wagner, "An Infrastructure for Hardware-

Software Co-Design of Embedded Real-Time Java Applications," in Object Oriented Real-

Time Distributed Computing (ISORC), 2008 11th IEEE International Symposium on, pp.

273-280, 2008.

[78] J. Silva Elias T., D. Barcelos, F.R. Wagner and C.E. Pereira, "A virtual platform for multi-

processor real-time embedded systems," in JTRES '08: Proceedings of the 6th international

workshop on Java technologies for real-time and embedded systems, pp. 31-37, 2008.

[79] E.T. Silva, E.P. Freitas, F.R. Wagner, F.C. Carvalho and C.E. Pereira, "Java framework for

distributed real-time embedded systems," in Object and Component-Oriented Real-Time Dis-

tributed Computing, 2006.ISORC 2006.Ninth IEEE International Symposium on, pp. 85-92,

2006.

[80] J. Silva Elias T., F.R. Wagner, E.P. Freitas and C.E. Pereira, "Hardware support in a mid-

dleware for distributed and real-time embedded applications," in SBCCI '06: Proceedings of

the 19th annual symposium on Integrated circuits and systems design, pp. 149-154, 2006.

[81] F.C. Carvalho, C.E. Pereira, J. Silva Elias T. and E.P. Freitas, "A practical implementation

of the fault-tolerant daisy-chain clock synchronization algorithm on CAN," in DATE '06:

Proceedings of the conference on Design, automation and test in Europe, pp. 189-194, 2006.

[82] H. Kopetz, "TTA Supported Service Availability," in Second International Service Availa-

bility Symposium ISAS 2005, pp. 1-14, 2005.

[83] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Ayres, "Using Switched-Ethernet and Linux

TC for Distributed Real-Time Java Infrastructures," in Work‐in‐Progress Proceedings IEEE

RTAS 2010, 2010.

[84] V. Olaru, A. Hangan, G. Sebestyen-Pal and G. Saplacan, "Real-time Java and multi-core ar-

chitectures," in Intelligent Computer Communication and Processing, 2008. ICCP 2008. 4th

International Conference on, pp. 215, 2008.

http://www.cs.york.ac.uk/ftpdir/reports/

28

[85] A. Wellings, "Multiprocessors and the Real-Time Specification for Java," in Proceedings of

the 2008 11th IEEE Symposium on Object Oriented Real-Time Distributed Computing, pp.

255-261, 2008.

[86] G.H. Hilderink, A.W.P. Bakkers and J.F. Broenink, "A Distributed Real-Time Java System

Based on CSP," in ISORC '00: Proceedings of the Third IEEE International Symposium on

Object-Oriented Real-Time Distributed Computing, pp. 400-407, 2000.

[87] Hoare, Communicating Sequential Process, Prentice Hall International Series in Computer

Science, 1985, .

[88] N. Gui, V.D. Florio, H. Sun and C. Blondia, "A framework for adaptive real-time applica-

tions: the declarative real-time OSGi component model," in ARM, pp. 35-40, 2008.

[89] T. Richardson, A.J. Wellings, J.A. Dianes and M. Diaz, "Providing temporal isolation in the

OSGi framework," in JTRES '09: Proceedings of the 7th International Workshop on Java

Technologies for Real-Time and Embedded Systems, pp. 1-10, 2009.

[90] T. Richardson and A. Wellings, "An Admission Control Protocol for Real-Time OSGi," in

Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC), 2010 13th

IEEE International Symposium on, pp. 217-224, 2010.

[91] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Avres, "Real-Time Distribution Support For

Residential Gateways Based on OSGi," in 11
th
 IEEE Conference on Consumer Electronics,

2011.

[92] Sun Microsystems, "Enterprise Java Beans," Online [2005] at

http://jcp.org/aboutJava/communityprocess/pr/jsr220/index.html. 2005.

[93] R. Tolosa, J.P. Mayo, M.A.d. Miguel, M.T. Higuera-Toledano and A. Alonso, "Container

Model Based on RTSJ Services," in OTM Workshops, pp. 385-396, 2003.

 9 A. Plšek, F. Loiret, P. Merle and L. Seinturier, "A Component Framework for Java-Based

Real-Time Embedded Systems," in Proceedings of the 9th ACM/IFIP/USENIX International

Conference on Middleware, pp. 124-143, 2008.

[95] I. Estevez-Ayres, L. Almeida, M. Garcia-Valls and P. Basanta-Val, "An Architecture to

Support Dynamic Service Composition in Distributed Real-Time Systems," in ISORC '07:

Proceedings of the 10th IEEE International Symposium on Object and Component-Oriented

Real-Time Distributed Computing, pp. 249-256, 2007.

[96] G. Bollella, S. Graham and T.J. Lehman, "Real-time TSpaces," in IECON '99 Proceed-

ings.The 25th Annual Conference of the IEEE Industrial Electronics Society 1999. pp. 837-

842, 1999.

http://jcp.org/aboutJava/communityprocess/pr/jsr220/index.html

