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Abstract 

This document describes the current status of the WP5 work, introducing the 6 building blocks 
supported in 5G NORMA architecture: the Software-Defined Mobile Network Controller (SDM-C), 
Orchestrator (SDM-O), Coordinator (SDM-X), the Mobility Management module (composed by the 
scheme selection and design), and the QoE/QoS Mapping, Monitoring and Management module. The 
functionalities of each block are detailed together with the different mechanisms designed to support 
network slicing and multi-tenancy, highlighting thus 5G NORMA innovations. The interactions 
between the different blocks are presented, emphasizing the complementarities of the different 
tackled technical problems to control and to orchestrate network slicing. 
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Executive Summary 

To build a flexible and an adaptable mobile network architecture capable of supporting a wide 
variety of services and their respective requirements, 5G NORMA has introduced a novel 
paradigm: a network of functions-based architecture. This novel paradigm breaks the design 
principle followed by current network architectures, which are built around entities rather than 
functions. Our revolutionary approach builds on new technologies, such as Software-Defined 
Networking (SDN) and Network Function Virtualization (NFV), in conjunction with novel 
concepts such as the network slicing and multi-tenancy. The main contribution of this 
deliverable is to bring these technologies and concepts, which reflect the current trends in 
mobile networks, into a fully specified and completely defined mobile network architecture. To 
the best of our knowledge, ours is a pioneering effort in this direction. 

This document presents the initial design of the architectural concepts of 5G NORMA related to 
the controllers’ design and specification. Three different controllers are considered in the 
architecture, namely: the Software Defined Mobile Network Orchestrator (SDM-O), the 
Software Defined Mobile Network Control (SDM-C), and the Software Defined Mobile 
Network Coordinator (SDM-X). The key ideas behind these controllers are as follows: 

• SDM-O interacts via Application Programming Interface (API) with the service and 
business layer to gather their requirements and translate them into a set of Virtual Network 
Function (VNFs) and Physical Network Functions (PNFs) to be chained together to 
implement the service. SDM-O is in charge of defining the optimal placement/location and 
the optimal set of resources to be allocated to the different VNFs. In addition, SDM-O takes 
care of the scaling in/out of the different VNFs instances according to triggers that come 
from both the infrastructure (through its Virtualized Infrastructure Manager) or by the 
control framework . For each of these challenges, a set of innovative algorithms are 
proposed and described.  

• SDM-C applies these same principles of the current Software-Defined Networking (SDN) 
to wireless functionality beyond routing. Indeed, the benefits of this technology when 
applied to wireless networks are even more significant than for wired networks, as the 
control functionality of wireless networks include many additional and more complex 
functions than just routing. This includes time-critical functions (such as scheduling control 
and self-organizing networks) and other less time critical (such as Radio Resource Control, 
power control and handover decision and execution). With SDM-C, all these functions can 
be implemented more easily by a programmable central control, which provides very 
important benefits for the flexible operation of the wireless edge network. 

• SDM-X is responsible for the control of resources and network functions shared among 
network slices. Indeed, sharing the resources across a set of network slices is highly 
important for future 5G deployment. Such resources include the spectrum and the 
infrastructure, among others. Thus, to operate multiple network slices in the same 
infrastructure efficiently, a common entity named Software Defined Mobile Network 
Coordinator (SDM-X) is introduced in the architecture. The different interfaces between 
SDM-C/X/O are also introduced and discussed in this document. 

In order to simplify the reading of this deliverable, the content has been divided into two distinct 
parts: (i) the definition of the global architecture, and (ii) the design of the underlying 
algorithms and protocols. 

Part I of the deliverable focuses on the definition of the global architecture. This includes the 
specification of the different modules and their interfaces, including the three controllers 
mentioned above as well as the various functions involved, including the control of inter and 
intra network slice resources, the Quality of Experience (QoE) aware-functionality, building on 
the Quality of Service (QoS) monitoring and modelling component, the network orchestration 
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component as well as the mobility-related functions. Throughout this part, we describe the 
consistency of the presented functions with the overall 5G NORMA architecture and detail the 
first steps towards the definition of the interfaces among the controller and the other elements of 
the architecture. In the interest of conciseness, the content of this part has been presented on a 
summarized manner, highlighting the key contributions and innovations and omitting 
cumbersome details. Further details on the design of the various functions is available in 
internal documents and external publications. 

It is worth highlighting that the WP5 architecture definition has been described in two 
publications that have been jointly written by all WP partners. These two publications have been 
presented in two very relevant workshops in the area, namely 5Garch 2016 and CLEEN 2016, 
and have been very well received by the scientific and industrial communities. 

Part II of the deliverable focuses on the design of the underlying algorithms and protocols. 
Such algorithms and protocols are either required to implement some of the new functions 
within the proposed architecture (e.g., new algorithms are required in order to orchestrate the 
various network functions) or are enabled by the new capabilities of the architecture (e.g., the 
new architecture allows to perform mobility in a more efficient way). In particular, WP5 has 
proposed a total of 19 technical innovations around its architecture, corresponding to either 
new algorithms, protocols or technical solutions, each of which fills a given gap within the 
architecture. The second part of the deliverable provides a detailed description of each of these 
innovations, describing the motivation, its full specification as well as the advantages and 
performance gains. 

It is worth highlighting that most of the technical innovations presented in this document have 
either been published in top scientific venues, have been protected by a patent or have been 
pushed into standards. For example, the novel orchestration algorithms proposed in this paper 
has been published in a top journal such as IEEE TMC, several patents have been filed to 
protect the project ideas related to the QoS/QoE of video flows, and the proposals of the project 
on QoS monitoring and enforcement have been pushed into 3GPP. 
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SW Software 

TED Transmission Error Detector  

TLV Type Length Variable 

UE user equipment  

UL Uplink 

UNI user-network interface 

UP User Plane  

V2I Vehicle to Infrastructure  

V2X Vehicle to Anything communication 

VHD Vertical Handover Decision  

VIM Virtualized Infrastructure Manager  

VM Virtual Machine 

VNF virtual network function 

VNF-FG VNF Forwarding Graph  

VNFM VNF Manager  
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vSwitch Virtual Switch  

WBI  West-Bound Interface 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5G NORMA Deliverable D5.1 

 

Dissemination level: Public Page 17 / 189 

 

Foreword 
This document collects the key results, ideas and proposals of WP5 so far, along with its 
relationship with the global 5G NORMA concept and architecture. It is an official deliverable of 
the project, incorporates the content of Internal Report IR5.1 (which was produced as an internal 
and non-official document that captured WP5 results up to that moment), and adds the new 
results that have been produced in the project since IR5.1 was written. 

This document is structured in two parts. These two parts have been written as almost 
independent documents on purpose, in order to reflect that this deliverable puts together two 
distinct documents into one: 

• Part I provides the overall architectural view of WP5, including the different modules 
and interfaces that have been defined in WP5 in order to address the corresponding key 
concepts of 5G NORMA. This part also addresses the mapping of the WP5 modules 
into the overall 5G NORMA architecture as well as the processes that have been 
examined in order to validate the functionality provided by the architecture. This part of 
the document includes much of the content of IR5.1, which in some cases has been 
summarized in order to avoid that the document becomes too long and cumbersome. 

• Part II addresses the design of the individual technology components of the proposed 
architecture. This corresponds to the design of specific solutions, algorithms or 
protocols that correspond to novel functions that are either enabled or required by the 
proposed WP5 architecture. It is worth to highlight that most of these novel solutions 
have a value by themselves in addition to fulfilling a specific role in the overall 
framework. In fact, most of these proposals have already been either patented, pushed 
into standard proposals or published in scientific conferences or journals. 

In terms of the key novelties of this document, it is important to highlight that twofold 
contributions of the ideas contained in this document 

• The overall functionality designed by WP5 is novel. Some of the concepts proposed, 
such as SDM-C (Software-defined Mobile network Control) are new ideas of 5G 
NORMA that had not been proposed before. Other ideas, such as network slicing, have 
been proposed before at a very general level, but have been brought by 5G NORMA 
into a specific and full-fledged definition. 

• The individual technology components correspond to new algorithms, protocols or 
techniques that implement the high-level ideas of 5G NORMA. The novelty from these 
proposals comes from (i) the fact that 5G NORMA concepts pose new problems that 
require new solutions, and/or (ii) the fact that we devise new algorithms or techniques 
that perform better from similar ones in the literature. 

An example that illustrates the twofold novelty of our ideas is the following. One of the key 
concepts of 5G NORMA is the “flexible functional decomposition and allocation”. While the 
underlying technology behind this concept (NFV) is well known, one of the major contributions 
of 5G NORMA is to bring this concept into a fully-fledged architecture and specification. This 
is one of the major novel contributions in Part I. Building on this concept, we have devised 
different algorithms and protocols to implement the required functionality, including an 
algorithm for the optimal placement of network functions as well as techniques to predict the 
availability of resources in an NFV environment. These are two of the novel solutions included 
in Part II. Of course, this is just an example, and a complete list of the various novel 
contributions is provided in the introduction of each of the two parts. 
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1 Introduction 
As explained in the Foreword, Part I of this document focuses on the description of the WP5 
architecture, which builds and extends the content that had been included in IR5.1. In the 
following, we expose the main objectives of our architecture, describe the structure of this part 
of the document as well as the main contributions within this part. 

1.1 Objective  
The current trends in mobile networking show a growing need for flexibility. Driven by the new 
business paradigms such as “5G Verticals”, the future 5G network should support very 
heterogeneous services on the same infrastructure. Services such as Internet of Things (IoT) and 
Vehicular Networking require from the mobile network very different Key Performance 
Indicators (KPIs): low latency, high capacity or service continuity.  

Supporting all these requirements on the same infrastructure entails a re-engineering of the 
network architecture that goes beyond the extension of the current Third Generation Partnership 
Project-Long Term Evolution (3GPP-LTE) one. Building on the recent advantages on network 
virtualization and re-programmability, introduced by the Network Function Virtualization 
(NFV) and Software Defined Networking (SDN) paradigms, the architecture designed in 5G 
NORMA aims at these goals: 

• Provide heterogeneous KPIs enabling different services, sharing the same infrastructure. 
• Dynamically adapt the network capacity (and resource utilization) according to the 

demand. 
• Seamlessly support new network services. That is, the architecture should be future-

proof. 

To achieve these goals, the 5G NORMA architecture leverages on five main pillars:  

(i) the Adaptive (de)composition and allocation of mobile network functions between 
the edge and the network cloud depending on the service requirements and 
deployment needs,  

(ii)  the Software-Defined Mobile Network Control and Orchestration which applies the 
SDN principles to mobile network specific functions, and  

(iii) the Joint optimization of mobile access and core network functions localized 
together in the central cloud or the edge cloud,  

(iv) the Multi-service and context-aware adaptation of network functions to support a 
variety of services and corresponding QoE/QoS requirements, and  

(v) the Mobile network multi-tenancy to support on-demand allocation of radio and 
core resources in a full multi-tenant environment. For more details on these 
concepts, we refer to [1]. 

The main objective of this part of the document is to define the control and orchestration planes 
of a mobile network architecture that implements the above five pillars. The combination of this 
architecture with the user plane functions defined by WP4 results into the overall 5G NORMA 
architecture. 

1.2 Structure of Part I 
This part of the document describes the current status of the Work Package 5 (WP5) 
architecture, which includes the following topics: Network Wide Orchestration, the service-
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aware QoE/QoS Control and the flexible service-tailored mobility management. Part I of this 
deliverable contains the following content: 

• We first provide the description of technology trends. 
• The architecture overview is presented next, along with the research challenges entailed 

by the proposed architecture.  
• Then we describe the novel concepts behind the architecture: Software-Defined Mobile 

Network Controller (SDM-C), Software-Defined Mobile Network Coordinator (SDM-
X), Software-Defined Mobile Network Orchestrator (SDM-O), Mobility Management, 
dynamic VNF management, QoE mapping, QoS Control and Enforcement. 

• Finally, we present a summary of the WP5 processes (conducted by WP3) in order to 
validate the proposed WP5 architecture. 

The three main conceptual contributions of the Work Package 5 are the following ones, which 
are particularly related to the innovation pillars of 5G NORMA project (i) and (ii) listed in 
Section 1.1: 

Software-Defined Mobile Network Control (SDM-C): The key idea behind this concept is to 
apply the same design principles of SDN to the specific functionalities of mobile networks. 
Indeed, while SDN focuses exclusively on routing, the same principles of splitting control and 
data functions and allowing applications on top of the controller to operate the network in a 
flexible way can be very beneficial for specific functionality of mobile network. In this 
document, we describe the main concepts and the design guidelines of this approach and apply 
it to QoS/QoE functions as well as to mobility. 

Network orchestration: This functionality is responsible, for example placement, scaling, 
migration, etc. of network slices and associated resources. To this end, we need to understand 
the requirements of the corresponding service that we need to satisfy, the constraints on the 
placement of functions that interact with each other and the features of the underlying 
infrastructure.  

Network slicing: In order to be able to satisfy diverging requirements from different services, 
5G NORMA instantiates different slices such that each slice may be potentially orchestrated in a 
different way and thus be tailored to the requirements of a specific service. This requires the 
coordination of resources between different slices, which leads to the introduction of a new 
hierarchical SDM architecture that allows controlling the resources inside each slice as well as 
between slices. 

It is worth noting that all the above concepts are closely inter-related. For instance, network 
orchestration needs to consider QoS/QoE requirements, and hence Software-Defined Mobile 
Network Control and Network Orchestration perform a joint optimization problem involving the 
instantiation and operation of virtual network functions (VNFs). In addition, user mobility may 
trigger the re-orchestration of VNF as a user moves to a new location and may require certain 
functions to move with him, so there is a close link between orchestration and mobility. To 
tackle these interactions, one of the main contributions of this document is the design of a high-
level architecture that brings together the above concepts along with the related modules for 
each of these concepts in a consistent way, addressing the interfaces required by each of these 
modules and the interaction among them. Along these lines, the content of Part 1 includes the 
following: 

• Overall architecture design: We first present the overall design of the WP5 
architecture, which is composed of three building blocks: Mobility management, inter-
slice management and intra-slice management. We introduce the functional 
requirements of the architecture, the major research challenges as a motivation for the 
proposed architecture, and then design the architecture building blocks and their 
interaction in order to address these challenges. 

• Design of each building block: As a second step, we dive into the design of each 
individual building block, decomposing it in further modules and describing the 
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interfaces between the different modules as well as providing some flow-charts 
describing their interactions.  

• Description of the individual modules of the architecture: As a third step, we 
provide the description of the building blocks of the WP5 functional architecture and 
the first design iteration for the modules that comprises the respective building blocks.  
For each of these modules, we justify their need in the context of 5G NORMA, describe 
the novelties with respect to existing proposals and the functionality required. Note that 
this does not include the design of the corresponding protocols and algorithms, as this is 
precisely the focus of Part II of this deliverable. 

• Definition of the interfaces: The last step is the definition of high-level interfaces, 
achieved by defining several processes. They have also been analysed  to ensure that the 
proposed architecture can provide the required functionality. 

Following the content described above, the rest of this document is structured as follows. In 
Section 2 we describe the current trends in the enabling technologies upon which 5G NORMA 
architecture is based, including related standards and previous projects. In section 3 we describe 
the overall 5G NORMA architecture with special emphasis on the building blocks of WP5, 
presenting the architectural requirements as well as the main challenges involved. Sections 2, 
3.4, 3.5 and 3.6 are devoted to each of the three main building blocks of WP5 architecture: each 
of these section starts with a description of the interaction between the modules and interfaces 
involved followed by an individual description of each of the modules. Section Finally, Section 
3.7 describes the different processes that have been analysed to validate the architecture. 

1.3 Key contributions of Part I 
As explained above, the key contribution of this document is the design of an architecture that 
comprises three novel concepts: Software-Defined Mobile Network Control (SDMC), Software-
Defined Mobile Network Orchestration (SDMO) and network slicing. These innovative ideas 
have already been published in two workshops that focus on very closely related technologies to 
the ones addressed by 5G NORMA, which confirms the novelty of the key ideas behind the 
proposed architecture: 

• The main guidelines behind the WP5 architecture, including the key concepts behind 
the WP5, the main building blocks of the architecture and their interaction, have been 
published in the 3rd International Workshop on 5G Architecture [2], which focuses 
precisely on the design of novel architecture for 5G. 

• The key ideas behind the SDM-C concept, including the novelty of the concept and its 
application to QoS/QoE, have been published in the Cloud Technologies and Energy 
Efficiency in Mobile Communication Networks workshop [3], which focuses on the 
design of cloud-based architectures for mobile network. 

• One of these contributions is an IETF draft [4] in which we propose some use cases that 
include service chains with access functions. This is a critical aspect behind the flexible 
function allocation innovative concept of 5G NORMA and the Network orchestration 
concept of WP5. 

The reader is referred to the introduction of Part II (Section 5) for a list of the most relevant 
contributions behind WP5. 
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2 Key technologies and related work   

2.1 5G NORMA key technologies 
Mobile Networks are evolving towards becoming a very dynamic and flexible environment 
consisting of virtual resources that can be instantiated and released on demand to timely meet 
customers’ needs. These virtual functions are interconnected by virtualized links that are also 
dynamically setup to best support multiple services. The infrastructure could be also shared 
among different tenants in order to provide different services by means of the network-slicing 
concept. The first step towards that direction is represented by the Network Function 
Virtualization (NFV) and Software Defined Networking (SDN) concepts, which have been 
identified as the basic tools to properly provide flexibility to the future network design. In 
particular, in the following, we revisit the SDN and NFV principles, which are leveraged to 
design the three main blocks (i.e., SDM-O, SDM-C, SDM-X) in 5G NORMA by handling the 
control and the orchestration intelligence tailored to network slicing based on 5G NORMA 
architecture. 

2.1.1 Software Defined Networking 
The concept of SDN has attracted widely the research communities and industries after the 
introduction of OpenFlow, the first standardized SDN protocol as a way to experiment new 
protocols and applications [5]. OpenFlow laid the possibility of using its intrinsic feature of 
flow based traffic treatment to achieve traffic engineering, traffic monitoring, load balancing, 
provision of end-to-end QoS, and network virtualization, in various applications such as 
transport networks, data centres, local area network (LAN), wide area network (WAN), etc [6]. 
Initially, SDN drew its attention towards offering switching and routing solutions for fixed 
networks. Recently there has been many research works on aligning SDN to wireless networks. 
OpenRoads is the first research work analysing the capability of OpenFlow for mobile networks 
[7]. SoftRAN proposed an architecture of SDN controller that abstracted the radio access 
network (RAN) for coordinated scheduling, interference management and load balancing [8]. 
5G NORMA aims to leverage SDN for wireless network via the SDMC approach and enable 
wireless network function and transport programmability. SDMC could be implemented in a 
propriety way (wireless control layer abstraction) or using open source projects developed (most 
of them) in Linux Foundation. Open source could be one of the following projects: POX, 
FloodLight, OpenDayLight (ODL), Ryu, Trema and Open Networking Operating System 
(ONOS). In the sequel we introduce the two biggest projects in the field. 

OpenDayLight project: 

The OpenDayLight (ODL) project is a collaborative open source project that aims to accelerate 
adoption of SDN and NFV for a more transparent approach that fosters new innovation and 
reduces risk. ODL is a highly available, modular, extensible, scalable and multi-protocol 
controller infrastructure built for SDN deployments on modern heterogeneous multi-vendor 
networks. It provides a model driven service abstraction platform that allows users to write apps 
that easily work across a wide variety of hardware and southbound protocols. The goals of ODL 
are, firstly, to create a robust, extensible, open source code base that covers the major common 
components required to build an SDN solution. Secondly, to get broad industry acceptance 
amongst vendors and users and finally to have a thriving and growing technical community 
contributing to the code base, using the code in commercial products, and adding value above, 
below and around. The OpenDayLight project is managed by the Linux Foundation and 
memberships covering over 40 leader companies (e.g. Cisco, IBM, NEC, etc). It was founded in 
April, 2013 and so far, there are more than 40 sub-projects and three versions of OpenDayLight 
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have been released that including OpenDayLight Hydrogen, OpenDayLight Helium and the 
latest release is OpenDayLight Lithium. OpenDayLight project provides an open platform for 
developers to contribute, use, and even build commercial products as an individual. With 466 
individuals contributed to the Lithium release making OpenDayLight one of the fastest-growing 
open source projects. It is being leveraged by a growing number of companies who offer 
solutions, applications, services, consulting and support to address a range of user needs. 

ONOS project: 

ONOS is an SDN operating system developed by ONOS Networking Laboratory. It provides 
modular structure separating the various subsystems into independent modules. The architecture 
of ONOS is composed of a three (3) tier structure namely; Northbound (NB), Distributed 
control layer and Southbound (SB).  

The ONOS Northbound Interface is responsible for reception and transmission of information 
and network requests respectively to the distributed control layer. SDN applications reside on 
the Northbound and monitor network activities through a graphical user interface (GUI). 
Examples of such SDN applications include Topology Monitoring Applications, Device and 
Network Statistics Application. Applications leverage on the northbound application 
programmable interfaces (APIs) exposed by the subsystems or modules in the distributed 
control layer to synchronize the network state and present them to the user in real-time. 

The distributed control layer is composed of a modular subsystem component exposing both NB 
and SB APIs to applications and infrastructure elements residing in the NB and SB respectively. 
The subsystems are independent modules, but reply on other subsystems for information 
pertaining to the network state. Network Elements are abstracted into generic models such that 
network elements like switches, host, and routers are not bound to specific protocols making 
them agnostic.   

ONOS Southbound Interface is the lowest tier of ONOS architecture and communicates with 
network infrastructure with specific device protocols: Open Flow, NETCONFIG, OVSDB and 
SNMP for the various protocol specific devices. 

2.1.2 Network Virtualization 
The need of introducing high level of flexibility in the network design has fostered the industrial 
partners to focus on a complete virtualization of the main network components and functions. 
The researchers’ effort is underway to virtualize network functions that had been realized in 
purpose-built appliances: specialized hardware and software (e.g., routers, firewalls, switches, 
etc.). Network function virtualization (NFV) was focused on transforming hardware appliances 
into software applications bringing a high flexibility. The network functions become building 
blocks that can be flexibly combined to build communication services. Different network 
operators (tenants) can deploy customized network services with different virtual NFs (VNF) on 
a common infrastructure, thus realizing network sharing. 
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Figure 1: ETSI NFV MANO architecture1 

 

Starting from the above functionalities of European Telecommunications Standards Institute 
(ETSI) NFV MANO (depicted in Figure 1), we propose a set of innovations and new 
functionalities toward supporting multi-tenancy and network slicing features in the 5G NORMA 
architecture.  

Among the main differences between the WP5 functional architecture (described in Section 3) 
and the ETSI NFV MANO one, we list the following 

• We take the concepts of multi-tenancy and network slicing [9] in full consideration, 
allowing the optimal orchestration of several network slices belonging to possibly 
different tenants on the same infrastructure. 

• The WP5 architecture envisions a specific entity to deal with shared resources, a 
mandatory element (currently not specified by ETSI) to introduce the concept of 
network slicing within the architecture. 

• Orchestration in WP5 takes an end to end perspective, including the orchestration of 
PNFs 

• ETSI NFV MANO is mainly devoted to resource orchestration, with a specific focus on 
lifecycle management for network functions (i.e., allocating the necessary NFVI 
resources). 5G NORMA orchestration, as tackled by WP5, will include the concept of 
network service requirement into the orchestration. 

• Service requirements are and additional trigger for re-orchestration. The NFVO only 
takes re-orchestration decision based on the monitoring of NFV resource utilization as it 
has no specific domain knowledge (e.g., the 3GPP domain). In Section 5 we describe 

                                                        

 
1 http://www.etsi.org/technologies-clusters/technologies/nfv 
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how these additional capabilities may be used to take QoS and QoE triggered re-
orchestration decisions. 

Based on the above points we claim that, while preserving a high compatibility with the ETSI 
NFV MANO architecture, the orchestration architecture designed by WP5 introduces 
fundamental functionalities that will be paramount for the orchestration of future virtualized 5G 
Networks. 

2.2 Related work 
While we have identified the main key-enablers for the novel 5G architecture design, we need to 
explore how the other research projects and standardization groups have addressed the concept 
of multi-tenancy support and network slicing. This evaluation enables us to find out the main 
drawbacks and limitations of the proposed solutions in order to improve the current state of the 
art within our novel 5G NORMA framework.  

In the following, the current network management and orchestration trends considering multi-
tenancy and network virtualization for 5G networks are analysed by taking into account the 
results and gaps  of previous EU projects, such as iJoin and METIS as well as various 
standardization efforts including 3GPP, ETSI NFV, ONF Wireless Group and Small Cell Forum 
(SCF).   

2.2.1 EU METIS and EU iJoin 
Network virtualization enters a mature phase with many EU projects considering the VNF 
aspects, mobility support and multi-tenancy not only for wireline scenarios, but also in the 
context of wireless and mobile networks. METIS [10], one of the leading EU projects for 5G 
has explored network virtualization in terms of functional decomposition to address highly 
dynamic RAN scenarios including Device-to Device (D2D) and provide a logical centralized 
orchestration using SDN principles. Differently from METIS, 5G NORMA is not concentrating 
only on the RAN but also in the core network considering a decentralized architecture. Such a 
difference is significant since novel network functions can be composed and allocated from 
selected sub-functions, i.e. the so called atomic functions, of both RAN and core networks.  

iJoin [11] is another significant EU project that investigated VNF for enabling flexible Cloud-
RAN scenarios considering the backhaul capabilities. In particular, iJoin introduced the concept 
of RAN as a Service (RANaaS), in where an SDN controller could flexibly allocate RAN 
functions, e.g. PHY, Medium Access Control (MAC), Radio Resource Manager (RRM), etc., 
either at a cloud platform located at the Base Station (BS) or baseband unit above the RAN 
considering the type of backhaul in terms of latency and capacity.  The figure below illustrates 
the RANaaS concept elaborating the different functional splits that could be deployed. Once the 
RANaaS selects a particular functional split, then such a split is followed by all applications and 
services for long periods. 5G NORMA addresses a higher degree of flexibility by introducing 
different types of RAN functional splits per network slice allowing different services and 
tenants to follow a distinct split, while at the same time 5G NORMA offers functional 
composition and allocation considering both RAN and core network functions.  
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Figure 2: Different functional split supported in RANaaS, iJoin [11] 

 Overall, 5G NORMA goes beyond the research performed by these two European projects in 
several factors 

• The work carried out in WP5 will increase the network flexibility defined by EU 
projects like METIS by introducing new concepts such as Software Defined Mobile 
Network Control 

• The achievements of iJOIN will be one of the building blocks of the 5G NORMA 
architecture. By leveraging on these atomic Network Functions, the Network 
Orchestration will tailor resource allocation, introducing network slices per service 
and/or tenant.  

2.2.2 3GPP RAN Sharing and Multi-tenancy 
In 3GPP, two different architectures on RAN sharing are specified in [12] . The Multi-Operator 
Core Network (MOCN) where the shared RAN eNodeBs are connected via S1 interface to a 
separate core network owned by each operator and the Gateway Core Network (GWCN), where 
operators share additionally the Mobility Management Entity (MME). These approaches enable 
active RAN sharing but they still rely on fix contractual agreements between different operators, 
while they do not consider the support of Over-The-Top (OTT) application providers or vertical 
market players. 5G NORMA can be applied in both these RAN sharing architectures and at the 
same time it introduces the notion of network slicing, which considers the composition and 
allocation of virtual network functions and shared resources. These concepts require extensions 
to the 3GPP specification, like the definition of network slicing, which is currently considered in 
Release 14.     

The network management aspects for enabling RAN sharing are specified in [13], which 
documents a set of extensions for the legacy 3GPP network management architecture in order to 
accommodate network sharing based-on long-term contractual agreements. The scenario 
considered in 3GPP assumes that a mobile operator allows participant sharing operators, i.e. 
Mobile Virtual Network Operators (MVNO), to access its network resources. In particular, the 
network management system can use the Type 5 interface, which can be established upon an 
agreement between mobile operators to provide connectivity among the network manager 
systems across different organizations, allowing network management information and KPI 
associated with shared resource to be forwarded towards the corresponding MVNO. Inside the 
Infrastructure Service Provider (InP) such monitoring performance information is conveyed 
through Type 2 interface between the management system and network element manager of an 
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eNodeB. 5G NORMA will build on the top of such 3GPP network management architecture 
allowing:  

• More dynamic short terms network slice allocations to different tenants considering not 
only resources in terms of capacity but also the composition and allocation of RAN and 
core network virtual functions.   

• OTTs and vertical market players to acquire resources introducing new interfaces and  
• SDN-Apps to program the network according to the service demands.   

A step towards a more dynamic system that supports on-demand resource allocation requires 
enhanced network management and orchestration support that can be realized via the 
introduction of the capacity broker as described in [14]. The capacity broker can enable the 
mobile operator to support on-demand network slice request allocating resources for MVNOs, 
OTT providers and verticals. Hence, the mobile operator can share a particular and unused 
portion of the capacity for a specific period of time via signalling means. 5G NORMA is 
looking into providing deployment options of such capacity broker entity introducing a network 
slice broker responsible for admission control and resource allocation at the SDM-O.   

5G NORMA will extend the 3GPP view of RAN Sharing and Multi-tenancy, providing a 
functional architecture that embeds the concepts of end to end network slicing, allowing 
efficient resource sharing via a specific coordinator module. 

2.2.3 3GPP and SCF VNF Orchestration in Mobile Networks  
The support of NFV in 3GPP is studied considering the network management perspective in 
[15], considering partially and entirely VNFs with respect to macro-base stations and core 
network elements (CNEs). This approach adopts the ETSI NFV MANO with the objective to 
identify requirements, interfaces and procedures, which can be re-used or extended for 
managing virtualized networks.  

 
Figure 3: SCF VNF orchestration in mobile network 

An equivalent NFV study focusing on small cells and on the adoption of flexible Centralized-
RAN (C-RAN) is considered at Small Cell Forum [16]. In particular, four different functional 
splits were considered, including: (i) Packet Data Converged Protocol-Radio Link Control 
(PDCP-RLC), (ii) Split MAC, (iii) MAC-PHY and (iv) PHY split, introducing different front-
haul requirements. The VNF orchestration is illustrated below adopting the MANO NFV 
paradigm. In particular, this scenario considers the remote small cell as a physical element and 
the Baseband unit or core cloud as VNF, which is orchestrated using the MANO architecture.     

3GPP Rel.14 has introduced a specification on architecture requirements for virtualized network 
management [17] , considering complementary specifications on configuration, fault 
performance and life-cycle management. 5G NORMA is looking to extent such an approach by:  
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• Investigating functional decomposition into “atomic” functions. 
• Allocating new functions into the optimal cloud location (front-end cloud, edge cloud 

and central cloud) considering the type of service and the optimization goals. 
• Assuring content/context optimization, e.g. by optimizing the virtual functions 

alongside content delivery.    
• Introducing a QoE/QoS monitoring function that assures performance targets and tunes 

network programmability to maintain the desired Service Level Agreements (SLAs). 

In an effort to support devices/customers with different service characteristics including vertical 
market players, 3GPP SA 2, introduced in Release 13 the support of separate Dedicated Core 
Networks (DCNs) [18], with different operation features, traffic characteristics, policy, etc. 
Each DCN is assigned to serve different type of users based-on subscription information, 
assuring resource isolation and independent scaling, offering specific services and network 
functions including RATs.  

5G NORMA goes beyond this concept towards a common RAN medium, common mobility 
management solutions and other core network functions. To enable an efficient resource sharing 
it also introduces a dedicated controller, called SDM-X that assure an efficient radio resource 
sharing between different network slices.      

2.2.4 ONF SDN for Mobile and Wireless Networks 
The ONF Group on Mobile and Wireless Networks concretes on using SDN technology to 
provide a logical centralized management that allows an efficient base station coordination and 
control. The main benefits of SDN come from the logical centralized control and the separation 
Control/User plane. In particular, the SDN can enable efficient resource management leveraging 
the benefits of its centralized control nature. For example, it fits well for interference avoidance 
and Cooperative Multi-Point (CoMP) as well as mobility management support especially in 
dense deployments. In dense RAN deployments, SDN can also facilitate more efficiently data 
offloading being able to select the appropriate offloading location for particular traffic sources.   

The SDN paradigm can also support multi-tenancy allowing MVNO and third parties to share 
resources via the use of the Northbound API (NBI) of the SDN controller and facilitate a unified 
network management across heterogeneous radio technologies. In addition, it can provide path 
management services that can optimize the routing in the legacy LTE by allowing the mobile 
network layer to gain knowledge of the underlying transport layer that provides connectivity 
between mobile network functions.  

5G NORMA leverages the benefits of the SDN introducing two type of controllers, the SDM-C 
and SDM-X for dedicated and shared resource/VNF respectively. The rational is to use these 
type of controllers to allow SDN-App interaction, coordination with the Virtualized resource 
orchestrator named SDM-O and QoE/QoS control, enabling flexible service chaining and 
network re-programmability.      

2.2.5 3GPP LTE and ETSI NFV Security Architecture in Multi-
tenancy and Multi-services   

The NFV InP, offers to share the physical infrastructure with MVNOs using the same security 
architecture and hierarchical key management schemes for protecting the subscribers and 
MVNOs. The security impact of network sharing has briefly been pointed out by 3GPP [19] 
.Furthermore, there are  five security basic features within the 3GPP security architecture 
[20]each of these features prevents certain threats and accomplishes certain security objectives. 
Those security objectives are network access security, network domain security, user domain 
security, application domain security, and visibility and configurability of security. These 
security objectives aim to avoid the possibility for an intruder to identify which subscriber is 
using a given resource on the radio and network path by listening to the signalling exchanges on 
the radio and network path.  
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On the other hand, ETSI pointed out vulnerabilities and security issues in NFV [21] [22]. ETSI 
also emphasized Monolithic Operator (MO) model in providing virtual infrastructure and virtual 
network function security and trust guidance on multi-tenancy and multi-network services [23] 
[22] . The MO model is similar to InP role in 3GPP. The MO offers NFV hosting services and 
provides edge cloud to tenants with security management. This security management catalog is 
based on OpenStack Keystone which can provide identity, group and role management, and 
tokenisation technique for securely accessing virtual network services. Furthermore, Universally 
Unique IDentifier  tokenisation technique is chosen by default for protecting network service 
tenants. 

Moving forward, when VNF service provisioning, deploying, duplicating, migrating and 
terminating require secure techniques to protect the tenants and subscribers. Combining the 
3GPP security architecture features with ETSI NFV security specifications to become one 
secure system that is inevitably needed in providing multi-tenancy and multi-services. 

3 WP5 Functional architecture 
As described in Section 2, 5G NORMA will build on existing enabling technologies (i.e., SDN 
and NFV) go beyond the research activities carried out by other similar projects in the past few 
years to enable the functionalities of network slicing and QoE/QoS awareness. Moreover, 5G 
NORMA is easily adaptable to the current definition of Software Defined Networking defined 
by ONF or the Orchestration Framework defined by ETSI NFV MANO. 

3.1 Functional requirements 
5G NORMA features an architecture that leverages and goes beyond SDN and NFV 
technologies. This architecture has to support many services with different requirements in 
terms of latency, throughput and availability; all this in conjunction with a multi-tenancy 
network supporting network slicing. For more details, we invite the reader to the deliverable 
[24] where a deep analysis of the functional requirements is conducted according to a set of use 
cases. The functional requirement are grouped into a set of requirement groups to facilitate the 
design process and to redefine the legacy mobile network architecture: 5G NORMA will drive 
the transition from the current network of entities architecture to the network of functions 
architecture as already described by [25]. The main outcomes of this transition are hence the 
required flexibility and re-programmability features, two paramount features for the upcoming 
network slicing paradigm in 5G. 

5G  mobile network architecture designs are based on a set of dimensions that were not as 
critical for earlier network generations as they are nowadays because of the changing scenario in 
mobile networks requirements. Following are the key 5G requirements that are being addressed 
by WP5: 

• REQ 1: Multi-tenancy: allows sharing the network infrastructure among several service 
providers. The range of tenants is not fixed and can be from virtual mobile networks 
operators to companies from vertical industries. 

• REQ  2: Shared infrastructure: leverages the economies of scale to be expected when 
hosting multiple logical mobile networks on a single infrastructure. 

• REQ  3: Efficient control frameworks: allows better usage of hardware/software/radio 
resources and functions by abstracting their usage  on different architectural levels.  

• REQ 4: Multi-service and context-aware adaptation and allocation of VNFs:  It is 
accomplished thanks to the fine-granular (de)composition of functions into several 
VNFs allowing their adaptive and efficient allocation at the front-end cloud (e.g., radio 
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site), in the edge cloud, or central cloud. This entails the efficient VNF  placement, 
configuration, scaling/migration etc. 

• REQ 5: Optimization of the QoS/QoE according to the service and the infrastructure 
state. 

• REQ 6: A service aware Mobility management system, capable of choosing the most 
appropriate solution according to the service requirement by leveraging on a software 
defined approach. 

3.2 Research challenges 
The main challenge is to  address the above listed functional requirements. The design of 5G 
NORMA architecture should provide frameworks with their accompanying research challenges 
to be solved: 
C 1: A management & orchestration layer that is in charge of: 

• The creation (instantiation) of the slice on which the network services (service chain) 
run. The layer will take as input the KPI targets and output a slice description template 
including the functions graph, QoS parameters and containing instructions for its 
deployment, configuration and policy based rule for its orchestration. The generated 
slice template is then used by the orchestrator to instantiate the network slice instance. 
The orchestration needs to be at different levels – among the slices and within the slice- 
and at different timescales (at business long-term and at network run time).  An overall 
view of all the slices across all resource domains (edge cloud, central cloud) is required 
for the management and orchestration of the different slices. We should thus consider 
the problem of orchestration coordination among multiple domain orchestrators when 
placing the VNFs at edge cloud node or central cloud node, or moving them as well. 

• The orchestration framework should also offer mechanisms for dynamically adapting 
the service chain (by adding, updating or removing function/capability in the existing 
service chain) in order to meet Service Level Agreement (SLA) in spite of load/traffic 
variation. 

Note: Please note that a complete list of functions is provided in D3.1.  

C 2: A framework for mobility management of users.  

• The user mobility management framework shall provide a compound solution to how 
the User Equipment (UE) connects to a network slice. Several approaches may be 
investigated: per UE type, or depending on the end to end (E2E) service type requested 
by the user. Also, a unified mobility management system spanning across several 
network slices may be targeted, allowing thus the presence of the same UE in multiple 
network slices at the same time. Advanced mobility management schemes may imply 
mobility of VNFs, as the reallocation should consider device/user location, network 
conditions and context, as well as QoS and QoE contraints. 
 

C 3: A framework for controlling network slice (intra/inter slice)  

• The role of the controller is to fulfil the requirements defined in the SLA by 
acting/configuring the Network Functions (both Virtual and Physical) belonging to a 
certain network slice. Example of such actions are routing optimizations or generic 
reconfiguration of already instantiated NF according to QoE/QoS optimization 
algorithms (e.g., a scheduler reconfiguration). For a better control of the SLA 
enforcement, the controller shall be able to trigger the orchestrator for re-orchestrating 
operations. This interaction has to be defined with the relevant controller-orchestator 
interfaces. Finally, specific interfaces shall be designed for the control and management 
of shared network resources across network slices. 
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C 4: A framework for real-time monitoring  

• An efficient monitoring framework shall be a fundamental part of the network 
architecture. By including the QoE mapping to QoS parameters functionality, the 
efficient framework for real time monitoring is the main driver for all the re-
orchestration triggers. 

C 5: A service layer able to handle:  

• SLA negotiation capability with the tenants or the vertical market player. Here the 
problem is to translate high level requirements of SLA into network requirements and 
policy rules to be enforced. The goal is to compose a chain/graph of network services 
with their specific service KPI goals that will meet SLA.  

• Mapping the service into the dedicated network slice. The creation of the service causes 
the execution of the network slice template by the management and orchestration layer. 

Note: The above challenge (i.e., C5) is addressed in WP3 

3.3 5G NORMA WP5 building blocks 
The requirements and the challenges described above are tackled by the WP5 functional 
architecture shown in Figure 4, which in turn is characterized by specifc functional blocks. They 
are all part of the overall 5G NORMA architecture. This work reflects the inputs provided by 
WP3 that have been detailed in the deliverable D3.1. The mapping between the WP5 building 
blocks and the 5G NORMA architecture is depicted and discussd in Section 3.3.4. 

 
Figure 4: WP5 building blocks and their interactions 

5G NORMA proposes an architecture based on 6 different building blocks: the Software-
Defined Mobile Network Controller (SDM-C), Orchestrator (SDM-O), Coordinator (SDM-X), 
the Mobility Management module (composed by the Scheme Selection and Design), and the 
QoE/QoS Mapping and Monitoring module. They are grouped into three categories according to 
the main tasks they are designed to accomplish and heavily take into account the multi-service 
and multi-tenancy concepts as the fundamental drivers of our architecture. 
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3.3.1 Intra-slice Management 
The Software-Defined Mobile Network Controller (SDM-C) and the QoE Mapping and Qos 
Monitoring modules are the ones in charge of controlling the resources assigned within a 
network slice. The most important innovation is the SDM-C, that introduces network function 
control beyond SDN. That is, the QoE Mapping and Qos Monitoring can be seen as SDM-C 
applications. More details about this block are provided in Section 6. 

SDM-C enables a flexible network management and operation within a network slice. It is 
responsible for controlling both data plane and control plane nodes following NFV and SDN 
technologies in a centralized way. The SDM-C specifies both northbound and southbound 
interfaces which enable different functionalities. The northbound interfaces are used to control 
network operation in terms of QoE/QoS and mobility management, whereas the southbound 
interface conveys the required actions within a given network slice. The SDM-C receives the 
network requirements through the northbound interfaces and, once processed, triggers the 
necessary operations through the southbound interfaces. 

Figure 5 depicts the stated northbound and southbound interfaces offered by the SDM-C: 

 
 

Figure 5: SDM-C interfaces 

 

Interface 5GNORMA-SDMC-SDN. It acts basically on the data plane of the network slices 
and has the objective of building the path(s) that connect the VNFs of a service chain. This 
interface is a natural extension of the SDN model. It can be seen as a specialized version of the 
5GNORMA-SDMC-P/VNF interface that only controls SDN devices. While in the current 
ETSI-NFV-MANO architecture this functionality is off-loaded to the VIM, in our architecture it 
is a fundamental part of the network-slice control, to be directly accessible by all the SDM-C 
Application using the 5GNORMA-SDMC-Apps Northbound Interface. 

Interface 5GNORMA-SDMC-P/VNF. It controls and configures parameters of the P/VNFs. 
Unlike the NF-Vi interface of the ETSI NFV MANO architecture, this interface brings the 
Software Defined Networking principle to all the network functions of mobile wireless 
networks. That is, the functionality once deployed monolithically in different physical devices 
will be split into the SDM-C Applications that run the logic of the Network Function and the 
agents deployed directly on the data path. The 5GNORMA-SDMC-P/VNF southbound interface 
is hence used to control these (Physical or Virtual) Network Functions. 

Interface 5GNORMA-SDMC-MANO is the interface to MANO, allowing the orchestration 
entities to deliver a set of raw computation (Central Processing Units, memory), networking 
(SDN transport network, spectrum) and target KPIs as defined by the SLA agreed with the 
tenant. All these resources may be controlled directly by the SDM-C through the 5GNORMA-
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SDMC-P/VNF interface (if dedicated) or through the Interface 5GNORMA-SDMC-SDMX 
interface (if common). All this information is required by the SDM-C to fulfil the targeted SLA. 
All the decisions about resource allocation within a particular network slice is the responsibility 
of the MANO since it has a global view of the entire network and, hence, can take an optimal 
decision based on the current status of the network.  

Again, this shares some similitudes with the ETSI-NFV-MANO architecture, especially with 
the Or-Vi, Vi-Vnfm and Or-Vnfm interface. In the framework of 5G NORMA, the 5GNORMA-
SDMC-MANO interface, performs some of the functionalities already envisioned by the ETSI-
NFV-MANO architecture, mainly the ones related to resource orchestration. However, the 
semantic of this interface is much broader in 5G NORMA, in particular for the lifecycle 
management of the Network Functions belonging to a network slice, especially for the re-
orchestration triggers due to QoE/QoS constraints. More details about this process may be found 
in Section 3.7.2 

Interface 5GNORMA-SDMC-Apps is used by SDN-Apps to provide a well-defined service. 
Three examples of SDM-C applications are the following: 

• Enhanced Inter Cell Interference Cancellation (eICIC): it is an application seen from the 
SDM-C, which could be instantiated and controlled within the eMBB slice in order to 
meet users QoE requirements.   

• Video aware pre-scheduler: it provides configuration guidelines for the scheduler, 
specializing it for meeting the KPI requirement of specific video flows. 

• Mobility: the mobility management of a network slice can be seen as a SDN application 
itself. 

More details on the specificity of the SDM-C Applications can be found in Section 3.7.4. 

Interface 5GNORMA-SDMC-QoS/E is used for QoS monitoring, to timely report about the 
status of the network resources. The input coming from this interface is fundamental when 
triggering re-orchestration request via the Interface 5GNORMA-SDMC-MANO interface. 

Finally, Interface 5GNORMA-SDMC-SDMX is used for controlling shared resources through 
SDM-X. The processes that make use of this interface are detailed in Section 3.7.3 while further 
algorithmic details are described in Section 5. 

QoE/QoS Mapping and Monitoring: enables the monitoring of QoE/QoS parameters within a 
network slice, allowing the SDM-O to act accordingly in order to fulfil the network 
requirements and agreed SLAs. It allows to allocate the minimal amount of resources for 
achieving the required QoE avoiding churn and increasing energy efficiency. The 
communication with the SDM-C happens through the 5GNORMA-SDMC-MANO and 
GNORMA-SDMC-QoS/EMonitor interfaces. 

3.3.2 Inter-slice Management 
The second functional block is related to the management of multiple network slices (possibly 
belonging to different tenants) over the same infrastructure. Some functionalities fulfilled by the 
Intra-slice management block have a counterpart on the NFV-O entity in the ETSI NFV 
MANO, especially for the resource allocation purposes. However, the Software Defined 
Network Orchestrator (SDM-O) orchestrates resources from a QoE/QoS perspective, knowing 
the requirements of each network slice. This means that the decision about which network 
functions have to be included in a network slice or their placement inside a computational 
network cloud is taken by the SDM-O, and it is an extension compared by the functionalities 
currently fulfilled by NFV-O. Also, the optimal sharing of resources (both computational and 
networking-related) among network slices through the Software Defined Network Coordinator 
(SDM-X) belongs to this block. 

The SDM-O enables the support of multi-service and multi-tenancy by the means of network 
slicing and resource orchestration. The SDM-O combines service and NFV MANO resource 
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orchestrator. The SDM-O analyzes service requests requirements and feeds the results to the 
network slice creation lifecycle.  

The SDM-X enables the control of shared network functions or resources among selected 
network slices. It receives information both from the SDM-O and MANO (through the SDM-O) 
blocks and processes this information in order to decide whether it is necessary or not to modify 
a network slice’s shared resources upon a request coming from SDM-C. It is responsible for 
controlling VNFs/PNFs in the common data and control layer and, hence, will need to ensure 
the fulfilment of the received requirements within its corresponding network slice. 

3.3.3 Mobility Management 
Mobility management is implemented in 5G NORMA as a SDM-C application that gathers 
information from the QoE/QoS module and enforces new rules through the SDM-C southbound 
interfaces. Also, it may trigger (through the SDM-C, as every other SDM-C application) re-
orchestration requests. However, due to the importance of the functionality, we emphasized it 
through two submodules. 

Mobility management scheme selection and design: enables the management of all devices in 
the network, ranging from static to high speed (i.e., vehicular) terminals. It follows a modular 
approach to adapt the network configuration to the network slice demands. It is a highly flexible 
module that achieves high resource performance without increasing operation burden. It is 
composed by two sub-modules: the mobility management scheme selection and the mobility 
management scheme design. The latter includes all the algorithms needed to perform a certain 
mobility management scheme, while the former performs the selection of the most appropriate 
scheme based on the slice requirements. 

3.3.4 Mapping with the overall 5G NORMA architecture 
Figure 6: 5G NORMA architecture depicts the Service Layer functions, which serves two major 
objectives: (i) it shall hold an end-to-end management and orchestration view of a network slice 
and (ii) for 3rd parties, it should serve as the “entry point” into the telecommunications service 
provider’s administrative domain in order to request the commissioning and operation of a 
network slice. Particularly, Service Management acts as an umbrella entity for evolved 
Operations Support Systems (OSS) as well as for the SDM-O and has the end-to-end view of a 
network slice. It exposes interfaces for network slice creation, operation, and termination 
requests from internal and external stakeholders (e.g., vertical sectors, OTT providers), thereby 
accommodating different expert levels. For example, a creation request can consist of direct 
network slice selection or, alternatively, of information on service requirements such as service 
level agreements and key quality indicators that describe the required characteristics of the 
requested telecommunications service. By (partially automated) means of business and policy 
decisions, network slice management maps a request to a chain of network functions that, as a 
whole, form the network slice blueprint which are further managed by OSS and SDM-O. These 
chains are obtained from a catalogue of available templates and are the base for the virtual 
machines instantiation on the NFVI taking into account all the processed KPIs. The SDM-O can 
be further broken down into Service Orchestration, Slice Orchestration and Inter-slice/Inter-
tenant Orchestration. It has a complete knowledge of the network, managing the resources 
needed by all the slices of all tenants. This enables the orchestrator to perform the required 
optimal configuration in order to adjust the amount of used resources and, hence, making an 
efficient use of the network. Each network slice has an SDM-C, responsible for managing the 
inner network slice resources and actually build the paths to join the network functions taking 
into account the received requirements and constraints which are being gathered by the 
QoE/QoS Mapping module. This module is also responsible for performing a continuous 
evaluation of the network slice status and reporting to the SDM-C. The SDM-C, based on these 
reports, may decide to adapt to a new situation either by reconfiguring some of the VNFs in a 
network slice or by reconfiguring data paths in a SDN-like style. If the requirements cannot be 
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met by any of these methods, the SDM-O can perform a slice reshaping by requesting for more 
resources for the given network slice. The described network slice lifecycle is depicted in  

 

 
Figure 6: 5G NORMA architecture 

 

Network slices, which are defined as logical end-to-end networks, operate on top of partially 
shared infrastructure. They are composed of shared and dedicated as well as physical and 
virtualized network functions. For the control of shared functions, 5G NORMA introduced an 
extended SDM controller, called SDM-X.  

As outlined in Table 1, SDM-C and SDM-X: 
• control PNFs and the software application of VNFs, 
• but do not control/orchestrate a VNF’s underlying NFVI resources. 

In case of VNFs, this implies that SDM-C/X only control software running inside a Virtual 
Machine (VM)/container (also referred to application logic). The virtualization container of the 
VNF (VM, Docker container, etc.) is controlled by the NFV-MANO entities. This ensures a 
consequent split between management/control of mobile network functions on the one hand and 
NFVI resources on the other. For PNFs, which exhibit a tight coupling of hardware and 
software, SDM-C/X control the entire HW/SW system of the network functions.  
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SDMC-SDMX of the SDM-X as shown in Figure 5. The SDM-X therefore also coordinates 
between multiple SDM-C instances and the associated network slices.  

 
Figure 7: The lifecycle of a network slice in 5G NORMA 

In case more shared resources are required in another part of the network, a slice reshaping may 
also be requested by the SDM-X to the orchestration, decreasing a slice’s assigned resources 
that will be used to fulfil the newly received requirement. 

3.4 SDM-O: Slice Orchestration  
The inter-slice orchestration is a key-feature of the novel 5G NORMA architecture as it fosters 
and supports multi-service and multi-tenancy systems by levering on the network slicing control 
application. In particular, the functional block, namely SDM-O, blends resource orchestration 
together with the network service orchestration in order maintain the network slice instantiation 
lifecycle. The inter-slice orchestration process consists of two main functions: (i) resource 
provisioning (considered as NFVI generic resources) and (ii) resource pooling/reservation. 
Please note that SDM-O is also involved in intra-slice orchestration operations but in this 
section we will describe the complex inter-slice orchestration aspects. 

3.4.1 Generic Resource provisioning 
Resource provisioning is performed to calculate and provide the right amount of virtualized 
infrastructure resource, e.g., computing, storage. Specifically, the SLA between tenants (asking 
for a network slice) and the infrastructure provider is regulated by the resource provisioning 
process. It depends on the QoS service requirements attached to the network slice that are 
efficiently mapped onto latency, bandwidth, computing and storage requirements. Several 
mapping schemes are defined to flexibly and dynamically manage heterogeneous tenant slice 
requests. However, traditional models provision resources only accounting for the peak 
demands. Dynamic resource provisioning allows each tenant to acquire resources based on the 
current demand, which can considerably lower the operating cost. Please note that a single 
tenant can also require and handle multiple slices with various needs. One solution is to consider 
that the provisioning is performed on resource pools (e.g., CPU or storage) of virtual resources 
for the overall set of network slices, so that provisioned resources are shared amongst each 
network slice. This introduces huge flexibility as resources can be dynamically allocated and 
released between tenants: this brings a multiplexing gain while reducing the total amount of 
resources to provision, which in turn reduces the operating cost. The proposed approach consists 
of three different steps: 

a) Establish a performance model to determine how many resources (e.g., computing, storage) 
to allocate for each slice in order to fulfil the QoS requirements as function of the load. The 
challenge is to model each VNF in terms of needed computing/storage/connectivity resource to 
sustain the QoS requirements with respect to the level of load (number of calls, number of users, 
etc). Additionally, for each slice the service graph is considered to identify the resource in terms 
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of bandwidth/latency needed between VNF in function of the load level. Then, the model targets 
to evaluate the total resource (compute; storage; networking) for the slice. 

b) Establish the pattern of load during the life cycle of the slice. Load can vary at large time 
scale (the growing number of users that adopt the service, the growing number of network 
subscribers). It can vary at small time scale during the run-time of the service (peak hour, flash 
crowd events). It will depend on modelling the arrival of users consuming the service along the 
life cycle per type of service/slice, and the geographical distribution of users. 

c) Determine an algorithm for automation of dynamic provisioning of shared resource pools 
among slices. Different strategies could be combined, i.e. provision in a proactive or reactive 
manner. In the proactive manner, the algorithm could work at large time scale to provision 
based on prediction of load. It could be able to reactively adapt provision to small time-scale 
events. 

3.4.2 Resource pooling and reservation 
The infrastructure providers can easily combine and jointly manage large-scale resources to 
simultaneously serve multiple tenants through resource pooling and resource reservation. On the 
one side, physical and virtual resources are dynamically assigned (and adjusted) according to 
tenants’ demand, thereby realizing multiplexing gains through resource pooling. The resource 
pool is the total amount of resources the infrastructure manager (e.g. VIM) is managing and can 
efficiently allocate for specific VNFs. On the other side, resource reservation refers to a policy 
that preserves a given amount of resources for a particular consumer (e.g., a tenant or a service) 
even though they are currently not needed. The benefit of such a resource allocation strategy is 
to improve the operational reliability for a particular network slice with stringent requirements, 
e.g., QoS/QoE guarantees. Unfortunately, resource reservation reduces the multiplexing benefits 
and cost savings achieved from pooling.  

The above trade-off requires a resource management policy that carefully trades off the need for 
resource reservation against the resulting deterioration in pooling gains and cost efficiency. In 
practice, such amount of reserved resources has to be estimated a-priori based on expected 
traffic load. A good estimation of the resource reservation positively influences the efficiency of 
the system: If the reservation is over-dimensioned, it might imply waste of resources. If the 
reservation is insufficient, it might result in difficulties in handling the traffic and poorer user 
experience. Reserved resources might include a collection of physical resources with particular 
affinity constraints, e.g., dedicated to a specific network slice. Moreover, reserved resources are 
particularly beneficial for latency-sensitive applications for which the delay introduced by 
scaling might be critical. On the other hand, shared resource pools, i.e., utilizing one resource 
pool by instantiating different VNFs belonging to different domains/network slices might be a 
good approach for decreasing the potential waste and minimizes the problems related to over-
provisioning. However, this flexible approach would require a rather homogenous resource pool 
(general-purpose hardware) that can host a large variety of VNFs. For RAN domain functions 
and their hardware requirements, this might be more challenging whereas core domain functions 
are suitable candidates. An interesting approach is to find a mixed pooling/reservation solution 
wherein resources are shared (pooled) among a subset of all slices. For example, in case of a 
large tenant, e.g., an energy company operating multiple network slices, resources could be 
reserved for tenant itself but pooled for all its slices. Besides improving isolation of VNFs from 
different tenants, such schemes could combine the benefits from both pooling and reservation. 
Further, such resource reservations would have a dedicated share of overall resources and act 
independently in the case that there is no sharing policy defined. 

The 5G NORMA architecture accounts for static reservation policies allocated to certain tenants 
(or network slices) as well as for more dynamic partitioning wherein reservations “breath” 
within defined thresholds based on network slice requirements. We refer to those resource 
allocation solutions as “constant bandwidth allocation” with fixed share per consumer and 
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“proportional fair allocation” with fixed weight per consumer. State-of-the-art resource 
allocation algorithms combine them based on the performance figure to be optimised. 

3.5 SDM-C: Dedicated Slice Control  
The Software Defined Mobile Network Controller (SDM-C) is a key function of the 5G 
NORMA architecture. It controls all of the network slices’ dedicated PNFs, VNFs and 
associated resources (network, radio) and their respective configuration. Based on service 
function chain, SDM-C dynamically influence and optimize the performance of the network 
slice and reconfigure the different VNF/PNFs when needed.  The (re-)configuration occurs after 
(re-)instantiation and can be considered to take place at a different time scale (with extents in 
the order of several seconds). It is assumed to have an SDM-C instance per network slice. 

Following the SDN logic, the SDM-C has both a northbound and a southbound interface which 
enable different functionalities. The SDM-C receives the network requirements through the 
northbound interface and, once processed, triggers the necessary operations through the 
southbound interface. The NBI interfaces with 5G NORMA-MANO functions, whose scope is 
two-fold. The 5G NORMA-SDMC-MANO interface is used to define all the QoE / QoS 
constraints that have to be fulfilled for a given traffic identifier, that may range from a single 
flow to an entire network slice. The granularity of this API (that goes beyond the simple 
network function re-configuration) will be determined during the project, but we can provide 
some examples of its envisioned operation. For instance, the shaping of the rate for each video 
flow will be configured by the SDM-C to provide the needed QoE-related KPIs to HD Video 
Users flows, while maintaining resources for Best Effort user flows.  

In the case that the QoE/QoS targets cannot be met, the SDM-C may request re-orchestration. 
For that purpose, it uses the 5G NORMA-SDMC-MANO interface to trigger a re-instantiation 
request.  
 
SDM-C is composed of an abstraction layer providing a set of common APIs to the application 
layer (referred to as the northbound interface) and implementing protocols to interact with 
instantiated VNFs (referred to as the southbound interface). 

The SDM-C brings a set of advantages summarized below: 

• Flexibility: A current problem for mobile network operators is the high amount of 
capital and operational expenditures (CAPEX and OPEX) of their networks 
independent of the actual traffic load and service usage, and thus the earning for 
products they sell to customers. By means of SDM-C approach, operators would be able 
to fit the network to their needs by simply re-programming the controller and thus 
reducing costs, while enhancing reliability.   

• Programmability: It allows third parties to acquire network resources on-demand 
satisfying their individual SLAs. In addition, programmability can enhance the user 
perceived QoE by customizing the network resources accordingly.  

• Simplified/Unified control: Adopting a logically centralized control unifies 
heterogeneous network platforms and provides a simplified operation of the wireless 
network. With SDM-C, network operators only need to control a set of central entities 
(namely, the controllers) that control the entire network, which possibly includes 
heterogeneous radio technologies. 

• Enabling new services: By modifying the behaviour of applications that run on top of 
the SDM-C (northbound interface), many new services that were not included in the 
initial architecture design can be enabled by modifying the network behaviour and 
adapting its capabilities for the introduction of new services within few hours instead of 
weeks. 
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SDM-C could be implemented using for example OpenDaylight [26] , which is an open source 
project with a modular, pluggable, and extensible controller platform at its core.Figure 8 depicts 
the internal architecture of an SDM-C based on Opendaylight open source project. This 
controller is implemented strictly in software and is contained within its own Java Virtual 
Machine (JVM). 5G NORMA will introduce some new components and features in order to 
include the knowledge of the RAN which is ignored in most of the available open-sources. For 
that, we will propose extensions as depicted in Figure 8. 
 
   

 
 

Figure 8: Example of SDM-C based on OpenDayLight block diagram 

3.6 SDM-X: Shared Slice Resources Control  
An end-to-end network slice can be instantiated as a subset of dedicated and shared resources. 
Shared resources, e.g., transmission points, radio resources, transport and fronthaul capacity, are 
properly managed by the 5G NORMA functional block, called SDM-X. Such resources are 
collected in a common pool before being allocated to a specific network slice or tenant. While 
the SDM-O needs to map different VNFs to the required physical resources during the 
orchestration process, the SDM-X needs to interact with the slice controller and control in a 
dynamic way the use of shared physical resources during operational flows, as shown in Figure 
9. This interaction is specified following the well-known master/slave paradigm: the SDM-X 
controller specifies control policies for shared resources (master) guiding (multiple) SDM-C 
while applying operational functions (slave).  Specifically, radio and transmission resources 
over different media, processing resources within areas of computing resources, and storage 
resources for user/data plane and control plane information, are considered in our architecture as 
physical resources. While resource pooling for storage and processing power may be less 
demanding due to theoretically large resource pools, the scarcity of radio resources in many 
cases requires an advanced resource management solution. As mentioned before the orchestrator 
considering policies and priorities manages the exclusively allocated resources while SDM-X 
implements dynamic allocation mechanisms.  
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Figure 9: The role of SDM-X within the overall architecture 

Based on the policies provided by SDM-O, a SDM-X/SDM-C negotiation is established in 
order to decide how to fulfil the demands of several partially competing network slices 
simultaneously. Slice performance demands might be identified in terms of: i) throughput, 
which requires a management of the radio resources, ii) latency, which requires a management 
of the placement of the network functions and usable storage entities, iii) management of 
processing / compute and storage (cache) resources in the neighborhood of access nodes which 
may also impact latency and error recovery performance, iv) reliability and resilience which is 
also greatly influenced by proper mechanisms for dynamic sharing of all three kinds of 
resources.  

The main objective of the novel 5G NORMA architecture is to extend the concept of managing 
shared resource between slices to a broader scope thereby putting it into a SDN/NFV context. A 
straightforward example for the SDM-X is the radio resource management. In particular, 
extended scheduling strategies are needed to fulfil the slice/tenant dependent requirements, such 
as defined SLAs, while dynamic control of the scheduling strategy is needed to be able to react 
instantaneously to a change of the data flows’ specific service requirements. Based on feedback 
information of the radio scheduler, the SDM-X might need to change the scheduling strategy 
from, e.g. centralized to decentralized scheduling or de-/activate an Inter Cell Interference 
Cancellation (ICIC) scheme, to improve the cell edge performance while sacrificing some ms in 
terms of delay. Therefore, the design of the interfaces of the SDM-X requires, on the one hand 
simplicity to support a fast allocation of the radio resources and on the other hand, the 
consideration of the total space of possible decisions and complex dependencies of 
slices/tenants/services. 

3.7 WP5 Summary of Processes 
As already indicated in Deliverable 3.1 [25], processes are a way of analysing the 5G NORMA 
architecture internals, i.e., how it reacts to external and internal triggers and how the sequence 
of events unfold. 

The networking aspects studied in the framework of WP5 can be structured into several 
processes, ranging from the rather classic aspects of UE mobility support, to the more advanced 
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network slice orchestration related aspects, but also the innovative ones regarding the SDM-C 
and SDM-X controllers. 

The non-exhaustive list of processes included in this document is hence a way of validating the 
WP5 functional architecture described previously, but also a necessary intermediate step needed 
to identify and design the various interfaces that have been identified between the different 
modules. 

One of the key concepts of the WP is flexibility: it drove the design of the functional 
architecture and it is also driving the rationale of the design of WP5 processes. For this reason, 
we defined four categories of processes, which define high-level guidelines for all the fine-
grained processes that belong to them. That is, the high-level interactions between the WP5 
actors are described by the process families. 

The processes families are described in Table 2, which includes also some exemplary fine 
grained processes. While the table is not expected to provide an exhaustive list, the four process 
categories are expected to cover all the possible processes that may be issued in future 5G 
networks. In the subsequent sub-sections we briefly describe these four processes in terms of the 
trigger(s) required to activate a process, and the related actor(s) with the summary of their 
respective tasks to execute the process.  

Table 2: The four categories of processes 

Process -1  

Network slice set-
up and deployment 

 

Process -2 

Network slice 
resources re-
orchestration 

Process -3 

SDM-C application 
(network slice 

control) 

 

Process -4 

SDM-X policies 
(resource sharing) 

Network slice 
deployment request 

Resource re-
orchestration due to 
lack of IT resources 

Network slice 
selection when UE 
performs attach 
procedure 

Inter network slice 
resource brokering 

Network slice 
blueprint 
customization and 
onboarding 

Resource re-
orchestration due to 
QoE/QoS 

Handovers Shared resources 
control 

  Paging  

  Mobility 
Management (MM) 
scheme selection 

 

  QoE-aware RAN 
extension  

 

3.7.1 Network slice set-up and deployment 
Triggers 
The network slice set up process is a business-related process, triggered by the Service Layer 
and managed primarily by the 5G NORMA MANO Layer. 

Actors and Associated Tasks 
Service Management: 
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• It receives network slice creation requests from the business layer and makes a decision 
about the following problems 

• Mapping of the high level business KPIs into network and infrastructure specific ones 
(SLA). The SDM-O supports dynamic SLA 

• Selection of the NF blueprint  

SDM-O:  
• Instantiation of the NF into the IT infrastructure 

SDM-C: 
• The SDM-C is in charge of building the Service Function Path (SFP) among NF, 

starting hence the network slice operation. 

SDM-X 
• It manages the shared non-NFVI resources, identifying which NFs are actually shared 

by the network slices 
• It re-configures common NF to accommodate new network slices 

VIM 
• It coordinates with SDM-X to control the NFV shared resources 

3.7.2 Network slice resources re-orchestration 
Triggers 

The re-orchestration process happens according to two different triggers: the re-orchestration 
due to a lack of generic IT resources (also referred to as NFVI resources) and the re-
orchestration due the failure to meet QoE/QoS parameters. The first sub-category is related to 
the state-of-the-art VNF elasticity and lifecycle management process as defined by ETSI, so it is 
managed in the same way directly through the VIM. That is, the re-orchestration is triggered by 
some issues in the virtualization containers hosting the VNF. Conversely, the second sub-family 
is related to the VNF itself, that at some point in time are not capable of providing the requested 
QoE associated to the network slice anymore and have to ask for a re-orchestration. This 
procedure is performed by the SDM-C and the related SDM-C application as they are aware of 
both the VNF context and semantics. 

Actors and Associated Tasks 
VIM 

The role of the VIM for the network slice re-orchestration process is very similar to the one 
envisioned by the ETSI NFV MANO framework. The VIM is in charge of managing the 
physical and virtual resources associated to a network slice. Therefore, all the elasticity related 
procedure (i.e., scale-in, scale-out, scale-up, scale-down) are managed by the VIM according to 
the usual workflow. Using the well-defined interfaces such as the Vi-Vnfm. The final decision 
is taken by the SDM-O that grants (or not) the requested resources to the network slice. 

SDM-C and Applications 

While the VIM knows the physical load of the VNF containers (i.e., CPU load, memory 
utilization), the SDM-C and the related SDM-C applications have knowledge about the VNF 
semantics and the current target QoE and QoS constraints for the user flow. The usual SDM-C 
application behavior is related to the control of such VNFs (i.e., changing the VNF parameters) 
in order to keep meeting these constraints. However, when this is not possible by changing VNF 
parameters anymore, a re-orchestration is needed. Therefore, the SDM-C may raise this request 
to the SDM-O in order to obtain a different and better orchestration of the network slice 
according to the changing conditions. 

SDM-O 
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The Orchestrator is the actor that takes the final decision about re-orchestration requests coming 
from either the VIM or the SDM-C. The ones received from the VIM are managed according to 
the procedure defined by the ETSI NFV MANO and the network slice is expanded (or shrunk) 
according to the available resources. Conversely, two different action may be taken if the 
request comes from the SDM-C. 

• A different placement of the VNFs belonging to the chain: VNF may be moved from 
the central cloud to the edge cloud or vice versa. Or VNF context may be migrated to 
one edge cloud to another. 

• New network functions, or services such as caches or video optimizers may be added to 
(or removed from) the function chain. 

 
Figure 10: The interactions among different actors involved in the re-orchestration.  

The overall behaviour of the Network Slice re-orchestration process is depicted in Figure 10, in 
which green boxes are actions related to the QoE/QoS triggered re-orchestration and yellow 
ones are actions related to IT resources shortage triggered re-orchestration 

3.7.3 SDM-X policies (resource sharing) 
Triggers 

The shared resource control is triggered by the Slice Orchestrator when shared resources must 
be managed, e.g., spectrum or shared network functions. Scheduling policies at the SDM-X 
entity will be supported by (multiple) SDM-C functional blocks through a west/east bound 
interface 1/n. This ensures peer-to-peer communication levels between SDM-X and SDM-C and 
prevents master/slave communications. 
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Actors and Associated Tasks 
SDM-O: 

The SDM-O includes the admission control/ service brokering and slice orchestration, which 
monitors the overall system resource availability and grant network slice with required 
resources. The sub-tasks of SDM-O are a follows: 

• Admission Control / Brokering 
o Monitoring resource availability based on granted network slices traffic requests 
o Advanced data traffic analytics for tenant traffic requests  

• Slice Orchestrator:  
o Instantiation of the NF into the IT infrastructure 
o Forwarding Graph re-adjustment to the SDM-C 

SDM-C: 
• The SDM-C directly communicates with the SDM-X sending out resource management 

policies retrieved from the Slice Orchestrator. In addition, the SDM-C provides QoS 
indicators for dynamically adjusting resource allocation in order to fulfil the agreed 
SLA. 

SDM-X 
• Takes the real control of shared resource: it gets the resource management policies from 

the SDM-C and send it back the resource allocation information of the shared resources. 
• Resource management policies could be envisioned as resource block masks, which 

each slice traffic request is assigned to. 
• Advanced shared resource mechanisms could be designed for admitting additional 

network slice requirements. 

3.7.4 SDM-C application (Network slice creation) 
Triggers 

In a generic view, SDM-C is composed by three layers: (i) the application and services; (ii) the 
controller functions and the network intelligence, and (iii) the elements for southbound 
communications. 

The connection at the upper-level layers is based on northbound interfaces such as REST APIs, 
the most deployed one. On the lower-level part of SDM-C, southbound APIs and protocol 
plugins interface the forwarding elements or the controlled VNFs. They provide a common 
interface for the upper layers, while allowing to use different southbound APIs (e.g., OpenFlow, 
OVSDB) and protocol plugins to manage PNFs or VNFs (e.g., SNMP, BGP, NetConf). This is 
essential both for backward compatibility and heterogeneity, i.e., to allow multiple protocols 
and device management connectors. 

Actors and Associated Tasks 
The controller part of the SDM-C is characterized by a combination of the abstraction part and 
the network intelligence. The abstraction is used to implement the communications between the 
different plug-ins and the different network function modules (topology manager, switch 
manager…). The network intelligence hosts all the information like measurements, reporting… 
targeting to maintain a global view of the network. As a result, the network appears to the 
applications and policy engines as a single, logical switch. 

In the following, we list the different steps followed from an NBI application perspective: 
• The Service Function Chain template should be communicated from the SDM-O 
• The SFC (internal module of SDM-C) should be supported. 
• SDM-C should support the right plugins to interact with the SDN environment and the 

different VNFs and PNFs. 
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• The SDM-C interacts with the application via REST APIs. 
• If one module, required by the application, is not supported, the application is removed. 

 

 
 
 
 
 
 
 

  
PART 2:     

ALGORITHMS 
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4 Introduction 
This part of the documents complements the architectural vision provided by Part I by filling the 
different modules of the architecture with the algorithms and protocols required to perform the 
functionality defined by the corresponding module. Given that the description of the different 
algorithms and their evaluation requires very substantial space, all this content has been placed 
as a different part of the document, to clearly separate the overall vision of the architecture from 
the detailed design of the underlying algorithms. The ultimate goal is to keep the overall vision 
concise and compact, while the reader can refer to Part II for the technical details of the 5G 
NORMA system. 

4.1 Objective and structure of Part II 
The objective of this part of the document is to describe the different algorithms, protocols and 
techniques behind the different modules of the architecture. Each of this algorithms and 
protocols corresponds to a standalone design of a technical solution that fits a certain role within 
one of the modules of the architecture. 

Following the above, the structure of this part of the deliverable corresponds to a collection of 
subsections each of which details a technical contribution (either an algorithm, a protocol or a 
technique) that plays a certain role in the new architecture. Many of these solutions are novel 
because of the fact that they solve a new problem posed by one of the novel concepts of the 
architecture. Other solutions solve an “old” problem in the context of the new architecture, but 
rely on new ideas or techniques that improve on the state of the art. 

The various subsections of this part of the document have been groups in three main 
subsections, each of which corresponds to one of the main three building blocks of the 
architecture. Figure 11 shows the mapping between the technical solutions reported in this part 
of the document and the three main building blocks of WP5 architecture. 

 
Figure 11: Mapping of technical contributions to WP5 building blocks 
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4.2 Key contributions of Part II 
Most of the technical solutions included in this part of the document have either been patented, 
pushed into standards or published in scientific venues, and rely on new ideas and concepts. The 
following bullets explain the novel aspects and results obtained for the main contributions 
included in this part of the document: 

• One of the proposals of the WP5 for mobility management has also been submitted as 
an IETF Internet draft [27]. This work is closely related to one of the three main 
building blocks of WP5, namely the ‘Mobility management’ building block. 

• In addition to the above contributions, it is also worth highlighting the novelty of the 
algorithms and protocols design for each of the individual modules. In the following, 
we summarize some of these contributions: 

• Novel algorithms are being designed as SDM-C applications running on top of the 
SDM-Controller in order to manage QoS functionality of the underlying mechanisms. 
These algorithms include video scheduling, routing control as well as policy control. 

• New monitoring algorithms for QoS related parameters as well as algorithms for QoE 
modelling and mapping are also being designed. The purpose of these algorithms is to 
detect the current QoE provided to users in order to take actions when this QoE is not 
satisfactory. 

• Mobility management protocols are being design which leverage on the SDM-C 
functionality provided by 5G NORMA. Key novelties behind those algorithms are the 
flexible allocation of functions as well as the use of SDN and the possibility of 
employing different schemes in different slices (which requires detecting the mobility 
requirements of the users). Extensions to the SDN functionality (as currently envisioned 
by the ONF) are going to be submitted. 

• Solutions for multipath communication are being devised, involving the combination of 
multipath transport with mobility management protocols as well as leveraging multipath 
functionality for network orchestration. 

• Optimal algorithms for network orchestration are being designed to decide the optimal 
location of each VNF. 

• A new framework for network slicing that includes the coordination between different 
slices, along with the protocols and algorithms required for this purpose, are also being 
designed. 

5 Network Slice Orchestration 

5.1 Introduction 
Network slice orchestration is a widely studied problem that is carefully addressed here. 
Different network slice orchestration operations are considered, both inter-slice and intra-slice 
operations. The network slice orchestration function involves the (i) Service Management, (ii) 
SDM-O and (iii) SDM-X functional blocks as depicted in Figure 12. 
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Figure 12: Network Slice Orchestration Functional Blocks 

The Service Management receives service requests from multiple tenants either virtual 
operators, OTT providers and verticals and performs an analysis considering mapping the 
desired SLA to particular service requirements and application services, e.g. DPI, video 
optimizer, parental control, etc., which are fed to the SDM-O.  

The SDM-O functional block is in charge of the network slice orchestration and it includes i)  
inter-network slice resource brokering functions and ii) intra-network slice brokering functions. 
The former functional block takes the service analysis input and SLA from the Service 
Management and allocates network slices based on admission control policies. In particular, it 
considers the requested SLA in terms of network resource considering bandwidth, VNFs and 
PNFs as well as in terms of timing, e.g. starting time and duration, service type e.g. guaranteed, 
best-effort, delay tolerant, etc., and the mobility profile, e.g. stationary, low, medium, high. 
Based on such input and analysis, the inter-network slice resource broker allocates dedicated 
and sharing resources performing admission control for a particular network slice request 
creating a “resource/topology-graph” and the essential VNFs, which are issued to the intra-
network slice brokering block for each tenant. The latter receives the “resource/topology-graph” 
and the essential VNF from the inter-network slice resource broker and performs the network 
slice composition and allocation as well as the network slice life-cycle management through the 
following functions:  

• VNF composition and allocation, creates service-tailored VNFs based on “atomic” 
functions considering the inter-network slice resource broker input and performs the 
allocation and instantiation of such VNFs at particular cloud locations.  

• VNF service chaining function computes and arranges the sequence of combining VNF 
for particular services considering the VNF location, routing and mobility parameters.  

• QoS driven orchestration and life-cycle management function is responsible for 
performance measurements in order to ensure that the desired performance parameters 
for each network slice are satisfied. Once the VNF composition and allocation function 
is completed, the output is then fed to the VNF service chaining function that creates the 
service-chaining graph.  
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• Optimized management decisions based on VNF profiles, enhances the network service 
manager i.e., the SDM-O Quality of Decision (QoD) to make service-aware and 
resource efficient lifecycle management decisions (e.g., scaling, migration etc.) 
ensuring that the future service/resource demands of the network service are met.  

The output of the service-chaining graph and the information regarding the allocation of 
network functions is sent to the SDM-C through the interface depicted in the picture. The  
SDM-C then instantiates the service chain.  

The QoS driven orchestration and life-cycle management also performs potential corrective 
indications towards the VNF composition and allocation function and towards the SDM-X and 
SDM-C that perform short-term resource management. The QoS driven orchestration and life-
cycle management function as well as VNF composition and allocation function interact with 
the Mobility Management task exchanging information regarding the decisions of e.g. mobility 
schemes, and the orchestration of the VNFs. Finally, an architecture module that looks into the 
openMANO aspects and into the interfacing with SDN, in our case SDM-C and SDM-X is also 
considered.  

The SDM-X controls and manages shared resources and functions considering both PNF and 
VNFs. The main role of the SDM-X is to co-ordinate the utilization of shared network resources 
and functions based on a set of polices received from the SDM-O. The SDM-X is composed by 
i) Shared spectrum and ii) Shared Slice Management. The first block assumes that radio 
resources are not strictly partitioned, i.e. isolated, among network slices but are shared 
providing flexibility in Resource Block (RB) allocation considering QoS and user mobility. 
Such flexible resource allocation is based on the policy received by the SDM-O, which aims to 
guide the SDM-X on the amount of resource that should allocate per slice. An additional 
coordination means is also provided by a direct interaction between the SDM-X and SDM-C. 
The second functional block assumes that certain network slices may share resources either 
bandwidth or network functions considering both VNF and PNF. Network slices that share 
capacity resources, i.e. bandwidth, are expected to support best-effort traffic, while the sharing 
of resources for dedicated network functions either VNF and PNF are expected to support 
network functions either expensive or their functionality need to be stressed beyond a single 
network slice. As in the case of shared spectrum, a coordination means between the SDM-X and 
SDM-C is needed. Both shared spectrum and resource management of shared slices functions 
need to interact with the Mobility Management task since the user mobility and the selection of 
the mobility function may impact the management of shared resources. 

5.2 Service Management   
In the so-called ZOOM (“Zero-time Orchestration, Operations and Management”) model, TM 
Forum introduces the resource-facing domain and the customer-facing domain in 
telecommunications network operations. While the resource-facing domain comprises the 
necessary models and objects required to deploy a telecommunication service in physical and 
virtualized network infrastructure (e.g., as utilized by network management and orchestration 
systems), the customer-facing domain comprises the models and objects required to describe, 
account, and charge for a telecommunication service towards the customer (e.g., as utilized in 
business support systems). Due to the different nature of these domains, the utilized models for 
describing telecommunication services look substantially different. With the advent of vertical 
sectors requesting dedicated telecommunication services using customer-facing domain models, 
the need for mapping them to resource-facing service descriptions becomes evident. In the past, 
MNOs executed this mapping in a manual manner, also due to the limited number of service 
(mainly MBB, voice calls, and SMS). The Service Management (SM) function of 5G NORMA 
is a first step towards automation of this task. 
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Accordingly, this subsection is split into three discussion parts (1) interfaces towards function of 
the Service Layer, (2) functionality of Service Management, and (3) interfaces towards other 
MANO Layer entities (network management/OSS and SDM-O). 

Reference points with Service Layer functions 

Service Management exposes one or several interfaces towards the Service Layer. Enterprise 
systems (e.g., Service Layer applications, BSS) or human operators from either the Mobile 
Network Operator (MNO) or the tenant shall use these interfaces. They allow the tenant to 
specify the SLA for a particular network slice. According SLA templates, containing metrics as 
exemplified in Table 3, allow the tenant to quantitatively and qualitatively describe the SLA 
requirements. 

Table 3: Selection of SLA parameters to be specified by the tenant 

e2e service metrics Operation and 
Maintenance 

Network 
performance metrics 

Monitoring and 
accounting 

Committed 
information rate 
(provided 
bandwidth) 

Mean time between 
failures 
 

Latency metrics (e.g., 
average round-trip 
network delay) 

Service level 
reporting 
 

Committed burst 
information rate (i.e., 
ability to extend the 
committed data rate) 

Mean time to 
restore/recover 
 

Packet loss Subscriber-level 
reporting 

QoS policies, traffic 
priority classes 

Reliability and 
resilience 

Call blocking and 
dropping rates 

Penalties when not 
meeting the SLA 
specs 

% availability (or 
outage) of telco 
service 

   

Functionality of Service Management 

Customer-facing (CF) and resource-facing (RF) domain use specific modelling formats and data 
representation schemes, including, but not limited to, formal service descriptions, service-level 
agreements, as well as processes, such as, on-boarding of network slice blueprints, network slice 
deployment and instantiation requests, KPI monitoring policies, etc. These formats, schemes, 
and processes need to be mapped and translated between the two domains. For this purpose, 
Service Management holds the following functionality: 
• Selection and initial configuration of network slice template to be deployed (including the 

mapping of data and models provided by the CF domain to according data and models of 
the RF domain). The selection decision is based on the input provided from the CF domain, 
in particular the specified SLA requirements. The template is selected from a repository of 
certified templates, i.e., blueprints that can be realized given the set of resources. For the 
purpose of automation, the Service Management function holds the mapping rules, i.e., for 
each valid combination of SLA parameters, the according template is specified. Generally, 
the templates contain both a high-level description of the supported services (e.g., massive 
MTC (mMTC)) as well as a detailed listing of included NFs (PNFs and VNFs, similar to 
ETSI NFV network service descriptions) as well as configuration details and the 
performance targets. An illustrative example of such further performance targets and 
configuration data is depicted in Table 4. 

• The monitoring and/or computation of key quality indicators to be provisioned to 
requesting entities from the Service Layer according to the specification of the respective 
SLA. Key Quality Indicators (KQI) cover both high-level objectives (coverage, network 
sharing, customer satisfaction, interoperability in multi-vendor environments) and technical 
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objectives (general key performance indicators, such as handover failures, and QoE/QoS 
parameters); 

• Support the definition and on-boarding of new network slice templates, including a listing 
of contained network functions, resulting interfaces, and further dependencies. 

• Handling of selected Service Layer inputs in order to allow for tenant-driven management, 
orchestration, and control of a network slice during runtime, e.g., intra-slice QoS policy 
specification. 

• Depending on the use case that need to be covered, service management can include further 
sub-functions that perform mapping between customer-facing and resource-facing 
domains. 
 

Table 4: Exemplary output of Service Management for network slice properties for 
connectivity on a temporary construction site 

 Radio NFVI SDN UEs 
Slice Lifetime 6 months 6 months 6 months na 
Capacity 3 carriers 1k sessions/h 10 Gb 1000 
Coverage 10 cells 1 site 1 site na 
Speed 1 Gbps na 1 Gbps 100 mbps 
Latency 10 ms 10 ms na na 
Robustness medium medium medium na 
Security high high high high 
Availability 99.9 99.99 99.99 na 

 

Reference point with SDM-O 

The interface with 5G NORMA SDM-O is of bi-directional nature. As a result of the mapping 
process defined above, Service Management provides a fully specified network slice template to 
the SDM-O, including further performance and configuration information as shown in the 
illustrative example in Table 4. The SDM-O in turn uses this template to initiate the deployment 
and instantiation of a new network slice and to trigger the according processes (such as, 
lifecycle management and function configuration [25] with other MANO layer functions (NMS, 
EM, VNFM, VIM, etc.). Further, the control instructions provided by a tenant during runtime 
are forwarded to the respective controllers (SDM-C/SDM-X). 

In the other direction (northbound), SDM-O provides performance, fault, and configuration data 
about operating network slices according to the monitoring rules provided by the Service 
Management function. These data are used for performance reporting as well as accounting and 
charging towards the tenant. 

5.3 Network Slice Brokering 
The network slice-brokering concept relies on the ability of the infrastructure provider to easily 
and automatically negotiate with external tenants network slice requests based on the current 
resource availability. This directly opens new challenges on how to efficiently enhance the 
current architecture to build interfaces between the network management and tenant 
applications while requiring on-demand network slices. Differently to the Service Capability 
Exposure Function (SCEF), which exposes services [28], a proper network slice brokering 
facilitates on-the-fly resource allocation by reserving an indicated portion of network resources 
for a particular time window to a tenant. Proposed network slice brokering algorithms are 
deployed on the SDM-O which can facilitate on-demand resource allocation to external tenant 
applications and perform admission control based on traffic monitoring and forecasting 
including e.g., mobility based-on a global network view. Additionally, it might also instruct 
SDM-X controller to dynamically configure RAN schedulers in order to operate an inter-slice 
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resource allocation while customizing scheduling on the allocated spectrum. This could be 
realized to guarantee slice resource isolation or even to configure policies in order to enable the 
selection of resource blocks from a shared pooled spectrum by taking into account service SLAs 
and the size of the network slice across the core network. 

 
Figure 13: Network Slice Brokering within 5G NORMA Architecture 

The network slice broker module must be co-located at the management and orchestration layer, 
which monitors and controls by means of SDM-X signalling the shared RAN elements (in case 
of shared spectrum) while interacting with the Sharing Operator Network Manager (SO-NM), as 
shown in Figure 13. In this way, it can gain access to network monitoring measurements such as 
load and different KPIs, e.g. mobility optimization, failures, SLA violations, etc. as well as 
obtain network infrastructure capabilities information. In addition, it can receive on-demand 
network resource requests from MVNOs, via the Type 5 interface, for allocating network slices 
based on SLAs. The network slice broker module upon performing the corresponding admission 
control decisions can take advantage of the 5G NORMA interfaces to grant the slice allocation 
to the Inter-slice Orchestrator functional block. In some case, the module can also interact with 
the SCEF to retrieve network slice requests. However, the interface of verticals or OTT 
providers towards the SCEF is under discussion. In this way the SCEF and the corresponding 
API is not only exposing information about devices, but can also provide control to tenants 
through the network slice broker module to allocate desired SLAs. 

Interestingly, the proposed network slice brokering architecture supports on-demand resource 
allocation operations. This can be achieved by enhancing the existing interfaces. In particular, 
enhancements should differentiate tenants in order to handle the corresponding data traffic and 
provide performance monitoring information towards each participant operator. To enable this, 
a tenant identifier, e.g. PLMN-id, can be included in each data packet corresponding to different 
slices as well as in performance measurement reports to enable the MO-NM to provide feedback 
towards the corresponding SO-NM. Such performance feedback should involve only the 
allocated slice resources for privacy and competition reasons. For supporting generic tenants, 
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the Itf-N ad Itf-B interfaces should also be enhanced to distinct the types of tenants by 
introducing a corresponding service identifier to each data packet and performance monitoring 
report. The Type 5 interface as well as tenant APIs should be extended to accommodate on-
demand network slice requests with a particular SLA and timing requirements. The Itf-N and 
Itf-B interfaces should also be extended to carry out the configuration of network slices by 
introducing a new type of signaling considering MVNOs and vertical industries/OTT providers. 
Such interface enhancement and signaling should contain a set of additional information 
including:  

• the amount of resources allocated to a network slice, e.g. physical resources or data rate;  
• timing, e.g. starting time, duration or periodicity of a request, time window; 
• the type of resources and QoS, e.g., the radio/core bearer type, prioritization, delay, 

jitter, loss;  
• the size of file to be downloaded or data to be communicated to particular device/user or 

application server;  
• service related information, e.g. mobility (stationary, low, medium, high), data 

offloading policies, service disruption tolerance. 

Besides the service characteristics of a network slice, the set of cells which should 
accommodate the network slice request is an additional parameter that can be considered. 
Effectively, such a parameter can be either explicitly provided by the tenant or it can be 
determined by the infrastructure provider considering the location of the corresponding 
devices/users in combination with tailored service information provided by the SDM-O.  

5.4 Slice VNF Allocation/Life-cycle management  
One of the main challenges for 5G network operators will be the management of network 
services for diverse customer sectors and with different requirements (i.e. diverse vertical 
industries, mobile network operators etc.). Therefore, the 5G NORMA network, as a multi-
tenancy mobile network, should provide a common network platform in which the mobile 
network infrastructure can be shared among several operators, enabling creation and dynamic 
life-cycle management of different network slices. 

The management of different network slices with potentially very different requirements 
represents a big challenge for the 5G network operators, since they will need to deal with a high 
level of complexity to meet requirements from diverse customer segments (i.e. MBB, M2M, 
IoT applications, etc.) with very different requirements. In order to rise to this challenge our 
approach in 5G NORMA is to design a network with a high degree of automation. This 
approach will allow managing the available resources on-demand with enhanced flexibility and 
with no human intervention required. That way we provide a flexible, scalable and high 
performance means of selecting, controlling and deploying the necessary virtualized network 
functions from different operators on different network slices. 

This section describes slice management operations considering slice VNF allocation and slice 
VNF life-cycle management. In a similar way as we allocate VMs in a cloud environment, 
VNFs forming a network slice in a 5G Network need to be provisioned, configured, monitored 
and decommissioned along with the lifecycle of the corresponding associated service. 
Virtualization capabilities (dynamic addition, removal, or updating of services, and dynamic 
mapping of different network resources to services) are used to achieve dynamic management 
of the deployed VNFs. 

VNF allocation in the NFV infrastructure can be a complex task: many requirements and 
constraints may need to be met at the same time. Also, VNF allocation on telco networks adds 
higher complexity compared to the common IT resource allocation strategies. For instance, 
some VNFs requiring low latency or high bandwidth could be preferred to be physically 
allocated on Edge Cloud nodes, since traditional MBB resources should be kept in the Central 



5G NORMA Deliverable D5.1 

 

Dissemination level: Public Page 54 / 189 

 

Network; this does not happen in common IT approach were it does not matter very much 
where a specific function is allocated. In addition, allocation and release of resources can be a 
very dynamic process, so frequent VNF allocations and releases may be needed along the VNF 
lifetime.  

According to the principles described in Del. 3.1 [1] three main modules will be in charge of the 
VNFI orchestration and management: SDM-O, VNFM and VIM (see Figure 14 below).  
 

 
Figure 14: 5G NORMA Main Management and Orchestration Blocks 

These three modules are the core part of the 5G NORMA VNF MANO architecture, and of 
course, they are located in the 5G NORMA Management and Orchestration layer. The role of 
these blocks is to manage the NFVI (including the network control components) and orchestrate 
the allocation of resources needed by the NSs and VNFs. 

As illustrated in Figure 14, on one hand, we have the VIM and VNF Manager blocks, which are 
already defined in the ETSI NFV-MANO architecture [29]. On the other hand, we have the 
SDM-O (the 5G-NORMA orchestrator) which has been specifically defined for the 5G 
NORMA architecture. As seen from Figure 14, the SDM-O is internally composed by three 
different blocks:  

• Service Orchestrator (SO), which is functionally equivalent to the NFVO defined by the 
ETSI NFV MANO specification. 

• Resources Orchestrators, which are also equivalent to the Resource Orchestration 
function also in the ETSI specification (they provide an overall view of the NFVI 
resources in the administrative domain). 

• Inter-Slice/Tenant Orchestrator, which is the orchestrator part specifically designed for 
the slices orchestration (see [1] for further details). 

As we see in the figure, the WP3 “Inter-slice/Tenant Orchestrator + Service Orchestrator” 
modules correspond with our WP5 “Inter network slice resource broker”. In the same way, the 
“Resource Orchestration” modules from WP3 correspond with the WP5 “Intra-Network Slice 
Orchestration” block. Anyway, all these modules are internal blocks in the SDM-O; the 
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remaining modules and interfaces are still functionally equivalent to what the ETSI NFV 
MANO specification describes. 

According to the ETSI NFV MANO framework, the module more directly involved in VNF 
allocation & life-cycle management is (as its name suggest) the VNF Manager (VNFM). In 
short, we can tell that VNFM is to VNFs what the VIM is to the NFVI. Specifically, VNFM 
does the following: 

• Manages VNF’s life cycle. That is: it creates, maintains and terminates VNF instances 
(which are installed on the VMs, which the VIM creates and manages). 

• It is responsible for the typical FCAPS functions for VNF’s (i.e. Fault, Configuration, 
Accounting, Performance and Security Management of VNF’s). 

• It scales the infrastructure (up/down, by adding/removing additional VNF instances, or 
in/out, by adding/removing intra-VNF resources such as CPU or memory). 

As we see in Figure 14, there could be multiple VNFMs in a typical deployment, each one 
managing its own set of VNFs (also, the VNFM delegates on the VIM, which typically manages 
NFVI resources in just one specific domain). This creates an additional challenge; the 
management and coordination of E2E services involving VNFs from different VNFMs 
domains. 

This challenge is faced by the Orchestrator block (SDM-O) by using the Services Orchestration 
function (i.e., the ETSI NFVO equivalent). This function does this in the following way: 

• Creates E2E services between different VNFs by coordinating directly with the 
respective VNFMs (i.e., it does not need to talk to each VNFs directly). An example 
could be to create a service between the base station VNFs from one slice and a VNF in 
the core network from another slice. 

• Instantiating new VNFMs where it is applicable. 

• Specifying the topology of the network services instances (i.e., the so-called VNF-FG). 

Therefore, we could tell that the Services Orchestration module in the SDM-O is like “the glue” 
for VNFs, since it can bind together different functions to create E2E services in a sparse NFV 
environment.  

But we are talking here about “slice” VNF allocation and life-cycle management; this is where 
the new 5G NORMA specific orchestration block came in scene: the Inter-Slice/Tenant 
Orchestrator (ISTO) block: the same way in the ETSI NFV MANO specification there is a 
single orchestrator (NFVO) to glue different VNF Managers, the Inter-Slice Orchestrator is used 
here to glue different slices.  

More formally, the ISTO block can be used to handle the dynamic provisioning of different 
slices and to manage the resources sharing among them. That way, the ISTO will control the 
slices life-cycle and will coordinate the allocation of resources (e.g.: a tenant that would like to 
optimize the resources among all the slices could interface with the ISTO block) [1]. 

In summary, although VNF allocation and life-cycle management is directly performed by the 
VNF Manager (as the ETSI NFV MANO defines it), other blocks are also involved in the 5G 
NORMA architecture:  

• The Inter-Network Slice Resource Broker to manage multiple slices (containing the 
Service Orchestrator (SO) and the Inter Slice/Tenant Orchestrator). 

• The Intra-Network Slice Orchestrator, containing the Resource Orchestrators associated 
to each slice.  

In the following section, we will see in more detail different processes typically involved in the 
slice VNF allocation and life-cycle management involving these elements. 
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5.4.1 Examples of Management Flows 
This section includes a non-exhaustive collection of management flows related to VNF 
allocation and life-cycle management. All flows are informative, representing best practices for 
each operation, having the main objective of identifying information exchange between the 
different blocks in the management and orchestration architecture.  
The following general principles are used for all the flows in this section: 

• The Service Management block is the single point of access for all requests from the 5G 
NORMA Service Layer. 

• The Inter Slice/Tenant Orchestrator (ISTO) orchestrates specific Network Slices. 
• The VNF Manager handles VNF lifecycle. 
• The SDMO, and specifically the SO, handles lifecycles of Network Service and VNF 

Forwarding Graphs. 
• Hence, the SDMO has the E2E view of the resources being allocated across Network 

Services and VNFs by VNF Managers: all requests for resource allocation transit 
through, or are verified and granted by the SDMO. 

5.4.1.1 VNF Package On-Boarding Flows 
The deployment and operational behavior requirements of VNFs is captured in a deployment template, 
and stored during the VNF on-boarding process in a catalogue. Typical on-boarding operations are 
enabling, disabling, updating or deletion of VNF packages. As an example, this subsection describes the 
typical VNF package on-boarding flow together with the enabling and deletion of a VNF package. 

On-board VNF Package flow 
The following Figure 15 shows the process of on-boarding a VNF Package2: 

 
 

Figure 15: VNF Package On-boarding Process 

The main steps for VNF Package on-boarding are: 

                                                        

 
2 The concept of “VNF Package” is still not defined in the context of 5G Norma. In any case we can think about it 

generically, simply as a file containing other files (VNF descriptors, scripts, etc.) according a specific structure. 
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• A VNF Package is delivered to the SO in the SDM-O for on boarding the VNF descriptor. 
The request comes from the Service Management layer in the 5G NORMA architecture. 

• The SO processes the VNF descriptor. This includes for example the verification of 
mandatory elements and the validation of authenticity and integrity of the provided 
descriptor. Also includes information that can be used to decide the slice where the VNF 
should be located (e.g.: a slice identification, or a way to get such slice-id). 

• The SO checks and updates the VNF’s catalogue (this is the same VNF catalog as the one 
defined in the ETSI NFV MANO specification [29]). 

• The SO communicates the request to the RO.  
• The RO makes VM images available to each applicable VIM considering the slice 

identification received from the Service Orchestrator. It is expected for the VIM to validate 
the integrity of VNF software images(s) as part of this operation. 

• The VIM’s acknowledge the successful/unsuccessful uploading of the image, which is back 
propagated towards the RO, SO and the Service Management modules. 

Enable VNF Package flow 
The following Figure 16 shows the process of enabling a VNF Package. 

 
Figure 16: VNF Package Enabling Process 

As we see, in this case the process of ‘enabling’ just takes effect on the VNF Catalog module. It 
just means that the VNF Package is ready to be allocated. The SO just verifies the provided 
VNF package checking things such as if the package already exists in the database or it is 
already disabled. 

Delete VNF Package flow 
The following Figure 17 shows the process of deleting a VNF package: 
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Figure 17: VNF Package Delete Process 

As we see, this process is quite similar to the process of on-boarding a VNF package, but using 
the ‘delete’ operation instead. A general high-level condition for the deletion is to check if the 
VNF is already disabled and not in use. If that is not the case, the VNF Package cannot be 
deleted. Like for the on-boarding process, the SO module should inform the RO module about 
the slice which the VNF package belongs. 

5.4.1.2 VNF Instantiation Flow 
VNF instantiation refers to the process of identifying and reserving the virtualized resources 
required for a VNF, instantiating the VNF and starting the deployment unit associated with each 
VNF. 

Figure 18 represents a proposal for the VNF instantiation flow with the resource allocation done 
from the SDM-O (i.e., using the SO and RO modules). 

As we can see, the Services Orchestrator propagates the request towards the VNF Manager, 
which allocates the resources for a specific slice using the Resources Orchestrator, which talks 
directly with the VIM to allocate the network/compute and storage resources. 
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Figure 18: VNF Instantiation Process 

5.4.1.3 VNF instance scaling  
VNF instance scaling is generally the result of a QoS threshold being crossed (up or 
downwards), requiring expanding or contracting the availability of compute, storage or 
networking resources. 

As a whole, managing scaling requires two things: 

• Detecting the need to scale 

• Determine scaling action 

For the first thing the trigger could come from different sources; for example: 

• A single VNF, when it embeds a monitoring and mapping function able to generate a 
notification (see Section 6.2 about QoS/QoE mapping). 

• The VNF Manager (in this case then information on the event to monitor and the 
corresponding scaling action might be provided in the VNF Descriptor). 

• The VIM (e.g., in case of network congestion, number of sessions, etc.).  The VNF 
Manager will listen to those events and implement the decision about actions (the 
QoE/QoS events generated from the SDM-C (see Section 6) will be received this way, 
since the SDM-C, as part of the NFVI, is below, in the control layer). 

• An EM, when the monitoring function/threshold crossing detection and event 
notification is not in the VNF, but in its specific EM. The decision about actions could 
be implemented in the EM itself, and/or forwarded to VNF Manager. 

• The OSS/BSS block (e.g., due a management change in the capacity planning based on 
traffic projections). 

Anyway, following the ETSI NFV MANO recommendations [29], all the scaling use cases 
could be grouped into three categories: 
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• Auto-scaling. In this case, the VNFM monitors the state of a VNF instance and triggers 
the scaling operation when certain conditions are met. For monitoring VNF instances, it 
could subscribe to infrastructure-level events (generated from the VIM) and/or to VNF-
level events (generated by the VNF itself or its associated EM if any). 

• On-demand scaling. Here a VNF instance or its associated EM monitors a VNF 
instance and trigger a scaling operation through an explicit request to the VNF Manager 
(i.e., the VNF or the EM demands to the VNF Manager to perform the scaling 
operation). 

• Management-request scaling. In this case, the requester will be the OSS/BSS or a 
human operator. The request will reach the VNF Manager via the SDM-O. 

Regarding determining the scaling action (point 2 above), the type of required change could be: 

• Configuration changes to the VM (scale up, e.g. adding CPU or memory) 

• Release resources from existing instances (scale down) 

• Add a new deployable unit instance (scale out) 

• Shut down and remove instances (scale in) 

• Network changes (i.e., increase bandwidth or available network capacity) 

A major challenge here is that determining the scaling action may need to look beyond a single 
VNF instance (e.g.: solving a quality issue in VNF-1 may require changes to VNF-2). 

In Figure 19 we present a possible simplified flow for automatic intra-slice VNF expansion 
(scale out) triggered by VNF performance measurement results: 

 
 

 
 

Figure 19: Automatic Intra-slice VNF Scale-out 

As we see, the process starts with a QoS/QoE event generated by a specific VNF (VNF-1). As 
mentioned, it could be generated also from other elements in the control layer (i.e., the SDM-C 
block). That event is managed by the VNFM block, which, for this case, decides that an 
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expansion is required. To allocate new resources, the VNFM sends a request to the RO module 
(inside the SDM-O); this module checks the resource type needed (CPU, Memory, IP, etc.) and 
checks for availability, sending feedback to the VNFM. Finally, the VNFM allocates the new 
VNF towards the VIM and configures the new VNF. 

5.4.1.4 VNF instance termination 
The VNF instance termination requests could be generated from the OSS/BSS system (i.e., as 
part of a decommissioning process) or from the VNF Manager when the need to terminate a 
VNF is detected (when VNFM detects the termination itself, or when it is notified from an EM). 
In any case, the termination request is processed by the SDM-O. Figure 20 illustrates a 
simplified view of the VNF instance termination process. 
 

 
 

Figure 20: VNF Instance Termination Process 

As can be seen, in this case the request is originated from the Service Management block. It 
arrives first to the Services Orchestrator block, which validates the request (i.e., check sender 
authorization and verifies if the VNF instance actually exists), deduces the slice identifier and 
send the request to the RO to remove the resources on the appropriate slice. The RO first 
terminates the VNF instance using the VNF Manager, and then de-allocates resources (memory, 
network and storage) sending the appropriate request towards the VIM. 

5.4.1.5 NFV fault management 
As with QoE/QoS measurements, fault events could be originated from different sources: 
physical infrastructure (i.e. physical compute, storage, and networking related faults), 
virtualised infrastructure (e.g. VM-related faults), and also, the VNF’s application logic itself 
(i.e. VNF instance related faults). In addition, fault information could be originated from those 
different sources at the same time. That way, fault information should be correlated; that 
correlation could happen in multiple places: SDM-O, VNF Manager, EM and/or some OSS. 
Once a correlation point(s) is chosen, the other functional blocks are expected to forward the 
fault events to the targeted correlation point. 
There could be multiple options, depending on the fault correlation point and the fault resolution 
point. Anyway, since multiple alternatives are possible, we will not try here to document all 
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possible fault management operational flows. Figure 21 provides an  example of NFV fault 
management in which the VIM and a VNF represent a double source of fault information: 
 

 
 

Figure 21: NFV Fault Management Process 

As can be seen, in this case two blocks are detecting a fault condition: the VNF EM and the 
VIM; the fault information is correlated on the VNF Manager before triggering the SDM-O. 
After that, the OSS is notified and decides the fault corrective action, which is back-propagated 
to the VNF across the VNF Manager and the EM block. 

5.5 VNF chaining location  
The term “service-chaining” has been used to describe the deployment of topologically 
distributed VNF functions that via a specific configuration enable the creation of a service to the 
end users. The role of the orchestrator, in this case, is the process of specifying an ordered list of 
service functions that should be applied to a deterministic set of traffic flows.  An overall logical 
architecture of the so-called VNF Management and Orchestration (MANO) architecture has 
been defined within ETSI [29] and the specific extensions as envisioned within 5G NORMA 
have been discussed in previous sections. Hereafter we focus on the chaining functionalities 
within the 5G NORMA NFV domain where lies the responsibility of both the SDM-C as well as 
the SDM-X in the case that a subset of the requested services relate to shared resources and 
therefore both controllers should coordinate to create the service. However, it is worth pointing 
out that one of the earliest related research works in the area is the one in [30] that can be 
deemed as an initial effort to provide a systematic unification model of middle-boxes, which can 
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be considered as nodes that host VNF. The aim of that work was to provide a model where 
different middleboxes could be orchestrated, but without considering optimization models 
and/or efficient algorithms for the overall orchestration process. Further to that, the work in [31] 
propose the so-called Stratos framework, which can be considered as a network orchestration 
layer built on top of a Floodlight3  controller.  The role of Stratos orchestrator is estimate where 
to place various network functions in the network, to inform a VM manager (such as for 
example the virt-manager4) about this decision, and finally to instructs an OpenFlow5 controller 
to distribute flows to the corresponding switches. Another effort on the control/orchestration is 
the OpenNF framework [32] that provide a design of the APIs to provide a joint control between 
network forwarding state and internal VNF state. The work in [33] can be deemed as another 
effort to provide orchestration between virtualized NFs especially focusing on issues such as 
VM migration and split/merging of flows.  

The work in [34] provides an optimization problem for placing the chained VNF in a network 
taking into account as constraints various requirements of the tenants and the operator – but 
routing between and location of VNF is not explicitly taken into account. An overview of the 
challenges which emerge in virtual network function scheduling is presented in [35]. The 
authors explain the application of SDN and NFV technologies focusing in optical networks. The 
VNF problem is viewed analogous to the classical “Job-Shop Problem”. For this reason, the 
authors use a mixed integer mathematical program outline to frame the scheduling problem. 
Within this framework results of the problem yields optimal results for small topologies. The 
authors in [36] address inefficiencies in resource and energy consumption in online virtual 
network embedding scenarios. The Energy Aware-Virtual Network Embedding-Node-Link 
Formulation (EA-VNE-NLF) is proposed to addresses these inefficiencies by considering two 
objective functions; the first to address resource usage and the second for energy consumption. 
The performance of the ILP formulation is compared to results obtained using a mobility aware 
location and chaining heuristic. The simulation results show gains in favor of the proposed 
minimization formulation compared to those of the heuristic. In [37] the authors provide a 
holistic treatment of VNF opportunities, emerging new architectures, and discussion for 
successful deployments. In [38] four different greedy heuristic algorithms are detailed for the 
problem of VNF chaining and a wide set of numerical investigations are presented providing an 
insight on the performance of the different heuristic algorithms. The work in [39] focus on delay 
requirements for VNF placement with application in 5G networks; an optimization problem is 
formulating resembling the resource constrained shortest path problem with the aims to 
minimize routing and latency and costs for flows requiring variable number of VNF.  

The work in [35] give an overview of the challenges which emerge in virtual network function 
scheduling. The authors explain the application of SDN and NFV technologies over optical 
networks. The VNF orchestration problem is viewed analogous to the classical Job-Shop 
problem. For this reason, the authors use a mixed integer mathematical program outline to frame 
the scheduling problem. Within this framework results of the problem yields optimal results for 
small topologies. This paper extends the MILP argument posed with concentration on the 
orchestration and provisioning of VNF's over a mobile core network.  

The authors in [40] address inefficiencies in resource and energy consumption in online virtual 
network embedding scenarios. The Energy Aware-Virtual Network Embedding-Node-Link 
Formulation (EA-VNE-NLF) is proposed to addresses these inefficiencies by considering two 
objective functions; the first to address resource usage and the second for energy consumption. 

                                                        

 
3 www.projectfloodlight.org  
4 www.virt-manager.org  
5 www.opennetworking.org  
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The performance of the ILP formulation is compared to results obtained using a shortest 
distance path heuristic. The simulation results show gains in favor of the proposed minimization 
formulation compared to those of the heuristic. 

An integer linear program is formulated in [41] to determine the optimal number of VNF and 
their placement to solve the virtual network embedding problem whilst considering node order 
placement requirement for function placement. Network costs described in the model include 
OPEX and resource fragmentation. OPEX costs include deployment of VNF, energy, traffic 
forwarding, and penalties for traffic violations where resource fragmentation costs are 
introduced through servers and links. Using a Veterbi based heuristic was used to compute per-
node cumulative cost and compare results gathered from the ILP formulation. These results 
suggest that network OPEX can be reduced by a factor of 4 through the use of optimal VNF 
orchestration. 

 
Figure 22: NFV logical architectural view as proposed by ETSI 

As illustrated in Figure 22, the idea behind NFVI  is essentially: 

• To decouple software from hardware devices, and  
• Convert them to their software counterparts where they may be managed for network 

efficiency.  

The software equivalent of a physical network element is referred to as a VNF, which may fall 
under the category of network elements (VNF-NE) or network functions or middle-boxes 
(VNF-MB). A VNF network element consists of switching elements, mobile network nodes and 
signal control system elements6. A VNF-MB refers to network functions such as firewalls, 
network address translator, WAN optimization controllers, deep packet inspections and load 
balancers. The NFVI (element (1) in Figure 22)  is a composite of three sub-components; the 
bottom physical components begin network, storage and compute layer, the second a hypervisor 
(virtual machine monitor) monitoring the physical substrate hardware. The third portion is the 
virtualized software implementations of the bottom layer, together creating the appropriate 
virtual environment for VNF deployment, teardown and lifecycle management. Element (2) in  
Figure 22 shows the virtual environment and VNF functions, which may include a combination 
of VNF-MB (middle-boxes) or VNF-NE (network elements). In element (3) of  Figure 22 is the 
OSS/BSS (business support systems) dealing with configuration and management. The MANO 

                                                        

 
6 Switching elements include routers and switches, broadband devices, remote access servers. Mobile network nodes 

include; HSS (Home Subscriber Server)/HLR (Home Location Register) and base station elements. The final 
category of elements is Signal Control Systems which include session boarder control elements. 
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Layer (element (4) in Figure 22) consists of the NFVO, VNFM(s) and VIM(s). The NFVO 
manages elements in (1) and (2) indirectly via the VNFM and VIM controllers respectively. 

5.5.1 VNF Routing, Location and Chaining in Virtualized 
Network Infrastructures 

The main motivation behind network virtualization is the sharing of a single physical 
infrastructure by multiple tenants. The procedure of the efficient mapping of virtual networks on 
the substrate network is called virtual network embedding and there has been significant 
research effort over the last few years in developing efficient algorithms to perform optimal 
and/or near optimal embedding of virtual networks. An example of embedding two virtual 
networks on a substrate network infrastructure is show in Figure 23 below.  

 
Figure 23: A toy example showing the embedding of two virtual networks in a substrate 

network infrastructure. 

We, hereafter, assume that the network embedding is already in place when deciding about the 
location (hosting), ordering and routing of VNF requests. Theoretically, those two procedures 
could be jointly designed but might lead to very complex optimization problems that could have 
an interest only in terms on bounds on the performance since network embedding and VNF 
chaining take place in different time scales. Without loss of generality, we can assume that a set 
of nodes in the virtual network can be a candidate node to host VNFs (such as for example FWs, 
DPI, video format optimization, NAT services, etc.). Services will require a specific ordered 
chain of such VNFs and for a pre-defined number of service requests the problem is to find the 
optimal routing, location and chaining of VNF in the virtual network topology. This problem is 
highly combinatorial, and therefore requires advanced algorithms for optimizing overall 
network performance. 
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Figure 24: Possible locations of three VNFs in two network nodes that can host these 

functions 

Figure 24 provides in an illustrative manner the issue of VNF location in different network 
nodes. As can be seen in Figure 26 for a service chain that requires in a specific order 3 different 
VNFs; there are 8 different possible allocations in two network nodes. Assuming a large number 
of such service requests and depending on the traffic characteristics and QoS requirements of 
the different flows the optimal allocation of VNFs in network nodes as well as the associated 
routing problems become a challenging issue in emerging SDN/VNF enabled networks.  

 
Figure 25: Effect of VNF location on the selection of available (shortest) paths in the 

network 

We, hereafter, identify some key research areas targeted for contribution that received currently 
little research attention but with a significant potential to increase overall network efficiency; 
research contributions are tailored towards the areas detailed in the sequel.  
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5.5.2 Routing and VNF Placement 
Figure 25 shows the effect of VNF hosting location on the overall path diversity and available 
path selection in the network. As shown in the figure, there are three alternative shortest paths 
between the source and the destination but the VNF allocation in Case I allow only exploring 
one of the shortest paths. On the contrary, the VNF allocation shown in Case II allows all three 
shortest paths to be utilized by the SDM-C and depending on overall aggregate traffic levels and 
individual QoS per service request the availability on selecting across various shortest paths can 
increase network efficiency. Shortest paths can be readily be available using OSPFv37, which is  
an  open standard protocol, using Dijkstra's shortest path algorithm to find the  shortest, best and  
optimum path to  each and  every destination node and/or network. At the same time it allows 
the support of multiple routes to same destination having equal cost for to make the routing 
process faster and balancing the load equally on various paths; extensions can also be utilized 
for more advanced routing decisions. Therefore, in order to allow a rich routing environment 
that does not adversely affected by the location of VNF in the network special attention should 
be placed on proposed optimization algorithms to allow full use of available (shortest) paths in 
the network.  

.   
Figure 26: The effect of mobility on the location of VNFs; a location that does not take 

into account mobility might lead to an increased routing cost. 

5.5.3 Mobility and VNF Placement 
Current proposed solutions for VNF placement and chaining assume a pre-defined fixed 
gateway to access router path, in other words that the routing path does not changing during the 
lifetime of the service. However, this may not be the case for mobile users with high mobility 
and/or with elephant sessions, which might entail a significant high probability of changing their 

                                                        

 
7 OSPF version 3 [RFC 5340] is in essence the same protocol as OSPF version 2 [RFC 2328] but equipped with the 

extensions of providing support for IPv6 routing prefixes and efficient use of the inherent larger available size of 
IPv6 addresses. 
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service access router. This operation might also affect the optimality of the selected VNF 
location and routing for the assumed requested service. This would be the case when the path 
between the node of the last-in-order VNF (to be visited) and the access router is changed due to 
user mobility. Moving to a new access router means that the above last routing path segment 
will be changed. The routing change also depends and on the mobility anchoring point for the 
session. An illustrative example of a possible detrimental effect of mobility on a VNF 
placement is shown in Figure 26. As shown in Figure 26 case (a); because of the location of the 
VNF and the location of the anchor point at the edge of the network the case of a mobility event 
that requires a change in the access router will result in having 6 hops, whereas as shown in 
Figure 26 case (b) a different location of the VNF will result in having 4 hops, which is a 
significant improvement. Even though this is a toy example illustrates the cross-issues between 
mobility decisions and VNF location. Therefore, a careful decision-making is required to take 
into account potential mobility episodes in the network and their effects in overall network 
performance. We note that the above shown example provides in an illustrative manner the 
effect of mobility on the VNF chaining, but depending how routing cost is used in the network 
the effects can be topology independent, when for example a specific QoS level needs to be 
supported.  

To this end, we have developed mathematical programming formulations to achieve (i) Optimal 
Routing, Location and Chaining (ORLC) and (ii) a Mobility aware Optimal Routing, Location 
and Chaining (MaORLC). 

5.5.4 Integer Linear Programming Formulations 
In this section we define the Optimal Routing, Location and Chaining (ORLC) problem along 
with the supporting narrative for its construction. The ORLC model will serve as a base model 
that can be enhanced to support end user mobility. To proceed with a mathematical 
programming setting we define a binary decision variable 𝑦",$%(')

) 	as shown in equation below 
which assign VNF of different order per service request to network nodes, 

𝑦",$%(')
) = 	 1	𝑖𝑓	𝑁𝐹	𝜓" 𝑙 	𝑓𝑜𝑟	𝑟𝑒𝑞𝑢𝑒𝑠𝑡	𝑟	𝑙𝑜𝑐𝑎𝑡𝑒𝑑	𝑎𝑡	𝑛𝑜𝑑𝑒	𝑘	

0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The next critical component to discuss is our cost matrix 𝑃 which contains link/edge costs 
(known to the network provider).  Given any two adjacent nodes 𝑘, 𝑚 over an undirected graph 
we define the cost over an edge to be 𝑝),E. These edge costs are used to construct our shortest 
path matrix; a matrix containing the shortest paths from virtual nodes 𝑘 to 𝑚. For model 
robustness we subdivide the cost matrix and identify three cost matrices; 𝑃F%,), 𝑃E,G% and 𝑃F%,). 
Each matrix identifying with separate topological regions in the network. The first considers 
traffic from the gateway to the first network node (i.e. the VNF which is due to be visited first). 
The second holds the shortest paths from the last visited VNF to the access router (𝑑"). The 
final matrix identifies the shortest path costs along virtual edges excluding those edges used in 
in the latter two matrices.  

The objective function construction requires we first identify the path from the gateway 𝑠" to 
the first node i.e. the node hosting the VNF which is to be visited first. To this point, if a VNF is 
hosted on a virtual node, then the contributing cost would be the shortest path to the virtual node 
hosting the first VNF from it's current location. A more formal definition is as follows 

𝑃F%,)

H

)IJ"	∈L

𝑦",$%(')
) 	∀	𝑟	 ∈ 𝑅, ∀	𝑘 ∈ 𝐾 

Using the decision variable defined previously and setting 𝑙 = 1 in the order preserving function 
𝜓" 𝑙 , we identify the node hosting the first VNF and thus accurately reveal the cost 
contributions of routing. Using the same technique with slight modifications an accurate 
account of the costs are revealed. The first minor adjustment is to the cost matrix to and from 
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nodes - indicating we are moving from the node hosting the last VNF to the access router. The 
second adjustment is setting the binary decisions variable argument to the node hosting the final 
VNF (in the service request). Summing over all requests 𝑟 and virtualized nodes 𝑘 a formal 
definition takes the form, 

𝑃),G%

H

)IJ"	∈L

𝑦",$%(')
) 	∀	𝑟	 ∈ 𝑅, ∀	𝑘 ∈ 𝐾 

 

We account for the internal node costs by first, identifying the adjacent nodes whose VNF are to 
be visited as intended by the service request and secondly, multiplying this term by the edges 
costs connecting these adjacent nodes. This arrangement may be restated mathematically as 
shown below, 

𝑃),E
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H
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𝑦",$%(')
)

"	∈L

𝑦",$%('QJ)
E 	∀	𝑟	 ∈ 𝑅, ∀	𝑘 ∈ 𝐾 

 

In addition to routing and VNF placement we have costs which are incurred by nodes in terms 
of consumed resources. Each VNF both has a required CPU cycle and buffer requirement (𝑢RS 
and 𝑏RS). Switching perspectives, each node has a maximum available resource level which 
determines VNF placement. We introduce this into our model as 𝐶$% '

) where it's dependencies 
are VNF and node specific8. To capture per node costs incurred it is necessary to know if a VNF 
has been mapped to this node. What’s more, to capture aggregate network costs, we do so by 
summing over all request, VNF and nodes, more concisely, this can be expressed as follows, 
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With the addition of the VNF hosting cost in as well as the inclusion of the total routing 
contribution as detailed in the previous equations the joint routing and VNF placement 
optimization problem can be defined as follows, 
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8 Cost per VNF type are known by network providers before and are subject to change with advances in hardware 

CPU, RAM and storage capacities 
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The first two sets of constraints ensure that both CPU and buffer capacities at the nodes that will 
be hosting network functions are preserved. The next set of constraints ensures preserving the 
order of VNF to be visited and the last constraint ensures that the VNF will be hosted by a 
network node for each request. The fact that the decision variables are binary is shown in the 
last set of constraints.  

5.5.5 Extensions 
Among VNFs, it is expected that caching can be one of the potential key network functions in 
emerging networks; the plethora of caching applications especially on popular video streaming 
requires to pay special attention in terms of VNF chaining and location. This is because in the 
most general case, cached contents must be visited before other VNF can be applied and that the 
flow does need to reach a gateway node but can originate at the node that host the required 
cached content. Therefore, the location of caches in a VNF service chain, greatly affects the 
overall VNF chain orchestration as well as the aggregate traffic dynamics in the network, since 
links of higher aggregation can reduce their utilization level. However, caching in mobile 
networks can be a more challenging issue since the optimality of cache locations might change 
with the movement/mobility of users. To significantly reduce access delays to highly popular 
contents diffusely caching contents close to the end user is expected to be a network technique 
of significant importance in emerging wireless/mobile networks. Since caching popular content 
closer to the end user might require more frequently changes of the cache location to keep 
providing the optimal performance, the caching location and the associated VNF chaining need 
to be jointly considered to avoid sub-optimal cases, hence improving overall network 
performance. Another issue of importance is energy consumption and VNF chaining for low 
latency services that might require efficient routing and therefore some form of prioritization 
compared to other flows in the network. In addition to the above it is also worth pointing out 
that also delay awareness and reliability consideration could be added to the VNF chaining and 
routing. In terms of delay, either strict delay requirements per service requests could be added as 
constraints in the above mathematical programming framework or, another objective function 
could be envisioned with the aim of minimizing overall delay when creating a VNF function. 
Furthermore, the multipath support which is already integrated in the above framework could be 
further explored to provide the desired reliability levels for different services. Minimizing 
overall delay and provision for high reliability might be crucial algorithmic functions to be 
supported by the MANO since it is envisioned that a plethora of future services will be delay 
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sensitive especially those related to multimodal haptic/tactile applications that require ultra-low 
latencies as well as high reliability.  

5.5.6 Final Remarks 
The underlying premise of this section is that by enabling multi-path support and mobility 
awareness into the vNF routing, location and chaining problem it would be possible to achieve 
more efficient policies that increase the overall network performance. A number of illustrative 
examples have been outlined that explain the potential benefits in designing algorithms that do 
take from the outset into account mobility and multi-path diversity in the network. We have also 
detail an optimization problems to obtain optimal routing, location and chaining (ORLC) of 
vNF requests within a virtual network function infrastructure that can be considered as the base 
line to build more advanced features as well as providing a bound on the achievable 
performance. 

5.6 Optimized Management of Network Slice 
Resources based on VNF profiles  
After a network slice has been deployed (or embedded over the NFVI), configured and 
instantiated, it becomes necessary to ensure the provisioning of stable services while 
maintaining an E2E service integrity throughout the network slice lifetime. This means taking 
appropriate and necessary Lifecycle Management (LCM) decisions and actions whenever the 
QoS is compromised or at risk from being compromised. For example, one or more VNFs of a 
network slice being overloaded, and/or the virtual link(s) interconnecting VNFs become 
congested, and/or the allocated resources to the VNFs becomes increasingly utilized. In all such 
cases the 5G NORMA management system  has to react at run-time to take timely LCM 
decisions/actions e.g., whether to scale or migrate one or more VNF instance that may prove to 
be the weakest link in the chain and hence responsible for compromising the E2E QoS. 

Dynamic run-time management of active network slices is a very complex topic and has many 
implications that must be taken into account to ensure a stable service delivery. The main 
objective of this research challenge is to optimize the management decisions made by the 
Service Management and the SDM-O and/or SDM-C/X on active VNFs that are part of a 
Network Service represented by slice. Each time the slice orchestrator needs to perform a Life 
Cycle Management (LCM) action on one or more VNFs it will have impact on the performance 
of the service(s) that is being hosted by the slice. For example, if a constituent VNF of a 
network slice is being scaled or migrated; it will potentially result in service interruption or 
service degradation until the time the LCM operation has been successfully completed. In case 
of the non-optimum LCM decision, the Management & Orchestration Layer (SM, SDM-O) 
through the Control Layer (SDM-X/C) will execute a LCM action again thereby repeatedly 
affecting the underlying service(s). Thus repeated management decisions will not only affect the 
service quality but also result in the non-optimum utilization of the system resources. From the 
service continuity and quality point of view, it is important that the NORMA orchestrator (i.e., 
SDM-O) in cooperation with SDM-X shall make optimized management decisions. The 
optimality of management decisions is measured in terms of the number of times management 
decisions are made on a specific VNF and/or Network Service before it becomes stable. The 
resource efficiency is also a measure of the optimum performance of the management system. 
In other words the objective is to enhance the Quality of Decision (QoD) of the NORMA 
Management and Orchestration framework.  

In the context of the above problem statement, a novel method has been proposed [42] [43] that 
correlates the resource utilization patterns of a VNF and based on that a functional and 
operational profile of the VNF is formed. The NORMA Management system is then able to 
derive management decisions that are in consistence with the operational needs of the VNF, 



5G NORMA Deliverable D5.1 

 

Dissemination level: Public Page 72 / 189 

 

rather than based on fixed/static resource profiles of a VNF as would normally be described by 
VNF Descriptor. 
In this context we have proposed a Resource Aware VNF Agnostic (RAVA) method that can be 
utilized by the SDM-O inside the NORMA Management framework for making informed and 
optimum management decisions at run-time in view of changing workload conditions. The 
RAVA method was originally proposed in the context of MCN project [44] where a PoC setup 
was established in order to perform pilot tests in order to test its technology feasibility. The 
results have been very encouraging but based on simplistic assumptions and a small-scale 
emulated scenario. In this section, we would like to present the overall concept of RAVA in the 
context of SDM-O with some initial results.  
Since this is work in progress, we also present the details on the work-in-progress    

5.6.1 RAVA – Conceptual Overview 
The conceptual details of RAVA has already been provided in [44], which is summarized in this 
section. The concept of affinity is central to the RAVA orchestration method, whereby the term 
affinity refers to the correlation between different Resource Units (RU). The affinity value, or 
affinity score, is a vector quantity that indicates the level or degree of dependence of one or 
more RUs on a Reference RU (RRU). This method derives and communicates information 
depicting the correlation, or affinity, between different RUs with reference to a specified RU 
under different workload conditions. This derived vector is referred to as Reference Resource 
Affinity Score (RRAS). RRAS provides an insight on how and by how much the utilization of 
an RRU will impact the utilization of other RUs. RRAS thus expresses the correlation, or the 
level of dependence, of an individual RU on the reference RU in terms of utilization. For 
example, the RRAS value of an I/O resource with reference to CPU indicates the degree of its 
utilization dependence on the CPU utilization. A high RRAS value would indicate a strong 
affinity, whereas a small value will indicate weaker affinity or dependence. The RRAS value 
computation is done by the cloud management and orchestrator entity, for example an NFVO, 
for all VMs deployed in an NFVI at runtime. 

The RRAS values enables the NFVO server to make informed decisions in terms of optimum 
resource management during run-time under different workload conditions regardless of the 
type of VNF, hence resource aware and VNF agnostic. 

As an example, assuming a linear relationship between the utilization of the two dependent 
RUs, we use the Pearson Product-Moment Correlation Coefficient (PPMCC) as a measure of 
linear correlation between the RU and the RRU. The Pearson coefficient (r) is calculated over 
the samples of average percentage utilization of the different RUs during a specified evaluation 
epoch teval = n * tmon, where tmon is the monitoring epoch during which the system monitors (x) 
samples of the absolute utilization (µ) of the different RUs, and calculates the average 
percentage utilization for the RUs as: 

𝜇 =
𝜇kl

kIJ
𝑥

 

The values of n and x is a design choice. Thus over a single teval we will have n number of 
samples,where each sample is an average utilization of an RU during tmon. 
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Figure 27: Resource Utilization samples for a specific VM. 

A Pearson co-efficient (r) is then derived over these samples with reference to a RRU and the 
derived value of r is the RRAS. A conceptual notion of this can be explained from Figure 27 
depicting samples (𝜇) for each of the respective RU for a VM during tmon. The RRAS value, 
which is the Pearson co-efficient (r), is then computed for the different RUs with respect to the 
CPU, which is the RRU.  Table 5 shows a single RRAS report instance corresponding to the 
example utilization values shown in Figure 27. The RRAS report depicts the RRAS for each RU 
with reference to a specific RRU based on the samples of average resource utilization. 

Being vector quantities, the RRAS values show how much the utilization of an RRU is 
impacting the other RUs. A high positive or high negative RRAS value of a particular RU 
indicates a strong correlation of its utilization with reference to the RRU. On the other hand, a 
low positive or negative value indicates a weak correlation of a RU with an RRU. Moreover, a 
high positive RRAS indicates a “strong affinity” while a high negative RRAS indicates a “weak 
affinity”. This will help enable the NFVO to precisely determine the influence of a RRU on the 
other RUs. For instance, with CPU as a RRU, it is observed from Table 5 that the I/O RU has a 
very strong correlation and thus a strong affinity with the CPU, while the correlation of Memory 
and HDD RU with the CPU is very weak. In other words, the I/O module will experience a 
higher degree of utilization than the storage with respect to CPU utilization. This could be 
indicative of a VNF that may perform packet forwarding and routing. In other words, the NFVO 
can determine the VNF’s functional/operational profile by observing the RRAS values. 

Table 5: RRAS Report Snapshot for a Specific VM 

Reference 
Resource 
Unit 

Average 

Utilization (%) 
Samples 

Reference Resource Affinity Score 

CPU I/O RAM HDD 

CPU [10, 20, 30, 40] - 0.98 0.4 0.05 

I/O [20, 35, 55, 90] 0.98 - 0.34 -0.01 

RAM [25, 40, 30, 35] 0.4 0.34 - 0.94 

HDD [17, 40, 20, 25] 0.05 -0.01 0.94 - 

The NFVO maintains the past RRAS reports for a specific RU or a set of RUs. The period of 
history can range from minutes to hours or even days, depending on the policy. Such 
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historical/past record of the RRAS report enables the NFVO to derive Affinity Signature (AS) 
of RU(s) with respect to a RRU. 

An AS is a plot of the successive RRAS values for a RU, which can then be manipulated by 
deriving statistics such as affinity trend, as will be show later. The AS, and the affinity trend, 
provides the NFVO the information about the long-term affinity of a RU with a RRU for a 
VNF. This information will enable the NFVO to make informed and optimum management 
decisions, for example selecting the best possible PM to which a target-VNF should be migrated 
or scaled to. This will thus potentially improve NFVO’s Quality of Decision (QoD). The notion 
of QoD is explained in next sub-section.  

One issue that may occur with our stated approach is that linear regression will give a more 
precise trend if the moving average of our process is monotonically increasing or decreasing. 
Otherwise we need more complex models to assess the trends, stationarity and seasonality of the 
samples. Since this section presents the first results of the proof-of-concept, we are at present 
working towards developing more complex models and considering more elaborate scenarios. 

5.6.2 Performance analysis 
The initial performance results and analysis based on RAVA’s PoC has been presented in [43] 
and in this section we will provide an overview of the analysis. 

In general, RAVA method has been proposed to enhance the QoD of the SDM-O responsible 
for making life-cycle management decisions on the Network Services. The QoD is measured in 
terms of the following two mutually dependent criteria: 

1. How resource efficient the management action is. The resource efficiency is in turn 
measured in terms of: 

a. Whether both the long term and short term resource requirements of the target-
VM will be fulfilled in the target-PM. 

b. How non-intrusive a management action has been for other VMs that are 
already provisioned in the target-PM. That is, to what extent will the target-VM 
affect the performance of other VMs in the target-PM in terms of resource 
availability. 

2. Number of times the management action has to be executed before the most-suitable 
PM is determined to live migrate/scale the target-VM to. 

 

 
Figure 28 : PoC Testbed Overview 
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To analyze the QoD of RAVA based NS orchestration an experimental OpenStack [45] based 
test bed has been developed (see Figure 28) the details of which are provided in [43] . What is 
more important and relevant is to mention that the RAVA orchestration method has two main 
functional components namely the Analytics Engine (AE) and the Decision Engine (DE), which 
are proposed to be part of the SDM-O. The AE analyzes the RRAS reports for deriving AS and 
other necessary statistics, which are then fed to the DE. Based on the output of the AE and in 
view of the operator’s policy, the DE makes relevant LCM decision for the VNF(s). These 
decisions are then translated into OpenStack commands and hence executed for the specified 
VNF(s). 

 
Figure 29: Load comparison between CN-2 and CN-3 

In order to demonstrate RAVA capabilities, we emulated a scenario where a highly loaded I/O 
intensive VNF (target-VM) in compute node 1 (CN-1) is throttling the network I/O of existing 
VMs co-located in the same compute node (i.e., CN-1). The target-VM could be live migrated 
to one of the two available candidate compute nodes (i.e., CN-2 or CN-3) as both have the 
required I/O resources available to host the target-VM. At the time when the target-VM needs to 
be migrated, we observe the average network load on CN-2 is less than that on CN-3. This is 
depicted in Figure 29. However, at the time, the I/O utilization of VMs in CN-2 will have a 
strong correlation (or affinity) with the CPU utilization as opposed to the VMs in CN-3. Under 
normal scheduling policy rules employed in OpenStack, triggering a migration of target-VM 
will lead Nova Scheduler (OpenStack Computing scheduler component) to select CN-2 as node 
to migrate the target-VM to. Such decision is based on the assessment of the resource allocation 
ratio per compute node, dispatching the migration request to the less allocated compute node. 
This means the cloud controller overlooks the actual computational load posed by virtual 
resources, e.g., one or a set of VMs may be exhausting the network I/O capacity while still 
being within its allocated bandwidth limits. The cloud platform is not able to determine and 
predict the strong correlation of the I/O resource unit with the CPU resource unit for the VMs in 
CN-2. This will eventually overload the compute and network resources of CN-2. This is 
depicted in Figure 29 where the load utilization of CN-2 will increase beyond CN-3 soon 
afterwards. Thus, a default controller logic will be required to execute the migration of target-
VM once more to CN-3. In other words, the QoD of the controller was not optimal.  
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(a) CN-2 (b) CN-3 

Figure 30: Affinity Signature for the candidate compute nodes. 
 
However, RAVA method will be able to determine and predict this strong correlation between 
the CPU utilization and the network I/O resource utilization of the VMs for the entire compute 
node pool. RAVA will also be able to determine that the VMs in CN-3 do not have such a 
strong affinity between CPU and I/O resource units. Thus, the controller will choose CN-3 over 
CN-2 as a host for the target-VM to live migrate to. This is illustrated in Figure 30, which 
shows the AS for the VMs in CN-2 (Figure 30(a)) and CN-3 (Figure 30(b)) respectively. As 
described before, the AS is a plot of the successive RRAS values, a RAVA metric that is 
utilized by the controller for making management decisions. The RAVA method will compute 
the linear regression expression for the average AS for both CN-2 and CN-3, which determines 
the degree of affinity between I/O and CPU RUs for the two candidate compute nodes based on 
the slope and y-intercept values. This is shown as a straight line in Figure 30 (a) and Figure 30 
(b), depicting the straight-line equation. As noted, CN-2 has an increasing linear trend with a 
greater value of slope and y-intercept values when compared with CN-3. This indicates a very 
strong affinity of the I/O RU with the CPU, as opposed to CN-3, which has a slightly decreasing 
trend indicated by the negative slope and a smaller y-intercept value, thereby indicating a 
weaker affinity between the respective RUs. Thus, the controller will select CN-3 as a target-
PM where to live migrate the target-VM because CN-3 will have resources available that will 
serve the resource requirements of target-VM on a long-term basis without any adverse impact 
on the performance of existing VMs in CN-3 (i.e., VM5 and VM6 respectively). This will 
ensure to keep the loads on CN-2 and CN-3 within preferred limits. Due to the strong 
correlation of I/O resource unit with CPU resource unit, the utilization of both I/O and CPU 
resource units of the VMs in CN-2 will continue to increase as opposed to CN-3 where it will 
remain almost constant after the target-VM has been migrated to CN-3. RAVA method thus 
clearly demonstrates enhancing the QoD of the SDM-O. 

5.6.3 Next Steps 
This work serves mainly as a high-level proof-of-concept on the potential impact of taking 
informed decisions on this context. The present model suffers some limitations (e.g., when 
Moving Average components of the signal does not increase/decrease monotonically) which 
will be tackled in the future work. As future work we propose to explore the time series analysis 
models [46] to properly assess the trends/seasonalities and the stationarity of the signal of 
correlated values, which are key to guarantee the robustness of our resource usage prediction 
schema (e.g., [47] [48]). 

5.7 Shared Resource Management 
This section proposes a method and processes to be executed between the building blocks SDM-
O, SDM-X, and corresponding functions and entities related to SDM-C of a 5G NORMA 
architecture which are in charge of enabling efficient assignment of commonly available radio 
resources for multiple network slices. 
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The radio resource scheduler network function is separated into a VNF part controlled by the 
SDM-X (higher MAC scheduling, ICIC schemes) for asynchronous scheduling decisions and a 
V/P-NF part for synchronous scheduling decisions (lower MAC). 

Radio resource scheduling for multiple network slices requires interaction between the SDM-X, 
SDM-O and the SDM-C based SLA/QoS Monitoring as proposed  based on a message sequence 
chart illustrated in Figure 31: 

 
Figure 31: Radio resource scheduling process with the SDM-X 

After the orchestrator (SDM-O) has set up at least one network slice on the physical 
infrastructure, service policies regarding QoS and SLA requirements for each logical network 
(slice) are transmitted to the SDM-C based monitoring entity as well as to the SDM-X. In 
addition, it is necessary to share additional information with the SDM-X, which VNFs are 
located to which physical nodes within the infrastructure. After successfully received the VNF 
mapping table the SDM-X takes over the control to de-/activate VNFs influencing the radio 
scheduling decision among shared resources. 

 The SDM-X is in charge of de-/activating ICIC schemes or asynchronous scheduling schemes 
based on the feedback of the slice specific SLA monitoring entity, which feedback an SLA 
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status indicator per slice. Once multiple SLA indicators are received the SDM-X checks 
whether a threshold violation occurred based on previous scheduling decisions. Based on the 
analysis of slice specific threshold violation the SDM-X derives e.g., dynamic weights, which 
influence the upcoming scheduling decision on shared resources. This can be repeated several 
times to improve the SLA of a threated slice until a more critical threshold is violated. This 
triggers a mechanism which let the SDM-X switch the scheduling strategy based on the given 
service chain templates provided previously by the  
SDM-O. After adapting (de-/activating VNFs) e.g. the ICIC scheme or the scheduling metric, 
the SDM-X again derives an inter-slice scheduling decision which is considered by the lower 
MAC scheduler either in terms of dynamic QoS Class Identifiers (QCI) mapping or considering 
the SLA status indicator. 

If the adaptation of the scheduling, ICIC scheme or the possible change of an e.g. eNB cluster 
does not result into an performance improvement for currently instantiated slices the SDM-X 
needs to send a modification request to the SDM-O which has to re-orchestrate the slices based 
on different service chain templates.    

The most important characteristics of the proposed method are summarized again as follows: 
• SDM-O provides V/P-NFs for lower and higher MAC scheduling and interference 

handling to the SDM-X (based on RRM data base with different flavored scheduling 
and ICIC strategies) 

• SDM-X derives e.g. dynamic weights to influence the lower MAC scheduling decision 
based on monitoring results and occurring threshold violations within SDM-O arranged 
limitations 

• Multi threshold based SLA monitoring to adapt scheduling/ICIC schemes, degrees of 
freedom based on service chain templates defined by the SDM-O and controlled by the 
SDM-X 

• Indicate a necessary re-orchestration to the SDM-O before SLA violation occurs 
 

Example	of	an	heterogeneous	radio	resource	scheduling	strategy	
within	the	RAN	
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Figure 32: Example for an RRM database and a heterogeneous radio resource scheduling 

strategy 
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As described above the SDM-X is able to de-/activate VNFs to influence the scheduling scheme 
during the life cycle of a slice. In Figure 32 an example is shown how a heterogeneous 
scheduling strategy could look like within the RAN. Predefined complex service chain 
templates with RRM schemes based on a database the SDM-O sets up multiple slices while the 
SDM-X switches on/off parts of the template. The SDM-X might be even able to switch 
between scheduling strategies during the life cycle of several slices to improve the performance 
based on the monitoring entities’ output.    

However, the current investigations have left some open questions which will be further 
explored  in the next phase of the project:  

• The definition of possible SLA KPIs and SLA metrics (Mapping  from SLA to QoS 
KPIs (e.g., QCI classes)). 

o A normalization of  SLA metrics with different KPIs to monitor and fairly 
compare multiple slices is necessary. 

• Two possible solutions to consider the SLA status within the MAC radio scheduler: 
o Introduce slice (SLA) status indicator to derive e.g., dynamic weights to 

prioritize scheduling decisions (e.g. for contradictory KPIs). 
§ This will influence the communication with the lower MAC scheduler 

(Interface has to consider SLA indicator transmission to lower MAC 
scheduler). 

o Dynamic mapping to QCI classes based on SLA monitoring.   
§ No communication with lower MAC scheduler necessary. 

• Definition of complex service chain templates which need to support the possibility to 
activate/deactivate e.g. ICIC schemes by the SDM-X. 

o Will it be possible for the SDM-X to get access to the RRM database - w/o the 
SDM-O to react dynamically on changing requirements during life cycle ( The 
assumption by now is, degrees of freedom given by service chain template, 
which is provided  by the SDM-O)?  

• Definition of the split between lower MAC scheduler (V/P-NF) and SDM-X controlled 
schemes based on time scale (synchronous and asynchronous P-/VNFs). How far can 
the radio resource scheduler be virtualized? 

• Definition of the interface between SDM-X and lower MAC scheduler. 

5.8 Constrained SFC sets  
In this section the slice specific set-up of concatenated network functions (VNFs) as is 
orchestrated by SDM-O is addressed from an SFC point of view. The dynamic instantiation and 
re-configuration of a chained service function is discussed in the case of specific slice demands 
with impact on e.g. location and other characteristics environment of the function 
implementation site. 

SFC issues detailed here cover the topic whether in a Multi-tenant scenario the end-to-end 
services described by SFCs/SFPs (including both VNFs and PNFs) the management shall be 
dynamically adapted (e.g. during session set-up) or pre-configured (e.g. during slice 
instantiation process). The latter approach would comprise a set of slice-specific SFCs/SFPs 
incl. service differentiation (e.g. eMBB slice with SFC for best effort internet access and 
constrained SFC / SFP for voice and audio-visual interactive communication with moderate 
latency and bandwidth constraints). Alternatively dedicated control protocols (adapted VNFs or 
SDM-C applications) will be involved when a new connection is established based on session 
context information. The proposed work shall extent the SFC SotA as described in section 9.12, 
also by enhancement of work addressed in the corresponding IETF WG. 

The following describes SDM-O construction mechanisms for slice/service specific SFCs: 
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Chaining of PNFs and VNFs per service and network slice in an SFC aware way or via SFC 
proxies as specified in [49]. 

Comparing to the traditional cellular services above a typical 5G service or use case family with 
high service reliability or extreme low latency as required e.g. in Industry Control, Vehicular 
Communication and Real-time remote computing the definite demand for network slice 
adaptability is obvious with a view on the limited amount of (especially access and transport) 
resources. Then a constrained SFC or SFP has to be constructed considering the strict 
requirements. As specified in [49] the logical components of an SFC architecture comprise 
classifiers, Service Function Forwarders (SFFs), the Network or Service Functions (SFs) 
themselves, and SFC proxies. All these functionally distinct logical components are 
interconnected using the SFC encapsulation. A SFP is a mechanism used by service chaining to 
express the result of applying more granular policy and operational constraints to the abstract 
requirements of a SFC. 

The orchestrated specific network function instantiation selection out of multiple locations for 
redundancy and/or low delay of transport and execution may have to be adapted dynamically in 
case of congestion/failure/or other situations due to which the originally selected path may no 
longer fulfill the request (or even be available). 

In this case either a re-construction request to the SDM-O may be initiated by the SDM-C or the 
SFC App (as proposed e.g. by [50] with respect to the SDN Controller) or the SFC Control 
Plane (as proposed in [51]) conveys control information to the SF Forwarder for dynamic 
change of the path between the SFs. The decision on a usable path will be based on 
corresponding Metadata contained within the SFC Encapsulation header (NSH) which has to be 
pre-arranged during SFC construction. 

Mapping and prioritization of SFs/NFs per characteristic and topology has to be provided for 
rapid look-up of an alternative SF/NF location in that case. 

A potential visualization of such a chaining is derived from [52] where exemplarily support of 
edge computing is described on a high level. For provision of services over long distances in a 
cost-effective way, to reduce latency and reduce load on transport network the required 
functionality could be “deployed in flexible manner, leveraging also NFV”. 

The necessary functionalities (on both Control Plane (CP) and User Plane (UP) layer) to support 
such edge computing or ultra-low delay network slices include 

• QoS  
• Session/Mobility management 
• Charging/Policy Control 
• Optimisation (i.e. enabling selection and reselection of efficient UP paths / forwarding 

NFs) 

The up to now agreed on (but not yet fully specified) reference points in a general architecture 
are shown in Figure 33 where CP and UP functions may consist of SFCs for control of issues as 
listed above and corresponding assurance/enforcement/anchoring of them on UP forwarding 
level. 

As a first assumption, the Chaining of PNFs and VNFs is addressing UP only. For CP other 
principles may apply, e.g. publish/subscribe interface model for communication between them 
as also proposed in [53]. Such a dynamic asynchronous inter-component communication [54]  
allows various functional modules to interface by subscribing to messages submitted to a 
common network function. Such an NF may be e.g. the Message Routing and Forwarding 
Function (MRFF, as proposed in [52]) which is acting like an NF repository and eventually 
applying policy-driven load balancing. 
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As detailed above depending on slice/service performance requirements the SFC either specifies 
functional sequence only or decides on an SFP in detail with constrains to specific NF 
instantiations. 

 
Figure 33: High level architecture and reference points for 3GPP next gen core network 

Planned next steps are to evaluate expected performance difference of dynamic vs. pre-
configured SFCs/SFPs construction (V/PNFs) for exemplary services. An individual IETF SFC 
draft (extension) is in progress which defines header metadata on slice and service specific 
context in terms of additional Network Service Header (NSH) Type Length Variables (TLVs) 
for specific service performance requests as e.g. low latency/high reliability consideration [55]. 
The idea is to set-up rules for SFC/SFP construction properly considering slice and service 
driven preferences. 

NSH TLVs in SFC carrying useful or required context information on service/slice specifics 
may be configured by a function chain as e.g. service descriptions or the QoS/DSCP (QoS-Class 
Identifier) as proposed in [56]. 

However, within a simple flag detailed special characteristics (demands) for high reliability of 
the service (e.g. to be reflected by network function selection e.g., at multiple locations for 
redundancy) or extreme low latency (SFP between neighbored locations only) cannot be 
included. Therefore these (slice characterizing) parameters shall be made available as quick-
and-easy to detect header information which in terms of proposed new TLVs can be accessed 
and consumed by all relevant functions within a SFC.  

Those aspects as well as assessment of the potential of and detailed exemplary methods for 
dynamic SFC forwarding paths construction will be dealt with in the final version of this 
deliverable. 

5.9 Slice hierarchical orchestration  

5.9.1 4G toward 5G architecture evolution 
New 5G services will require provision of extremely high throughput with ultra-low latency to 
users (e.g. to support 4K video streaming, Big Data), thus provide services as close as possible 
the user location may be a relevant solution. Mobile Edge Computing (MEC) proposed by ETSI 
presents the opportunity of dynamically instantiating services close to the end user in a edge 
cloud and imply massive and decentralized computing/storage/network resources, which will 
require processing and storage capabilities. 

Moreover, the need of rapid adaptation of the networks to cope with changing demand coupled 
with the need to providing resource slices that aggregates computing, storage and network 
resources from operator(s) logical subdomains complete the 5G challenge. 

In order to address these challenges the solution may be to leverage SDN and NFV as they 
purpose is to orchestrate VNFs on top of central cloud /edge cloud for the deployment of 
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software functions. The figure below summarizes the evolution of actual 4G architecture toward 
potential 5G architecture 

 

Figure 34: Network architecture evolution 4G toward 5G (source Netmanias) 

5.9.2 Hierarchical VNF SDN orchestration for 5G networks 
Today, 4G network is exploited through a centralized architecture. For 5G a cluster composed 
by compute, storage and networking resources managed by a orchestrator, VNFs will not be a 
self-contained in one cloud location system but relatively spread among central and edge cloud 
system in order to leverage MEC (see Figure 35). 

 

Figure 35: Potential 5G network topology (source Korea Telecom) 
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Cloud NFV management 

Regarding NFV underlying cloud infrastructure that will enable MEC, which aimed supporting 
spread VNFs, can be identified by various architectural models, ranging from tightly coupled to 
highly dispersed ones: 

• Multi-datacenter cluster with multiple, but tightly coupled data centers under control of 
the same provider. 

• Loosely coupled multi-service cluster combine services from different cloud providers. 
• Decentralized edge clusters utilize edge resources to provide data and compute 

resources in a highly dispersed manner. 

For cloud NFV, this exhaustively regarding assets or constraints needed from cloud domains for 
5G VNFs deployments (e.g. rightful location, resource availability, hardware/software specific 
features, pricing,..) will led to orchestrate VNFs with coordination through different clusters 
each managed by dedicated orchestrator: 

• Need to automatically overflow workloads from local cluster to a remote cloud if the 
cluster run out of capacity 

• Orchestrate/host privacy-sensitive services that must be run in a private local secured 
cluster 

• Resiliency to private data center or cloud availability zone outage by spreading services 
across multiple zones and cloud providers. 

SDN Network management 

Regarding SDN, 5G services require the integration of all network segments (radio/fixed access, 
backhaul and core, see Figure 36) with heterogeneous wireless and optical technologies. A 
hierarchical control approach for scalability, modularity, and security purposes in multi-
technology multi-domain heterogeneous wireless/optical networks can be relevant as in Figure 
36) 

 

Figure 36: Multi-domain SDN orchestrator (source COMBO, 5G Xcrosshaul) 

The cloud and network domains needed to fulfill 5G VNFs deployments/orchestration will be 
implemented on several clusters and SDN segments, where each of them  managed by dedicated 
orchestrators. Management of this orchestration heterogeneity may be solved with a hierarchical 
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orchestration that can guarantee orchestration consistency by applying federation among 
orchestrators (Figure 37) 
 

 
Figure 37: 2017–2020 Orchestration Evolution toward an Orchestrator of Orchestrators 

(source Infonetics) 

5.10 Edge Cloud MANO 
Some of the VNFs controlled by the 5G-NORMA defined hierarchy of controllers (SDM-C, 
SDM-X, SDM-O) will be deployed on an Edge Cloud infrastructure. However, definition of an 
NFV infrastructure layer tailored for the Edge Cloud has not been yet addressed by the industry. 
Equipment manufacturers are proposing for this purpose the same kind of datacenter 
architectures typically used for centralized cloud environments, assuming large numbers of 
servers, a very high footprint and an environment totally separate (physically and 
administratively) from the transport network used to connect the datacenters. As such, these 
datacenter architectures, shown in Figure 38, assume: 

• an external hardware-based Provider Edge router (PE) (typically an MPLS PE) run by 
the transport operator 

• a hardware-based Datacenter Gateway router (DC-GW) to connect the datacenters in 
an overlay fashion over the transport network, many times using the same technologies 
used in the transport network but transparently to it (e.g. L3 MPLS VPNs over GRE 
tunneling) 

• a local leaf and spine switching architecture based on hardware 
• the x86 compute nodes to run VNFs 
• local x86 servers to run the VIM and SDN controller functions 
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Figure 38: Typical datacenter reference architecture  

It can be overkill in terms of costs and operations to consider this cloud reference architecture to 
deploy VNFs distributed to the network edge. It has to be taken into account that Edge Cloud 
deployment will not be from scratch, but it will very likely leverage on the existing network 
deployment of the operator. In that scenario for these edge locations, there will likely be already 
a PE and the need for compute nodes may be in line with the number of physical ports 
supported by this PE. Therefore, there might not be a real need (in terms of number of Ethernet 
ports or because of administrative demarcation) to force the inclusion of a DC-GW and a leaf-
and-spine switching fabric in all the cases.  

In order to allow for NFV deployments as distributed as the Mobile Station level, a more 
flexible network PoP reference architecture is required to cater for a more collapsed cloud 
architecture be possible, for instance considering as an option to have just the PE element as 
connectivity fabric core in an Edge Cloud PoP, as is shown in Figure 39. 

 
Figure 39: Collapsed edge cloud architecture 

On the other hand, because of the performance required by data plane VNFs, they will typically 
use Single Root Input/Output Virtualization (SR-IOV) or PCI-Passthrough virtual interfaces to 
achieve the expected performance, instead of interfaces through the Virtual Switch (vSwitch) 
local to the hypervisor. However, most MANO implementations are limited to work with 
vSwitch interfaces and therefore the SDN controller solution packed with the MANO 
implementation is limited to the support of the underlay technologies supported by the vSwitch 
(e.g. VXLAN, VLAN, MPLSoGRE) and its configuration management interfaces (Openflow 
and Open vSwitch Database (OVSDB)). Integration of VNFs with SR-IOV and PCI-
Passthrough interfaces at the MANO level is not widely supported but is a must requirement to 
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address data plane VNFs. In addition to this, in the case of SR-IOV and PCI-Passthrough 
interfaces, the overlay technology imposed is VLAN based, but it has to be taken into account 
that in order to allow for a collapsed Edge Cloud PoP, the underlay used must also be in line 
with the technologies supported by the Edge Cloud PE (e.g. MPLS IP VPNs, VPLS or EVPN) 
and not be limited to the vSwitch networking technologies. 

5.10.1 Edge Cloud Infrastructure High Level Requirements 
Defining a complex and elaborate service orchestration framework, as the one proposed in 5G-
NORMA, requires to have ready an Edge Cloud infrastructure layer, because otherwise 5G-
NORMA innovations would never be possible to be deployed in the field because of economic 
and operational barriers. In order to account for a grow-as-you-need approach, and to match 
different levels of NFV compute needs at the different network levels (edge cloud vs. network 
cloud), 5G-NORMA architecture considers an NFV infrastructure and MANO layer to be used 
that meets the following design recommendations: 

• Edge Cloud Point of Presence (Edge Cloud PoP) must count with an element (Edge 
Cloud PE), typically based on hardware with the current state of the art, that allows for 
acting as provider of Layer 2 and Layer 3 network services. These L2 and L3 services 
will provide connectivity to external legacy services, as it is done in the current network 
deployment, and also these services will be used as an underlay for the NFV 
infrastructure to connect VNFs intra-PoP (inside an Edge Cloud PoP) and inter-PoP (to 
another Edge Cloud PoP or to a Network Edge PoP). This Edge Cloud PE could 
consolidate other functions related to Layer 1 and 0 technologies applicable to the PoP 
location (IP-optical convergence, synchronization protocols support, etc.) 

• It must be possible to connect the NFV servers directly to the Edge Cloud PE 
• It must be also possible to connect NFV servers to the Edge Cloud PE through a typical 

datacenter architecture comprising a DC-GW layer and a leaf-and-spine switching layer. 
That way the MANO infrastructure can be shared between the cloud and network edge. 

• It must be possible to automate the underlay interconnection of VNFs (intra and inter 
Edge Cloud PoP). As such the Edge Cloud PE must be programmable, favoring (official 
or de facto) standard data models to account for this programmability. The automation 
of the NFV undelay connections must be possible to be orchestrated with the 
automation of the overlay connections running on top of it and as part of a service chain 
creation. 

• It must be possible to interconnect VNFs (intra and inter PoP) using virtio, SR-IOV and 
PCI passthrough virtual interfaces regardless of the kind of virtual interface on the other 
end. 

• It must be possible to run the rest of the ETSI-NFV architecture elements (e.g. NFV 
MANO) centralized externally to the Edge Cloud PoP 

Taking these requirements as a starting point, several implementation possibilities arise in terms 
of the networking protocols used to provide the underlay network services to the VNFs, taking 
into account on one hand its support in current (legacy) network equipment and on the other the 
evolution of networking protocols for achieving optimized datacenter interconnections. With 
this knowledge, it will be possible to have a prioritized list of the underlays that are required for 
an Edge Cloud MANO solution suitable for 5G-NORMA innovations. 

The following technologies can be considered as underlay technologies of an Edge Cloud 
infrastructure layer: 

• Candidate legacy technologies: 
o Layer 3 MPLS VPN over MPLS 
o Layer 3 MPLS VPN over GRE  
o Layer 2 VPLS VPN 
o EVPN over MPLS 
o VLAN switching 
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• Evolutionary technologies: 
o EVPN over VXLAN 
o VXLAN switching 
o Openflow switching 

5.10.2 Edge Cloud Underlay Technologies Orchestration 
In order for achieving the flexibility and dynamicity required by 5G-NORMA architecture, 
Edge Cloud NFV infrastructure resources must be orchestrated and the orchestration capabilities 
must be exposed to the rest of the modules of the 5G-NORMA architecture.  

In order to have a prioritized list of the underlay technologies to be supported in the 5G-
NORMA Edge Cloud MANO resource orchestration reference solution, the different underlay 
solutions must be assessed in terms of: 

• Its capabilities for high availability and load balancing 
• Ease of  connection/interworking with legacy network environments  
• Its support in existing vSwitches 
• Existence of a standard (formal or de facto) data model for the underlay technology 
• Existence of native management and monitoring protocols for the underlay technology 
• Its support in existing SDN controllers 
• Its support in existing VIMs 
• Its support in existing resource orchestrators 

5.10.3 VIM capabilities for VNF deployments 
Effective network slice deployment in 5G NORMA architecture require an appropriate handling 
of data plane workloads, to guarantee end to end high and predictable performance at each slice.  

Appropriate handling of workloads, require that VIM possesses a greater awareness of the 
capabilities of the platforms it controls. This awareness of the underlying infrastructure is 
referred to as Enhanced Platform Awareness (EPA) that aims to provide the VIM with all the 
required information, and control, to be able to take the adequate decisions in terms of VM 
placement and connectivity establishment. 

Current SDN controllers provide all necessary support to NFV, but it is also required that at 
VIM level this support is required, so that SDN controller may be correctly instructed on the 
operations to execute 

Among the different alternatives for Virtual Infrastructure Managers, Openstack has grown into 
one of the most solid candidates, due its open source nature and its wide support in the IT 
community.  

Currently, there are several gaps in Openstack for NFV applications that prevent an effective 
deployment of high performance virtualized network functions. This section will center on those 
related to SDN connectivity, which need to be closed in order to build an effective orchestration 
by SDM-C and SDM-O. 

Data plane Interface:  

• Some VNFs, due to its role, might be expecting to manage VLANs (e.g. a PE router) or 
QinQ tags (e.g. BNG). Support for L2 services in 5G NORMA would require support of 
this type traffic at VIM level 

Support for PCIE SR-IOV or PCI-Pass-through: 
• SR-IOV and PCI- Pass-through are mechanisms to bypass hypervisor and S.O, layers 

and remove abstraction layers between VNF and the Network Interface Card (NIC), 
increasing bandwidth and latency performance and predictability. Current Openstack 
version neither provide support for SR-IOV nor for PCI-PT to provide fully automated 
connectivity from VMs virtualized I/O interfaces to underlay data-plane networks. 
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SR-IOV limitations 
• Bandwidth scheduling. 5G NORMA data plane applications require, among other 

parameters, specifying bandwidth requirements, to be scheduled and enforced 
accordingly.  

• In NFV applications, SR-IOV permits to multiplex a single physical interface into 
several virtual interfaces called Virtual Functions or SR-IOV interfaces. The traffic 
discrimination is done at the NIC based on the VLAN tag (one VLAN tag per Virtual 
Function). BW required for each interface is a requirement specified in the VNF 
descriptor. From the information contained in the VNF descriptor, SR-IOV will 
multiplex a single physical interface into several virtual interfaces called VFs or SR-
IOV interfaces. The number of actually used VF in a physical interface depends on the 
actual BW reserved for each VF and the total bandwidth of the physical interface. When 
searching a host to deploy a VM, Nova scheduler should take into account the amount 
of bandwidth reserved by the previous VMs on each physical interface. Today, 
bandwidth is not taken into consideration.   

• Enforcement (coupled to previous limitation):  
• With today’s NICs, it is possible to configure each VF in a NIC to limit the upstream 

and downstream bandwidth, thus avoiding that one VF saturates the whole physical 
interface. In order to avoid that one VF saturates other VFs in the same physical 
interface, it would be required that, when an instance is created, the NIC is configured 
appropriately to enforce the bandwidth required on the VF.  

• Interface assignment: BW occupied on each physical interface is an important driver for 
host selection. It might make sense for nova to have some policy that permits to 
discriminate the host to deploy depending on the requirements from the orchestrator 
(i.e., deploying on a host whose physical interfaces have less available bandwidth in 
order to make a better use of the network resources, or deploying on a host with more 
available bandwidth to permit for future growth without the need to scale-out or re-
deploy VM due to traffic growth). 

• Dynamicity. Currently, bandwidth assigned to SR-IOV VFs are specified in the in the 
VNF descriptor, at creation time. There should be a mechanism to modify this 
bandwidth in run-time 

Full support of connectivity types for underlay L2 connections: 
• In NFV, it is required to connect through the underlay switching infrastructure any 

number of VMs using PF pass-through or SR-IOV interfaces. In addition, it is also 
required to connect in the same network any other external element such as a physical 
network node or a physical network (e.g. to connect a VM to the Metro Area Network. 
These physical network nodes or physical networks are expected to be attached to 
switch ports in the underlay switching infrastructure, through point-to-point (E-LINE) 
or multipoint (E-LAN) L2 networks 

• Openstack integrates an Modular Layer 2 (ML2) plugin in neutron able to interwork 
with an SDN controller that automatically configures all connectivity. Today, ML2 
plugin presents limitations, in the way that this connectivity is performed.  

• Moreover, this connectivity should make an efficient consumption of forwarding rules 
sin the switching infrastructure (minimize MAC learning requirements), e.g. in a E-
LAN point to multipoint network, one of the ports of the E-LAN networks can be 
configured as default upstream port so that any packet being sent to an unknown MAC 
address is forwarded through that port. This might alleviate the number of forwarding 
rules in the switching infrastructure. In the case of connection of external elements 
(physical network node, physical network), Openstack might require the definition of a 
neutron port bound to the specific switch port where the external element is attached. 
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6 QoS/QoE Service Control 

6.1 Introduction  
One of 5G NORMA ambitions is to design a framework to control end-to-end QoE/QoS. For 
that, a SDM-C building block is designed. The proposed approach resembles SDN in that we 
split mobile network functionality into (i) those functions that are being ‘controlled’; and (ii) 
those functions that ‘control’ the overall network and are executed at the controller. However, 
our solution is specifically devised to control mobile network functionality, and “controlled” 
functions are not limited to data plane functions but also control plane functions, both of which 
can be placed arbitrarily in the edge cloud or the central cloud. It is essential to specify an 
interface between the controller and the functions that (i) is standardized and supported by all 
deployed equipment, and (ii) provides sufficient flexibility to obtain the desired behaviour of the 
network by reprogramming the behaviour of “control” functions only. This effectively provides 
network programmability capabilities allowing third parties, i.e. virtual operators and vertical 
market players such as OTT providers or Vehicle-to-Anything (V2X) operators, to request 
network resources on-demand.  

Indeed, wireless networks comprise a mix of functions e.g. scheduling, power control, which 
have a stringent real time requirement (executed at 1ms level) and others functions e.g. pre-
scheduling, Deep Packet Inspection... which are executed at much longer time scale e.g. 
~seconds. These timing constraints are considered in the software defined approach design. Not 
all control functions in RAN domain could be executed as applications in the northbound of the 
controller due to real timing requirements like MCS selection, scheduling, etc except when the 
technology allows that e.g. accelerated controllers. The centralized control provides very 
important benefits for the operation of the mobile network in terms of re-programmability and 
supporting the required flexibility.   

In this section, we describe how an efficient QoE/QoS control framework is built using the 
SDM-C concept. SDM-C will interact via dedicated plug-ins in the SBI with the VNFs to 
control their configuration and their resources. The control will rely on a couple of applications 
running in the NBI using the 5GNORMA-SDMC-Apps interface. Three applications are 
proposed. Two applications target to enhance the throughput of the RAN and the third one is 
related to selecting the best path to connect the different VNFs. This allows us to have a design 
of a controller able to span the network slice in an end-to-end way as it is targeted in 5G 
NORMA.  Each network slice will have its SDM-C instance, which jointly with SDM-O work 
hand in hand to guarantee the SLA negotiated with the service layer. Mobility related 
applications are described in Section 7.  

In order to optimize the network resource utilisation, continuous monitoring of the QoS and 
QoE levels for each service flow is required. Monitoring will be implemented at different 
processing points in the network collecting measurements related to the behaviour of the 
network or the service. These measurements are fed into a QoE model, responsible for 
modelling the QoE. Thanks to the latter mechanisms, 5G NORMA supports a fully dynamic, 
context aware QoE/QoS management that is able to detect the applications and their QoS/QoE 
requirements and adapt the end-to-end resource allocation and the data plane services 
accordingly, thus enabling good customer experience.  

6.2 QoS/QoE mapping 

6.2.1 Introduction. 
5G systems are expected to support emerging use cases with specific and sometimes critical 
requirements. Examples of expected new services are: IoT (including mission critical), vehicle-
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to-vehicle/infrastructure (V2X) communication, tactile Internet, sensor networks and others 
with high end-user quality requirements. So, 5G Networks (5GN) should try to support context 
aware quality service management enabling a good EU experience. A way to get this is, of 
course, designing an efficient architecture and providing enough resources; another way is, 
somehow, to integrate information about users experience and use it to optimize the allocation 
of available resources. Besides, getting data about users experience is one of the main priorities 
for MNO’s in order to avoid churn [57]. 

Regarding users experience two key concepts are usually referred: QoS and QoE. As a whole, 
QoS refers the degree of adequacy of the service to a number of physical measurable objective 
parameters (e.g.: latency, delay or jitter); QoE refers “the overall acceptability of an application 
or service, as perceived subjectively by the end-user” [58]. And that is the challenge: under 
same physical QoS factors different users could experience the service in different ways; or 
even the same user could perceive services differently under different mood or circumstances 
(i.e.: in noisy environments a service could be perceived in a different way even with the same 
physical QoS parameters).  

The most evident way to overcome this is considering, not only QoS metrics, but the human 
influence factors also (mood, environment, terminal type…). However, measuring human 
perception is a complex task (just a probe in the users brain measuring their thoughts could give 
us that information, but this, beyond ethical considerations, is still several G’s away from a 
strictly technical point of view). Although challenging, this difficulty can be overcome 
integrating the human influencing factors in a user-centric information system. So, although the 
direct measurement of QoE is not possible, it is something we can guess with some degree of 
accuracy by mapping a set of relevant QoS parameters and influence factors with an estimated 
QoE value. This is what we call “QoS/QoE mapping”.  

Since we are trying to guess the users subjective experience, QoS/QoE mapping is not an exact 
science, just a best engineering effort. Anyway, inferencing QoE can help providing a better 
user experience, and also, allowing MNO’s to allocate resources in a more efficient way. The 
challenge is to keep users satisfied allocating the minimal resources for that purpose. 

Considering this, two key questions should be addressed: 
 

• How can we infer the user experience in a proper way? 
• How to adapt the network to improve QoE without wasting excess resources? 

1st question is more theoretical, and still an active research area. You can get an approach to this 
in Section 9.14 where we describe the basic concepts about QoS/QoE mapping and summarize 
the state of the art. The 2nd question is more technical, and for our purposes, the answer will be 
provided considering our 5GN architecture. This will be addressed in the following sections. 

6.2.2 QoS/QoE Mapping in 5G NORMA 

6.2.2.1 Introduction 
Although correct, the general approach of getting QoE just by computing a mapping function 
from a set of input parameters, is quite simplistic when we must consider how to integrate this 
functionality from a practical viewpoint in the 5G NORMA architecture. When considering 
practical aspects this problem may require very different resources and capacities depending on 
the specific way the problem arises. For instance, it is quite different to get a QoE metric for a 
single VNF from just a couple of objective parameters (e.g., CPU occupancy and RAM usage), 
or getting QoE for a big set of individual end users in real-time considering a specific geofence 
and using a big set of objective and subjective parameters which can be difficult to monitor.  

For the first case, a simple threshold function could be probably enough, while for the second 
one, we probably would require a complex infrastructure with DPI and Big Data Analytics 
capabilities. Of course, between these two bounds we could find a wide range of possibilities. 
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Some tenants using the 5GN infrastructure could require just QoS monitoring as it is performed 
in the current LTE architecture, while others could ask for more advanced approaches; so, if we 
want to address the problem from a general point of view we should consider how this wide 
range of possibilities could be supported on 5G NORMA. 

On the other hand, as we can see in Section 9.14 , the issue of the QoS/QoE Mapping is still an 
active research area, different approaches to solve the problem exist (objective/subjective, 
intrusive/non-intrusive, different approaches to get the mapping functions, etc.). Besides, 
identification of service relevant QoE metrics and modelling of how these are affected by 
different QoS metrics is a key aspect, but this is application and service dependent: No general 
rule can be applied for this. QoE measurements could require a deep understanding of the 
specific KPI impacting on the user perception, but KPI’s vary with the service type; for 
example: services like VoIP, Video streaming, On-line gaming or Internet browsing has unique 
performance indicators to measure. Other services, such traditional voice or messaging services 
have other specific KPI’s. So, for 5GN we could select a set of relevant KPI’s and a specific 
mapping function to compute QoE, but we would run the risk of delivering a too rigid 
architecture unable to manage certain tenants requirements or to include certain technical 
advances regarding QoS/QoE processing. 

In summary, it is difficult to consider the specific QoS/QoE control requirements of all possible 
tenants and to think on all-network scalability on the medium term. For this reason, instead of 
defining a too specific solution, we consider a better approach to define an open framework, 
which can be adopted by different tenants in order to provide sufficient flexibility to obtain the 
desired behaviour by reprogramming the required functions. Therefore, instead of a specific 
mapping function and a specific set of strictly defined functional blocks, our objective here will 
be to provide 5GN with a flexible way to implement the necessary QoS/QoE Mapping functions 
using open interfaces and the flexible selection of functional blocks to integrate the specific 
requirements for each user. This effectively will provide network programmability capabilities 
allowing third parties (i.e. virtual operators and vertical market players) to set-up their specific 
QoS/QoE control strategies. Besides, this will also enables a path towards future approaches and 
strategies to focus the QoS/QoE mapping problem. 

On this basis, we propose the following general requirements for the QoS/QoE mapping block: 
• It must provide an open framework allowing the integration of different solutions in 

function of the specific requirements of each tenant (e.g., must allow both: monitor the 
individual user experience as well as objective network QoS parameters). 

• It should be featured to use KPIs from different network elements (DPI nodes, mobile 
terminals, eNodeB or other network elements). The set of KPIs to use is not restricted; it 
should be possible to define them in an open way in the scope of each tenant SLA. 

• It must be possible to integrate different mapping functions and execute them in parallel 
(i.e., each tenant may require a different function with different features & parameters). 

• It should be based on open interfaces through which it should be possible to flexibly 
specify the parameters to monitor, the mapping function and the way the output (QoE) 
is delivered. 

• In order to optimize the network resources usage, it should be possible (if required by a 
tenant) the continuous monitoring of the QoS and QoE levels for each service.  
 
 

 
Figure 40: Basic Mapping Function 
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6.2.2.2 High Level approach 
Said in a very general way our problem is how to integrate a basic QoS/QoE Mapping block in 
our specific 5GN architecture fulfilling the requirements described in the previous section. 

A first high-level consideration is that we are not going to have just a single mapping function; 
we should be able to support the execution of different mapping functions in parallel. Therefore, 
a first evolution of the simplistic approach in Figure 40 above should be something like shown 
in Figure 41. 

 
Figure 41: Mapping functions executed in parallel 

That is, we should be able to process different mapping functions with a different input 
parameters set in parallel. Every function would provide a different QoE measurement. 

Another high-level consideration is about input parameters. We could have input parameters 
from different sources and expressed in a very different way. For example, we could require to 
the same mapping function to process parameters such as the jitter expressed as a real number or 
the user mobile terminal type defined as a text string. Input parameters source can be diverse: 
radio stack parameters, profile users databases, billing information etc., and the parameters 
format can be different depending on specific encoding schemas.  This makes necessary a 
normalization layer prior to the mapping function itself. So, a second step in these high-level 
considerations could be to add this normalization layer for each mapping function; also in a 
similar way, we should have the possibility to normalize the QoE output values using specific 
coding schemas (i.e., the resulting QoE could be needed according the legacy Mean Opinion 
Score (MOS) quantization scale, or using real numbers according a sigmoid function). Figure 42 
below shows the addition of these elements for each mapping function; N1…Nk represent the 
input normalization functions, while C1…Ck are the output codification functions. 

Another important point about integrating the QoS/QoE mapping functions into the 5GN 
architecture is the relationship with other functional blocks. Two blocks for which it is required 
a closer relationship are obviously the QoS/QoE Management and the QoS/QoE Monitoring 
blocks. The first one provides the definition of the QoS/QoE input parameters agreed in the 
SLA for a tenant, allowing also to configure the different parameters in our mapping module:  
 

• Number and type of the different mapping functions. Depending on the specific 
function to be used (objective/subjective approach, etc.) the configuration will be 
different.  

• The corresponding input parameters normalization functions. 
• The output encoding functions 
• The set of input parameters to which each mapping function should be bounded 
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Figure 42: Normalization and Output Codecs 

On the other hand, the QoS/QoE Monitoring function will be in charge of monitoring the 
selected input parameters. Specific configuration parameters should be provided in the SLA; for 
example: required sampling frequency or monitoring strategy (e.g., reactive, proactive, hybrid). 

This block must be prepared to receive messages from our mapping module, and to execute the 
proper actions for each case (the SDM-C will receive these messages by its South-Bound 
Interface (SBI)). We understand these actions are basically to interact with the virtual 
infrastructure to request scaling operations for each single VNF or the forwarding graph update. 
Figure 43 shows the evolution of the high-level design considering these interfaces. 

As shown, we can consider then that the QoS/QoE Mapping block has three main interfaces: 
• A NBI to communicate with the QoS/QoE Management Module. It will be used to 

configure the mapping module parameters as previously said (specific functions to use, 
input parameters, etc.). It is assumed that the QoS/QoE Management module keeps also 
a close relationship with the QoS/QoE Monitoring module to configure the parameters 
to monitor and the way each parameter should be monitored (i.e., the monitoring 
module output and the mapping module input should be perfectly aligned). In addition, 
it is assumed that the QoS/QoE Management module will be part of the Management & 
Orchestration Layer in the 5G NORMA functional architecture. 

• A West-Bound Interface (WBI) to receive data from the QoS/QoE Monitoring module. 
As we see, it is assumed the monitoring module gathers information from different 
sources in the network that can be relevant for the network itself or the service (e.g., 
user’s terminal, RAN, different databases containing user’s data or the virtual 
infrastructure among others). Continuous monitoring of the different parameters of 
interest will be required. 

• An East-Bound Interface (EBI) to send relevant QoS/QoE Mapping events towards the 
SDM-C module. The SDM-C controls functions and resources for a specific slice, so 
the QoS/QoE mapping module will continuously analyse the status of a network slice 
according the SLA constraints, and will report about QoS/QoE relevant events towards 
the SDM-C. Based on those reports the SDM-C may adapt to the new situation in 
different ways: 

 
o By reconfiguring some of the VNF’s it manages (i.e., changing the pre-scheduler, 

asking for a less aggressive Modulation and coding scheme (MCS)).  
o Notifying the QoS/QoE Management module when specific management 

operations are needed. 
o Reconfiguring some paths using a SDN-alike technique 
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o Asking for more resources to the orchestrator. In this case, network slice 
reshaping (i.e., scale in/out) or VNF relocation policies should be managed by the 
orchestrator. 

 
Figure 43: Interface with surrounding systems 

Note that no direct connection between the QoS/QoE Mapping module and the underlying 
virtual (or physical) infrastructure is necessary. We assume the SDM-C will work as proxy for 
this. As we know, we have an SDM-C instance per network slice. The SDM-C will interact via 
dedicated plug-ins with the VNFs to control their configuration and resources.  

6.2.2.3 QoS/QoE Mapping Module Building Blocks 
Until now, we have provided a high-level description of the QoS/QoE Mapping module and the 
other blocks to which it has to communicate. The question now is; How could we design the 
interfaces to those other systems? The main problem regarding this is that, as we know, the 
QoS/QoE Mapping module function is intentionally not fully defined. As commented, we think 
that it is better to provide an open framework able to integrate different ways of implementing 
the required mapping functions. So, if the QoS/QoE Mapping function is something not clearly 
defined then how could we define a specific set of interfaces to it? 

The different mapping functions we would like to integrate in the QoS/QoE Mapping module 
will be, after all, certain pieces of software code freely defined by the user (i.e, the tenant or the 
infrastructure manager). They could be something like simple threshold functions, or perhaps 
something more complex like a Multilayer Perceptron already trained with the corresponding 
weights matrix. However, they will be certain algorithms devised to compute the desired QoE 
value.  

Hence, our problem here is related to  software deployment. We need to deploy certain software 
functions (our QoS/QoE Mapping functions) which can be freely defined by users into our 
QoS/QoE Mapping system. As a whole, SW deployment is about all the activities that make a 
software system available for use; for us that “software system” is the mapping functions and 
the associated resources (normalization functions, input parameters, output encoders, etc.). 
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Focusing the problem as a software deployment issue, we can answer our original question: the 
way to design the interfaces to the other systems surrounding the QoS/QoE Module. The 
software industry already provides a well-known solution to deploy and integrate indeterminate 
(to a certain degree) pieces of code using well-defined interfaces. The key ideas are: 

• To provide a common execution environment (or software container),  
• Considering this execution environment, the user provides the piece of code to be 

executed and a set of descriptor files with additional information for the execution. 

An example of this approach could be the EJB specification, a subset of the well-known JEE 
specification, which includes a container for web related software components (JSR 345). The 
software components (EJB’s) are deployed on a runtime environment using standardized 
interfaces. Another example specially designed for telco applications is the JAIN SLEE 
specification (JSR 240) where certain pieces of code (i.e., Service Building Blocks and 
Resource Adaptors) are deployed on a software components container. Other examples are also 
the Java Servlets Technology (JSR 315) or even the JAR files used in the Java Language 
(besides the Java code, JAR files should contain certain standardized deployment descriptors to 
properly run in the runtime environment).  

At this point we are not proposing to use EJB’s, Servlets or whatever other specific technology 
for our QoS/QoE Mapping module. These are just examples. What we propose here is to use the 
same conceptual approach. In our case, the pieces of code will be mainly the specific QoS/QoE 
Mapping functions, which will be deployed on a common execution environment according 
certain fixed rules. 

To be more specific, and to be aligned with the description in the previous Figure 43, we 
propose to have three different components to be deployed: 

• QoS/QoE Mapping functions: This is the mapping algorithm to execute. It can be 
written in a general-purpose programming language according the user requirements.  

• Input Adapters: This module will gather the parameter values from the QoS/QoE 
Monitoring System. It could include also the Normalization stage before the mapping 
function. 

• Output Adapters: This is the mapping function output interface. It will encode the QoE 
according the required protocol.  

These three types of components will be deployed in a common execution environment using 
the corresponding deployment interface. Each component could be assigned to a specific slice 
or tenant. Figure 44 below illustrates this general idea. 

The yellow U-shaped block represents the “Software Container” that works as execution 
environment for the three possible deployable components: Input Adapters, Mapping Functions 
and Output Adapters. As previously commented, we see also the three main interfaces: 

• NBI (North Bound Interface or Management Interface) which is used to communicate 
with the QoS/QoE Management Module in the 5GN Management and Orchestration 
Layer (see Section 3) 

• WBI (West Bound Interface or Monitoring Interface), to receive incoming parameters 
from the QoS/QoE Monitoring System. 

• EBI (Est Bound Interface), the output interface to send QoS/QoE Mapping relevant 
events towards the SDM-C. It connects with the South-Bound Interface in the SDM-C 
module. 

In the following subsections we provide a high-level approach to these interfaces. We are not 
going to enter here in a fine-grained details regarding implementation (specific technology, 
exact number of parameters, parameters type/range or other similar details), but as initial 
approach, we will attempt to provide the basic operations that should be supported. 
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Figure 44: QoS/QoE Mapping Module Building Blocks 

6.2.2.3.1 Management Interface 
As mentioned, this interface is used for exchanges between the QoS/QoE Management block 
and our QoS/QoE Mapping block. The operations supported by this interfaces can be split in 
two groups: the specific operations for the Execution Environment and the operations for the 
Deployable Units. The following Table 6 and Table 7 show a list of possible operations for 
both: 

 
Table 6: Operations for the Execution Environment 

Operation Type Description 
Configuration Get/Define the Execution Environment configuration. Explicit configuration 

parameters will depend on the underlying technology; they could be: 
- General purpose software configuration parameters (i.e. files location, 

hostnames, TCP/IP ports…),  
- Logging facilities configuration 
- Physical parameters (memory, CPU…)  
- Security parameters (i.e., access policy) 

Management Activate/Deactivate the execution environment itself.  

Licensing Install, remove and view the Execution Environment license(s). 

Query Query about status of the execution environment. This could include: 
- Current status (running, stopped, error) 
- List of already deployed units and their status 
- Usage statistics 

Table 7: Operations for the Deployable Units 

Operation Type Description 
Deployment Deploy/un-deploy supported deployable units (i.e., Mapping Functions and 

Input/Output adapters).  
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Management Activate/Deactivate already deployed building blocks.  

Configuration Operations to configure the deployable units. This could be: 
- Number and type of inputs for the Input Adapters 
- Encoding scheme for the Output Adapters 
- Logging 

Bounding Bound/Unbound the different building blocks among them. For example, to 
connect a specific Input Adapter to a Mapping Function, and that Mapping 
Function to the desired Output Adapter. 

Licensing Install, remove and view the components license (if any). 

Query Query the status of deployed units (some status could be: running, stopped, 
error…). Information about the configuration status can be also provided. 

 
The following sequence diagram (see Figure 45) shows what could be a typical operation to 
activate the platform and deploy a simple set with just three components: a mapping function 
and the corresponding input/output adapters: 

 
Figure 45: QoS/QoE Mapping/Management Modules Interface Example 

Of course, for something like this to work it would be necessary for each deployable unit to be 
generated containing the corresponding descriptor files. Those descriptor files should describe 
the peculiarities of each component; for example, for the Input Adapters, the descriptor files will 
probably enumerate the different input they will receive from the monitoring system, the sample 
period for each parameter, ports and host to connect, encoding protocols, etc. Descriptor files 
could be encoded using broadly accepted languages such XML or JSON.  

Figure 46 shows an example of what a descriptor file could look like using XML. This is just an 
example for a hypothetical mapping function (VideoStreamingQoE_MappingFunction) which is 
assumed to compute QoE from a set of relevant video streaming parameters. As shown, the 
mapping function is bound to an input adapter (VideoStreamingInputAdaptor) and an output 
adapter (MosOutputAdaptor) which seems to encode the output according the MOS scale. 
 
<?xml version="1.0"?> 
<mapping-function-jar> 
  <mapping-function id="VideoStreamingQoE_mapping-function"> 
 <mapping-function-name>VideoStreamingQoE_MappingFunction</mapping-function-name> 
 <mapping-function-vendor>5GNorma</mapping-function-vendor> 
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 <mapping-function-version>1.0</mapping-function-version> 

 <input-params> 
    <input-param type="float" min="0.0" max="1.0">Jitter</input-param>  
    <input-param type="int" min="0.0" max="1e6">BitRate</input-param>  
    <input-param type="String">ScreenSize</input-param>     
    <input-param type="String">ScreenResolution</input-param>     
    <input-param type="String" values="MPEG2, MPEG4">Encoding</input-param>      
    <input-param type="float">Delay</input-param>         
    <input-param type="int">PacketLoss</input-param>       
 </input-params> 

 <input-adaptor-binding> 
  <input-adaptor-ref> 
    <input-adaptor-name>VideoStreamingInputAdaptor</input-adaptor-name> 
    <input-adaptor-version>2.1.1</input-adaptor-version> 
  </input-adaptor-ref> 
 </input-adaptor-binding> 

 <output-adaptor-binding> 
  <output-adaptor-ref> 
    <output-adaptor-name>MosOutputAdaptor</output-adaptor-name> 
    <output-adaptor-version>1.1</output-adaptor-version> 
  </output-adaptor-ref> 
 </output-adaptor-binding> 
  </mapping-function> 
</mapping-function-jar> 

Figure 46: Example of a XML based Descriptor file 

 
Of course, we are not proposing here to use XML or this so specific format; this is just a 
conceptual example, but that could be close to a possible real implementation. 

6.2.2.3.2 Output Interface 
As reviewed in Section 9.14 (state of the art) the mapping function output encoding could be 
done in very different ways. This is why we have defined a general-purpose building block (the 
Output Adapter) to encode the output according the user requirements in a very flexible way. 
Anyway, this output has to be sent towards one of the main building blocks in the 5G-NORMA 
architecture: the SDM-C, so there must be a common agreement about how the Output Adapters 
can generate their output and how the SDM-C can process it. 

To avoid losing generality our proposal for this is to use the well know event-driven software 
architecture (EDA); i.e., using a communication pattern based on events [59]. In this 
architecture, an event is simply defined as "a significant change in state". In our case, that 
change can be a change in the QoE Mapping Function which is relevant somehow. For example, 
the computed QoE could reach certain threshold, or we could have an Output Adapter 
programmed to work according the Weber-Fechner Law (see Section 9.14); in this case, an 
event could be generated when the program detects that, according the logarithmic law, it is 
necessary to increase resources to keep users satisfaction. From a practical point of view, this 
“change of state” is communicated by means of a (typically asynchronous) message: the “event 
notification”. 

The event emitter will be the QoS/QoE Mapping System (using the Output Adaptors), while the 
events consumer will be the SDM-C. The mapping system will have the responsibility to detect 
and transfer events, while the SDM-C will have the responsibility of applying a reaction as soon 
as an event is received. For the communication to be possible, we also need events channels, 
which are the conduits in which events are transmitted from the Output Adaptors towards the 
SDM-C. The practical implementation of event channels could be based on traditional 
components such as message-oriented middleware or point-to-point communication.  

To ensure communication, the semantic of event notifications will be decided by the Output 
Adapter designer, but following certain common rules to ensure that the SDM-C can understand 
and process the notification once received. Event messages could trigger the usual scaling 
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operations in virtual environments (e.g., scale in/out) or the VM power up/down operations. 
This would allow implementing the typical elasticity operations from QoS/QoE measurements.  

Event notifications will have the common structure normally used in Event-driven architectures; 
they are usually with two main parts: an “event-notification-header” and an “event-notification-
body”. The header should include the most relevant information to process the event (e.g., event 
name and type, timestamp). The event body can be used to provide more detailed information 
about the event. The following Table 8 could be an example of an event notification definition: 

Table 8: Example of an Event Notification Definition 

Header: EventName 
 
 
 

This is a free text agreed between the OutputAdapter and the SDM-C. A set of 
pre-defined event names could be defined, so the SDM-C could know what to 
do for each case according to that. 
Examples:  

- Change_in_MOS_Scale 
- 80_percent_threshold_reached 

EventType Related to the event name, different types can be considered. Example: 
- Threshold 
- MOS 

Priority Different priority levels could be defined (e.g. CRITICAL, MAJOR, LOW…).  

TimeStamp It will be probably necessary to prioritize or track events. 
 Body: Description This can be an optional informational element (free text) 

 Subscriptor This is when the event is associated to a specific subscriptor. It can be 
identified by the MSISDN or IMSI.  

 Tenant Tenant identifier 

 Slice Slice Identifier 

 Source The OutputAdapter raising this event. 
 QoE Metric Distortion, blurring, freezing, noiseness, echo… 

 ContentType Voice, speech, music, video, 3D movie. 

 AppType Multimedia, gaming, augmented/virtual reality. 

 UserType VIP User / Regular User 
 
6.2.2.3.3 Monitoring Interface 
The monitoring interface specific implementation will be depending on each input adapter; i.e., 
we could have a monitoring interface compound by different interfaces: those needed by each 
input adapter. This is something we have to agree with the monitoring system (see Section 6.2). 

6.2.2.4 QoS/QoE Mapping Block Deployment 
Once we have more clarity (at least at high level) about the QoS/QoE Mapping building block 
and its main interface systems another important question arises: Where, in the 5G NORMA 
architecture, the QoS/QoE Mapping function should be located? 

It is clear this function belongs to the 5GN control layer, but this is true only from the functional 
point of view. If we consider how the QoS/QoE Mapping function could be physically deployed 
things are not so straightforward. Depending on the QoS/QoE Mapping requirements (based on 
the, for example, slice, tenant, operator requests) the QoS/QoE Mapping module could have 
quite different aspects. Let us recall our two extreme examples previously mentioned:  

• To compute an objective global QoE measurement from just a couple of physical 
parameters monitored inside a specific VNF (e.g., CPU and RAM usage). 

• To compute real-time QoE measurements for a big set of individual end-users 
considering a big number of input parameters and using DPI and a Big Data Analytics 
infrastructure. 
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For the first case the requirements are not too demanding. Probably the mapping function (and 
even the monitoring) could be executed locally on each deployed NF. A simple threshold 
function executed on the NF could be used to raise an alarm towards the SDM-C module (or 
even some actions could be executed locally on the NF itself without involving other systems).  

On the other hand, for the second case, it would be necessary to deploy a dedicated node (or 
even a set of nodes) to perform the DPI, BigData Analytics and real-time stream processing. 
Probably a CEP (Complex Events Processing) architecture would be necessary in order to 
trigger the events towards the SDM-C. Furthermore, the deployment of such complex set of 
nodes should be performed according the provider specifications; some nodes should be 
required to work in the central network, while others should be placed in the RAN to get the 
best performance figures. 

Our approach is that 5GN should provide a general solution for this, not only a specific 
approach. Ideally, the three mentioned interfaces (north, east and west) should be implemented. 
However, to provide more generality, its implementation is not always mandatory; this depends 
on the implementation needs.  The most evident case is the 1st case above, where the parameters 
monitoring is so simple that it can be performed in the NF itself, so no WBI is really necessary. 
Also, the mapping function management can be probably omitted, since the QoS/QoE Mapping 
block probably works as a stand-alone process with no special management functions required. 

So, for the placement of the mapping functions we can consider the following options: 
 

• Deploy the QoS/QoE Mapping function as a stand-alone process into the individual 
NF’s (physical or virtual). The QoS/QoE Mapping function could be deployed on a 
single NF (even if the NFG comprises more than one), or redundantly, on each NF 
composing the NFG. In practice, this QoS/QoE mapping function would be probably 
devised as a specific algorithm able to generate by itself the QoS/QoE mapping events 
towards the SDM-C using the East-Bound-Interface. West Bound Interface should be 
implemented locally in the NF to receive the monitored parameters from the QoS/QoE 
Monitoring block (the monitoring function could be executed internally also; in that 
case the WBI is not used). Also, the NF could optionally implement the NBI to 
communicate to the QoS/QoE Management module (if not implemented, no 
management functions will be provided). 

• Deploy the QoS/QoE Mapping module as a dedicated service in a specific separated 
node. The complexity of that service is variable, based on the customer requirements (it 
can be a single node or a more complex service with a distributed nodes set). Anyway, 
the basic idea is the same: that service should implement at least the WBI to 
communicate towards the SDM-C (est and nord interfaces are optional depending on the 
specific implementation). 

• Implement the QoS/QoE Mapping module into the SDM-C block. In some cases it 
could be interesting to have a kind of “monolithic” SDM-C including QoS/QoE 
Mapping function capabilities. So, instead of using a specific NF for the QoS/QoE 
Mapping, this functionality is integrated inside the SDM-C. So, the QoS/QoE Module 
works as an internal SDM-C module, although preserving its functional independence. 
Generation of QoS/QoE Mapping events “towards” the SDM-C is internal, so even this 
interface is not mandatory here. 

• Include the QoS/QoE Mapping module into the QoS/QoE Monitoring module. In some 
cases it could be interesting to have these two modules together, since in fact, they are 
in a very close functional relationship. Anyway, like in the previous case, the QoS/QoE 
Mapping module still keep its independence at functional level. The implementation of 
the WBI will not be probably necessary (an internal communication channel would be 
probably used), although EBI and NBI should be implemented in this case. 
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6.3 QoS/QoE enforcement and monitoring  
The 5G NORMA aims to support fully dynamic, context aware QoE/QoS management that 
should be able to dynamically set QoS/QoE target based on detected application flows of the 
end users and adapt the end-to-end resource allocation and the data plane functions accordingly, 
thus enabling good user experience. Herein the study of the QoS/QoE enforcement and 
monitoring functions will focus on e.g. end user application detection and measurements to 
derive service/application specific QoE/QoS targets according to QoS/QoE policies and enforce 
the derived QoS/QoE targets by controlling the available resources among the competing user 
and application flows. 

6.3.1 QoS/QoE Monitoring and target definition 
QoS/QoE monitoring and detection functions should have the capability of autonomously 
detecting the conditions when all or part of the application flows of any end user requires 
specific treatment (i.e., different from the default) to enforce the QoS/QoE targets specified by 
or derived from the policies. The conditions may include events within the traffic of the 
managed application flows itself (e.g., an application with specific QoE requirements is started 
or the user changes the way of interaction with the application) or within the real time context or 
status of the resources serving the user’s traffic (e.g., congestion occurs, or there is a change in 
other application flows competing for the same resources). Detection also includes the ability to 
identify the set of flows that are subject of a given policy and need to be enforced by specific 
QoS/QoE enforcement actions.  

In order to determine the specific QoS/QoE enforcement action, the QoS/QoE targets for the 
identified set of application flows needs to be defined dynamically according to the 
detection/monitoring functions. The QoE targets define the set of QoE parameters/metrics on 
application session level (such as download time for web pages, the required bandwidth for 
video session, end-to-end latency per message transaction for V2X services etc.) and their 
corresponding target values/ranges that ensure good experience for the application/service 
vertical they apply to. The set of relevant parameters/metrics is specific to the type of traffic 
(e.g., the application type such as HTTP(S) Adaptive Streaming / YouTube for OTT or the 
service vertical itself such as M2M or V2X). The quantification of the target values is context 
based and specific to the attributes/content of the individual application session (e.g., the 
required bandwidth is derived from the detected/profiled media rate of the specific video file) as 
well as the context of the network and the resources (e.g., based on the available radio capacity 
and the flows competing for the same radio resources, see Section 6.3.2). 

The high-level structure of policy and context based adaptive QoE target definition and QoS 
parameter mapping is depicted in Figure 47. This may be implemented as an application of 
SDM-C to (re-)configure QoS/QoE related VNF in order to achieve the defined QoE/QoS 
targets. The internal operation of the adaptive QoS/QoE definition function comprises the 
following steps: 

• Policy and contextual information evaluation: First, the function evaluates if the 
policy requires QoE or QoS level management in the given context. For QoE 
management, QoE target definition and (optionally) QoE/QoS parameter mapping are 
performed whereas for QoS level policies only QoS parameters are defined (i.e., the 
QoE level is skipped). If no corresponding dedicated policy was defined for the 
application, there may still be policies that indicate how to handle such cases (e.g., try to 
maintain good QoE or just provide parameters for minimum/best effort service). If even 
no such policies exist, the function may operate according to internal or pre-configured 
defaults.  

• QoE target definition: identify the QoE targets applicable to the application session 
and define the values for the parameters. The QoE parameters are adaptively defined 
based on the characteristics of the application session, the corresponding policy and the 
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local context. A limited number of QoS target groups have been introduced previously 
and each group has a common traffic characteristic and QoE influence factors. In case 
there is a QoE enforcement functions in the system that is able to take over and enforce 
such parameters, they are fed to the QoE enforcement functions. Otherwise the process 
proceeds to the next step.  

• QoE/QoS parameter mapping: based on the QoE parameters and their values, a 
relevant set of QoS parameters are selected and their values are defined (see Section 
6.3.1.2 for detailed information). Note that in case there is an QoE enforcement function 
in the system, this step is still implicitly performed by the QoE enforcement function 
itself within its internal enforcement mechanism. The scope of this step is to define a set 
of low-level parameters (e.g. the throughput/bitrate, delay etc.) that can be then used as 
scheduling/service targets by the QoS enforcement function such as radio/packet 
scheduler. 

• QoS parameter definition: in certain cases (e.g., narrow service boundaries such as 
constant rate voice) the policies may indicate QoS targets directly (skipping the QoE 
level) as the selected QoS parameters are able to accurately describe the QoE 
requirement of the selected application regardless of the actual context. In these cases 
the QoS parameters are defined directly. 
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Figure 47: High level structure of adaptive QoE target definition and QoS mapping 

As the context and the application behaviour is highly dynamic, the validity period of a given 
parameter value is limited and it requires re-evaluation whenever there is a change in any of the 
contextual information. Therefore, context changes should be detected (by an external entity) 
and fed back to the QoS/QoE definition function. This may result in actions such as to increase 
the bandwidth target due to the user switching to a higher data rate video or increase the 
download time target of interactive applications in case of congestion. 

6.3.1.1 QoE targets definition 
It is desirable to define commonly usable QoE targets to simplify the network design. However, 
a particular challenge addressed here is that due to the high number of different applications, it 
is not possible for a QoE management system to have dedicated metrics fit all applications. 
Instead, a small number of QoE targets are preferable that are generic enough to enable 
formulating the requirements of a large range of applications by classifying the applications into 
a limited number of groups. Each group has common characteristics with regards to the relevant 
QoE influence factors, i.e., what are the important parameters and attributes that have impact on 
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the achieved QoE for a given application session. A valid classification scheme is outlined 
below, defining five groups with the common behaviour, general requirements, and examples: 

Real time multimedia: 

Transfers the audio/video frames of a live capture, i.e., content is disseminated at the same pace 
it is generated. Sensitive to jitter and discards (as they compromise the quality of the decoded 
content) and requires low delay (to maintain interactivity). Examples: Viber/Skype (voice/video 
calls), WhatsApp (voice calls). 

Stored multimedia: 

Delivers a multimedia file that is already available at the time of the request (often in different 
resolutions and formats). Requires short time to play (pre-buffering time), no stallings and 
decent resolution (matching the device capabilities). Examples: YouTube, Netflix. 

Interactive data: 

Generates demand (download/upload) in bursts with significant idle periods in between (mostly 
personalized content). Requires short download (or upload) time. Examples: web browsing, 
social sites (excluding video/voice parts), map views, cloud based productivity tools, Evernote. 

Messaging/transactional: 

Generates a few packets at a time (i.e., insignificant bandwidth requirement). Requires low 
latency (round-trip time) and no loss for high interactivity. Examples: chat, real time gaming. 

Background: 

Data transfer either running in the background (completely invisible to the user) or when the 
user is aware of its progress but does not have strict expectation about the completion time (i.e., 
no urgent waiting on the content like after requesting a web page). The user still needs to feel 
that the process is progressing and it is not stuck. Examples: pushed content (email, Snapchat 
message, where the user is only notified when the content is already downloaded in 
background), Dropbox, Box, SW updates. 

The detection of which type a given application belongs to may be implemented via the 
following mechanisms: 

• Detection of well-known applications: for a limited set of popular applications, specific 
detection logic may be implemented based on UP packet monitoring (e.g., by the 
correlation of IP addresses, DNS query/response messages, Transport Layer Security 
(TLS) handshake information, URLs, etc.). This may lead to the detection of a specific 
application (e.g., YouTube), which is known to belong to a specific application type due 
to its way of delivering multimedia data. 

• Non-dedicated applications may be profiled based on the traffic pattern they generate 
(e.g., specific attributes of HTTP adaptive streaming, VoIP/video calls, messaging, etc. 
can be identified without knowing the exact identity of the application). Additionally, 
the application’s behaviour may be matched to already profiled applications to identify 
that a new application generates the same kind of traffic as a known one thus it is likely 
that the similar characteristics apply. 

The quantification of the QoE targets (e.g., download time, throughput/bitrate) may be based on 
pre-defined and/or on-the-fly detected attributes: 

• For certain applications, the correlation between the user satisfaction (subjective 
experience) and the QoE targets may be studied and generally applicable 
values/ranges/limits may be synthetized (e.g., the download time for web pages that is 
usually accepted without causing frustration can be identified through crowdsourcing 
campaigns). Such targets may be configured in the policies. 

• Certain QoE targets require the detection of session metadata, such as the media rate of 
the video in order to quantify the amount of bandwidth it requires for smooth playback. 
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This requires to obtain session establishment metadata by the network (e.g., from 
protocols such as Session Initiation Protocol (SIP) or Real Time Streaming Protocol 
(RTSP)), C-plane signalling (for native services), packet metadata (e.g., video data  rate 
and codec information from manifests or from the metadata section of the video file 
being downloaded), or from any external source (such as signalling from the content 
provider or from the consumer application). 

• Due to the increasing adoption of end-to-end encryption in the OTT domain, it may not 
be possible to access the required attributes directly by U-plane packet monitoring. 
Instead, real time traffic profiling mechanisms are needed that are coupled with 
enforcement actions. Such actions may temporarily provide the application with 
sufficient resources (referred to as incubation) so that the application exhibits traffic 
delivery patterns that are characteristic to the particular session. One example is the 
HTTP(S) streaming that is used by most of the stored multimedia services. These 
applications are downloading multimedia data at the pace it is consumed by the player, 
i.e., with a rate that is close to the playback rate in order to avoid pre-buffering 
excessive amount of data. Incubation enables the multimedia session to achieve a 
download rate that is comfortable for the specific content (i.e., matches the content 
characteristics), which can be measured during the incubation period and enforced later 
on. 

6.3.1.2 QoS parameter definition 
The QoE targets are converted or mapped to QoS parameters that are suitable for direct 
enforcement via e.g. radio/packet schedulers or other traffic management mechanisms. The QoS 
parameters are summarized in Table 9 for the traditional telecommunications services and the 
OTT vertical. Additional service verticals (V2X, M2M, IoT, etc.) are expected to at least partly 
reuse the same/similar QoS parameters, with possibility to introduce additional ones (such as 
reliability assurance for critical services) later according to the technology evolution. 
 

Table 9: QoS parameters 

 Parameter Description / Comment 

Telecommunic
ations (e.g., 
native 
voice/video) 

delay e.g. target for voice: 100 ms (3GPP TS 23.203 QCI1 for 
conversational voice) 

jitter e.g. target for voice: 0.5–1 ms  

packet loss e.g. target for voice: 0–10-2 (3GPP TS 23.203 QCI1 for 
conversational voice) 

minimum throughput 
(capacity grant) 

based on the codec parameters (e.g., AMR voice codec ~ 12.2 
kb/s) 

OTT 

target throughput 
(capacity grant) 

bandwidth required for good QoE (ideally this should be the 
service provided for the application) 

minimum throughput 

(capacity grant) 
bandwidth required for acceptable QoE (below that the application 
is unusable so it is better not to serve it at all) 

scheduling delay budget 
(per packet) 

amount of time after the packet must be scheduled for 
transmission (for real time streaming type of applications); may be 
even provided in each U-plane packet 

discard (yes/no) discard sensitivity 
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priority relative priority (~ARP) to resolve conflicting situations when 
some application demands cannot be served 

urgency a marking applied on a per-packet basis indicating that the service 
of the packet should be expedited (i.e., served out-of-order in a 
non-FIFO way) 

For the OTT service, the values of the QoS parameters is not statically defined but calculated 
dynamically based on the context of the user’s application and the network resource status. The 
consideration of mapping QoE targets to the QoS parameters for different traffic/application 
types is listed below: 

• Real time multimedia 
o Minimum bandwidth corresponding to the content media rate (lower rate causes 

degradation through increased delay, dropped frames and decoding errors). 
o Bandwidth requirement is not subject to highly dynamic and abrupt changes. 
o Tight scheduling for steady throughput and low jitter (sensitive to jitters). 
o Low delay (in the range of conversational voice/video targets). 
o No loss (discards cause decoding errors and QoE degradation). 

• Stored multimedia 
o Minimum bandwidth corresponding to the content media rate (lower rate causes 

degradation through stalling or switching to low resolution). 
o Occasionally higher target bandwidth to enable accurate demand profiling and to 

boost pre-buffering through incubation. 
o Bandwidth requirement is not subject to highly dynamic and abrupt changes. 
o Less tight scheduling than real time multimedia, throughput targets to be 

achieved over longer (at most end-to-end RTT) averages, not sensitive to jitter. 
o No loss (discards cause throughput degradation and potential QoE degradation 

via end-to-end transport layer actions). 
• Interactive data 

o Highly dynamic target bandwidth depending on content size and target download 
time (application and user context specific). 

o May require no (or low) minimum bandwidth due to content elasticity (i.e., 
content may already be displayed to the user while downloading). 

o No loss (discards cause increased completion time and data starving at the 
application layer such as delay of specific objects). 

• Messaging/transactional 
o Low latency (and high priority). 
o No loss (discards cause timeouts, delayed or even lost messages). 
o Urgency may be applied to important packets (application specific). 

• Background 
o Best effort service (may have a minimum throughput requirement). 
o Service goal is to avoid flow level degradation such as TCP timeouts. 

6.3.2 QoS/QoE enforcement 
The main purpose of QoS/QoE enforcement is to manage resources for a dynamically identified 
traffic mix based on derived application specific QoE targets for good customer experience or 
autonomously defined network/packet level QoS parameters. The operation is dynamic and self-
adaptive to handle the versatile application sessions and resource requirements based on actual 
traffic and network context. It also includes efficient Congestion Control (CC) mechanism to 
effectively solve the congestion problem by redistributing the available resources among the 
competing flows and applications according to their QoE requirements or the QoS principles 
selected by the policies. Therefore, the CC operation is incorporated into the QoS/QoE 
enforcement as an integrated capability.  
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As described in Section 6.3.1, the target throughput/bandwidth requirement of an individual 
application session that enables acceptable QoE depends on the application type and the 
attributes of the content being requested. Giving less bandwidth/resources to the session results 
in QoE degradations and possible termination of the session by the user. On the other hand, 
increased bandwidth/resource allocation beyond a level also has a diminishing marginal utility 
in terms of the achieved QoE. There is a certain (application and session specific) limit beyond 
which QoE could not be improved no matter how much more resources are given. For instance, 
multimedia applications (such as YouTube or Netflix), the minimum required amount 
resource/bandwidth is the media rate of the video/audio (plus protocol overheads). Giving more 
bandwidth, on the other hand, does not provide better multimedia experience once seamless 
playback is guaranteed (the extra bandwidth would be spent for accumulating more data in the 
playout buffer that has no added value for QoE as long as the buffer does not deplete). 
Therefore, multimedia application sessions have a narrow bandwidth profile around the data 
rate (or playback rate), meaning that increasing the bandwidth allocation above the media rate 
quickly stops delivering QoE improvement (having maximized the QoE already) whereas 
dropping just below the rate soon starts to cause problem as shown in Figure 48. Therefore, the 
goal of the QoE/QoS enforcement is to combine with resource management to arbitrate the 
resource allocations in a way that no application session gets under-allocated (causing 
compromised QoE) due to serving another session above their demand. 

 
Figure 48: Illustration of the bandwidth allocation and QoE of video session 

Figure 49 illustrates the system status, the QoE status and the corresponding QoS/QoE 
management and Congestion Control (CC) operation as the integrated QoE enforcement 
functions. The system status is characterized by the amount of traffic the physical network 
resources have to handle and it defines the CC actions. The objective of the CC actions is to 
readjust the amount of resources assigned by the QoE enforcement function to the amount of 
resources available in the system (i.e., keeping the control of the resource allocation but 
efficiently utilizing all available capacity). The QoE status indicates the relation of the 
application/flow demand to the available resources and it defines the QoS/QoE management 
actions to be executed. 
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Figure 49: QoE enforcement and resource management operation 

The details of the states are provided below: 

• Load < available resources (system status): underutilized system, there are free 
physical resources (e.g., radio capacity or transport link capacity) after serving all 
application sessions/flows. The CC has no role in this state (i.e., should not limit the 
flows). In that case, the QoE status is LOW LOAD meaning that the desired QoS/QoE 
is provided natively by the system without the need of specific QoE enforcements on 
any applications/flows.  

• Load ≈ available resources (system status): the bottleneck resources have become fully 
utilized, the application sessions/flows have to compete for the system resources. This is 
the point where QoE/QoS enforcement function has to start actively managing the 
QoS/QoE through its internal scheduler to enforce the desired targets. Also, this is the 
target system status the CC tries to maintain in case there is sufficient demand to load 
the system. The QoE status may be either RESOURCE CONFLICT or DEMAND 
CONGESTION: 

o RESOURCE CONFLICT: the cumulative resource demand of the 
applications/flows passing through the bottleneck resource fits into the 
available capacity. In that state, the QoS/QoE targets are enforced through 
redistribution (i.e., redistributing the bottleneck resource according to the 
QoS/QoE requirements). Note that redistribution is not relative prioritization 
but the enforcement of explicitly calculated individual per session resource 
(e.g., bandwidth) targets. This is the desired QoE status as it allows to fulfil the 
QoS/QoE targets of all applications/flows. 

o DEMAND CONGESTION: the cumulative demand of the application 
sessions/flows passing through a bottleneck is higher than the available 
bottleneck capacity due to either increased demand or reduced capacity. In that 
case, not all demands can be satisfied at the same time. Therefore, the QoE/QoS 
enforcement function needs not only to manage the QoS/QoE through 
redistribution but it also has to let specific sessions degrade (allowing them to 
receive less resources than what they need), or even terminate/block sessions. 
The criteria for selecting the degraded sessions are defined by the policies. 

• Load > available resources (system status): the bottleneck resources are heavily 
overloaded, e.g. due to additive increase CC action. This is not a desired state from 
QoS/QoE management point of view, therefore it is only a transient state that is 
immediately resolved by the CC actions. In the meantime, the same QoE states and the 
corresponding QoS/QoE management actions apply as with the previous system state.  

The transition between the states is triggered by three independent processes: 
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• First, the demand itself may change as users starting/stopping application sessions. This 
is detected by application detection function directly by observing the new application 
sessions/flows.  

• Second, the available capacity may change (especially if the resource is a radio interface 
with varying channel conditions). This is followed by the enforcement function by 
algorithmically adjusting the amount of resources it distributes among the sessions.  

• Third, the actions of the enforcement function itself change the system status by 
additive increase and multiplicative decrease CC actions or QoE status by 
degradation/blocking/termination.  

The CC actions are further detailed as follows. Let C(t) denote the capacity of the resource as 
known at time instance t. . As the capacity of the resources may not be known beforehand, e.g. 
the radio resource capacity is variable and highly depends on the channel quality of each users, 
C(t) needs to be estimated by the enforcement function as introduced below. Let T(t) indicate 
the cumulative throughput as measured by enforcement function over all flows sharing the 
resource. Assuming that the system starts with low load, the C(t) is unknown and the 
enforcement function first only monitors the QoS/QoE without acting on the traffic. In case the 
demand increases or the capacity is reduced, the available resources in the system may become 
loaded. This is detected through the congestion detection capability. At that point, C(t)=T(t), 
that is, the measured throughput over the congested resource equals its momentary capacity. 
The C(t) serves for the enforcement function as the starting point for the amount of resources 
that needs to be distributed through its scheduler functionality among the competing sessions. 
By scheduling the traffic internally, the enforcement function effectively decreases the load in 
the system. At the same time, C(t) and the amount of resources available in the system may 
become decoupled as the measured T(t) will be limited by the enforcement targets itself. 
Therefore, the AS needs to constantly probe for the resource availability in the system through 
its additive increase / multiplicative decrease CC actions as shown in Figure 48. Additive 
increase means to increase C(t) by a given Δ amount periodically, e.g. C(t)=C(t-RTT)+Δ where 
RTT is the measured round-trip time between enforcement point in the network and the UE. 
Multiplicative decrease means to reduce C(t) by an α factor so that C(t)=C(t-RTT)*α. 

• In case that the congestion has been resolved (the system load is decreased below the 
available resources) by its actions, the available system capacity should be higher than 
currently estimated C(t). This case is illustrated by the yellow circle in Figure 48. In that 
case, the enforcement function additively increases C(t) until 

o the system bottleneck becomes loaded again due to the increased traffic it has to 
process, at which point the measured T(t) throughput again becomes an accurate 
indicator of the amount of resources the enforcement function needs to 
redistribute (i.e., the system is kept at the Load ≈ available resources state); or  

o the traffic sources become self-limited and they stop following the C(t) increase 
with an equal increase in their throughput (i.e., C(t) becomes greater than T(t)) 
and the system is not loaded; in that case, the system has actually transitioned to 
the Load < available resources state and all limitations may be lift off (i.e., the 
scheduler transits into bypass mode).  

• In case the enforcement function detects that the QoS/QoE targets are not enforced due 
to the system loaded too much (Load > available resources state as illustrated by the 
purple circle in Figure 48), the C(t) is multiplicatively decreased until the resource re-
distribution becomes effective.  
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Figure 50: Illustration of additive increase and multiplicative decrease CC 

•  

6.4 Video Pre-Scheduler  

6.4.1 Research objective 
It is expected that streaming applications will continue stressing the network through the usage 
of 4k content, etc. Therefore, the optimization and adaptation of streaming strategies to wireless 
networks is still a challenging task. The main goal of our research work is to investigate how the 
SDN paradigm can bring improvements to achieve QoS requirements to video streaming 
context. Our study focuses on finding suitable design of an application-aware scheduling for IP–
based multimedia streams at the application layer atop SDN architecture, identified here as 
SDM-C, in a wireless system.  
We consider a wireless shared channel scenario, where several streaming users share the 
common bandwidth and transmission power at the same time. In addition to the Layer2 
scheduler, known as MAC scheduler, located at the eNodeB function which is in charge of 
assigning for each time instant channel resources to individual flows of users based on a 
particular scheduling policy. One of the targets of the video pre-scheduler is to enhance RAN 
resource allocation and take advantage of the SDN paradigm. 
The problem of designing the video-pre-scheduling application becomes a problem of managing 
the queues between the Core and the RAN. For that, we focused in this first step on: 

• Develop a CRUD application able to Create/Read/Update and Delete queues in the 
ovswitch dynamically from the SDM-C northbound. This queuing model will allow us 
to control the queues from the application layer and accordingly schedule flows.  

• Take advantage of SDN controller and OpenFlow protocol to map different flows in 
the created queues. 

• A basic scheduling scheme is implemented to demonstrate the effectiveness of the 
proposed model.  

• Finally a video pre-scheduling strategy is investigated. The underlying mathematical 
model is proposed and the pre-scheduling algorithm is provided. 

 

6.4.2 Video Pre-scheduling SDN platform 
In this section, the proposed solution is presented. Firstly, the architecture of the platform is 
detailed. Secondly an overview of the controller’s northbound API is introduced. Thirdly, a 
queueing model as well as the mechanisms of managing QoS and queues via OVSDB protocol 
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is given. Finally, the scheduling approach is theoretically investigated and the resulting 
scheduling algorithm is provided. 
Today, HTTP based protocol such as MPEG-DASH , Apple HTTP Live Streaming, or 
Microsoft Smooth Streaming, are the most deployed to deliver video contents. They offer the 
possibility to the client to adapt to the available bandwidth by boosting up its video to the 
highest possible resolution. In fact, video content is encoded into different formats with distinct 
bit rate and resolution and spitted into subsequent pieces of chunks (each of which of duration 
of 2-10 seconds). Thus, a set of video chunks with different capabilities are available to the 
client who will select the most appropriate one according to its channel rate. Since video 
streaming is typically carried out by stationary users who can sometimes receive highly unfair 
service by the radio network, this results in some users receiving very poor video quality due to 
the lower rate allocated to them by the network. 
We propose a scheme to leverage this shortcoming by selectively sending more content to 
sessions when they have better link quality while providing sufficient rate guarantees to keep 
their buffers from under-flowing and offering a stable video quality. 
Before the design of the solution can begin, it is necessary to determine which controller the 
solution should be implemented on. SDN controllers were discussed in Section 2.1.1. Based on 
the many options regarding controllers it has been decided to use the OpenDaylight (ODL) 
controller [60], because it provides the most basic features of an SDN controller such as 
providing topology information and network statistics. Furthermore, the OpenDaylight 
controller offers the Restful API that allows our developed application to easily communicate 
with the OpenVswitch via OpenFlow and OVSDB protocols. 

6.4.2.1 Architecture of the platform 
The design of our video-pre-scheduler platform can be divided into two parts. The first one 
consists of how to be able to manage queues in the ovswitch from application level. The second 
part concerns the design of the scheduling algorithm. 
 

 
Figure 51: System architecture 

The designed application provides a CRUD (Create, Read, Update, Delete) API, exposed to 
SDM-C. This application allows external entities to create queues and manage OpenVswitch. 
Whenever these REST requests are issued, our application assembles a new queue-related 
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request and dispatches it to the appropriate Openvswitch. Once the queues are created, a pre-
scheduling application could be activated and take profit of the link variation. 
Figure 51 depict the overall architecture of our solution. The proposed solution can split into 
two parts; one that handles the queuing model, depicted in Figure 52, and the other defines the 
scheduling strategy.  
The main components of the system are described as follows: 

• SDM-C: The architecture of our solution is based on the SDM-C paradigm. The Open-
Flow protocol has support for centralized monitoring of switches for different statistics 
that can be useful for our proposed scheme. Secondly, the controller can add/modify 
forwarding rules at switches; therefore, it provides a centralized point to decide routing 
of flows which is received as output from the pre-scheduler application to prevent 
queue buildups. 

• Ovswitch queues: Using the northbound API exposed by the SDM-C (ODL in our 
implementation), queues in the ovswitch are created and managed from the application 
layer. 

• Flow Classification module: The flow classifier will classify the flow based on the 
header of the flow. 

• Pre-Scheduler application: An important component of our system is the pre-
scheduling unit. Our aim is to design a pre-scheduler able to shape and allocate the 
streams in order to increase the performance of the system. Given a certain resource 
budget, e.g. the number of bytes in the ovswitch queues that are ready to be transmitted, 
the task of the pre-scheduler is to determine an allocation for each active flow that best 
utilizes this budget. This scheme is flexible and uses network resources efficiently. 

 

 
Figure 52: Synoptic of the Queuing system 

 

6.4.2.2 Northbound APIs 
They are used to communicate between the controller and applications. Northbound APIs are 
the most critical APIs in the SDN environment, since they have to support a wide variety of 
applications. 
Our solution is an application that communicates with the controller and the underlying network 
via this API. 

6.4.3 Link and buffer aware scheduling algorithm 
We assume that several users in the serving area of a base station in a mobile system, as 
depicted in Figure 51, have requested to video stream from one or more streaming servers. 
The streaming server forwards the packets directly into the ovswitch buffers, where packets are 
kept until they are transmitted to the eNodeB VNF. The latter implements a MAC scheduler 
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taking care of scheduling user over the shared radio resources of the cell. It is important to 
notice that in our scheme, all the video sessions are considered as best effort traffic from a MAC 
scheduling perspective.  
The final QoE of individual video users depend on their position in the cell, their mobility and 
the cell load. 
The draining of the queues located in the ovswitch is controlled by a pre-scheduler deciding the 
amount of data should be received by the users. In general, the performance of the streaming 
system significantly depends on many parameters such as the queues management, the 
scheduling algorithm, the resource allocation strategy, the available, the number of users, etc. 
 
Our proposed pre-scheduling algorithm takes into consideration the variations in the wireless 
link quality. Our scheme selectively sends more content from the queue in the ovswitch to user 
sessions at time when they are operating at higher radio efficiency while it gives them sufficient 
rate guarantees to prevent a playback buffer under-flow. This offers crucial improvement in the 
effective throughput of the wireless network.  
 

6.4.3.1 Introductory example 
To better understand the mechanism that we are proposing; let us consider two users X and Y 
with time varying channel. We suppose user X is in better radio conditions than user Y. 
Therefore, user X receives better average channel quality and rate. As shown in Figure 53, 
depending on the quality of the channel, user X channel varies between 8 Mbps and 6 Mbps and 
user Y channel varies between 4 Mbps and 2 Mbps.  
If we consider that X was the only user in the system its rate will vary between 8 and 6 Mbps 
thus an average rate of 7 Mbps. If we consider now that Y was the only user in the system, its 
average rate would be of 3 Mbps. When both users are active at the same time then they will 
share the network proportionally resulting in an average rate of 5 Mbps, with X getting a rate of 
3,5 Mbps and Y getting a rate of 1,5 Mbps. 
Imagine that users are selected for data transfer depending on how much better their channel 
quality is compared to their average channel quality. In a first scenario, consider selecting only 
one user for data transfer in each time interval, namely the one that maximizes the ratio of their 
current rate to their average rate. X will be selected for data transfer in the first time interval 
while Y will do the transfer in the second time interval and so on. Therefore, only one user is 
active at a given time and when active, X will have a rate of 8Mbps while Y will get a rate of 4 
Mbps. Since each user will only be active half the time, users X and Y will get an average rate 
of 4 and 2 Mbps respectively for an overall average rate of 6 Mbps. Hence, by prioritizing users 
with above average channel quality for data transfer not only each user gets higher rate but also 
the overall capacity of the network is enhanced. 
However the prioritization of the users does not imply selecting only one user in each time 
interval. Now we consider a second scenario where a portion of the time interval is assigned to 
each user in proportion to their Current to Average Rate Ratios (CARR). Since X CARR is n

o
 

and Y CARR is  b
p
  they will get assigned fractions 0.63 and 0.36 of the first time interval 

respectively. Likewise X and Y will be assigned the fractions 0.39 and 0.60 of the second time 
interval respectively. Therefore, user X average rate over the two intervals will be 
q.rplnQq.pslr

b
= 7.38 Mbps and user Y average rate over the two intervals will be q.rplbQq.rlw

b
=

3.12  Mbps. We can see clearly the increase in users rate and the overall network capacity as 
well. 
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Figure 53: Exploiting time-channel variability 

6.4.3.2 Mathematical model and Scheduling algorithm 
Now let us take advantage of the SDN technology given that the SDN controller has an 
abstraction view of the wireless network. For that, we developed a module inside the SDN 
controller that can easily track information per streaming session such as flow rates, user 
playback buffer state and user position. This information is stored in rapid database (e.g., 
MangoDB, Redis, to name a few). The collected information can be used to determine the 
sessions in a given cell and, per time slot, rates and average rates. This can be used to calculate 
the schedule for the sessions. The concept of our proposed scheme is described in the following 
sub-section.  

6.4.3.2.1 Mathematical Model 
We suppose that the time is divided into equal intervals. Let 𝑘 = 1,2,3, … be nonnegative 
integers that are assigned to intervals slot boundaries. Time interval [k; k+1] is called slot k+1. 
For each cell C and a time slot k+1, we consider j streaming users u=𝑈k;1 ≤ 𝑖 ≤ 𝑗.  

We denote by 𝑟k)QJ	 the individual average rate of user 𝑈k in time slot k+1. Averaging over the 
time slot is done to average out the impact of fast fading. “Individual” rate here means the rate 
that the user would get if it was the only user in the cell. Since there are j users, the 

rate 𝑟k)QJ would be j times the observed rate for user 𝑈k in time slot k + 1. 

We denote by 𝑅k  the average rate for user 𝑈k  computed based on the rates 𝑟k)QJ over a sliding 
window of time slots.  

Let  𝛿k)QJ =
"S
z{_

LS
	 be the ratio of the instantaneous to average rate for user  𝑈k  in time slot k + 1. 

Let  𝛼k)QJ		denote the buffer occupancy for user 𝑈k at the beginning of time slot k + 1. 𝛼k)QJ		 

 is measured in units of time slots (of size k + 1). This means that the playback for user 𝑈k can 
continue for 𝛼k)QJ× 𝑘 + 1 	seconds from its buffer alone. 

Let   𝜓k)QJ	𝑏e defined as the buffer occupancy of user 𝑈kat the beginning of time slot k + 1 
divided by the sum of buffer occupancy of all j users in the cell at the same time slot: 

𝜓k)QJ =
𝛼k)QJ

𝛼~)QJ~
 

The principle of the algorithm is that at time slot k+1 user 𝑈k will be served at rate: 

𝜓k)QJ×𝑟k)QJ 
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Figure 54 summarizes the proposed algorithm. 

 

 
Figure 54: Proposed scheduling algorithm 

6.5 QoE aware eICIC 

6.5.1 Introduction 
In 5G NORMA architecture, the link between the QoE manager component and the SDM-C that 
brings QoE intelligence deeply into the mobile network allows a direct access to QoE awareness 
to all NBI applications interfaced with the controller. The Self Organizing Network (SON) 
functions can also benefit efficiently from QoE intelligence to meet users QoE requirements. 
Indeed, we argue that exploiting the QoE knowledge will give a clearer picture to SON 
algorithms of user’s satisfaction and enables to perform the network optimization/configuration 
for the benefit of users. 

We will concentrate on the specific case of 3GPP SON function that is the SON interference 
management mechanism, known as eICIC that was introduced to mitigate inter-cell 
interference. 

3GPP eICIC mitigates interference occurring in DownLink (DL) transmission by time-sharing 
the radio resources between macro and pico access nodes. This can be obtained with the 
insertion for macros of certain silent periods during their transmission periods, named Almost 
Blank SubFrames (ABS), during which pico nodes can transmit at reduced interference. During 
ABSF, the pico nodes are allowed to announce a signal strength that is artificially increased by a 
margin called CIO so as to "force" UEs to associate with those pico nodes. Conventionally, 
eICIC computes optimal pairs (ABS, CIO) on each cell pair (macro, pico) of the controlled 
network. The cell radio configuration features, ABS and CIO, are jointly optimized to maximize 
a network utility, such that in turn it results in a global coordination scheme of inter-cell 
interference between macro and pico nodes. As an overall network utility, the sum of 
logarithmic user rate utilities, which refers to network Quality of Service (QoS) metric, is 
mainly considered by QoS-based optimization methods. 

Mobile Network operators see user satisfaction, namely QoE, as an essential commercial 
challenge. Indeed, controlling or managing QoE provides operators, on one hand, a sustainable 
industrial competitive advantage, and enables them, on the other hand, maximizing and securing 
the degree of customer satisfaction and finally reduces customers' churn. To manage QoE, prior 
work has largely investigated the idea of bringing service or application awareness into the 
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network [61]. Indeed, QoS enhancement through a fair distribution of the user radio throughput 
does not guarantee a homogeneous satisfaction level among users. To solve this problem, a 
twofold approach is proposed to apply to eICIC algorithm: on one hand, the experience of a user 
e.g. watching a video is controlled by a QoE metric measured directly from the application 
layer; on second hand, a fairness criterion is applied directly on QoE in addition to a fairness 
criterion on the users. Indeed, the received video quality is unfair when homogeneous user rate 
especially when the transmitted videos have different content characteristics. The method 
integrates a direct measurement of user satisfaction - namely QoE - in the utility function used 
within a LTE framework performing a dynamic eICIC optimization in HetNets presented in 
[62] and [63]. 

The goal is to provide a fair video quality to different video flows. 

A major outcome of our work is that for video applications use case, the performance of QoE-
eICIC is analysed to illustrate the benefit brought by the QoE awareness to both optimizing the 
inter-cell interference coordination and ensuring user satisfaction over HetNet: 

• in term of network KPIs (cell edge and median throughput, respectively 5th and 50th 
percentile) and,  

• in term of QoE KPI that is the number of QoE-based satisfied users per cell or km2. 

The QoE-aware eICIC mechanism is designed as an application from the SDM-C, running in 
the northbound which role is to control within eMBB slice (part of network control of SDMC) 
via the configuration of the RAN such as inter-cell interference coordination scheme favours 
resource allocation that provides a fair video quality to different video flows. 

6.5.2 Quality of Experience as a video utility 
Quality of Experience w.r.t. Structural SIMilarity (SSIM) 

SSIM is a popular metric of image/video quality among video experts and operators since it has 
the advantage of being both objective, low complexity and accurate. From the human eye 
perspective, it improves the representation of the perceived video quality compared to 
traditional metrics such as PSNR and MSE. Therefore, SSIM has been largely adopted as an 
indicator of user's satisfaction level assuming that higher the value provided by this indicator is, 
higher the user satisfaction is and as an enabler of online user QoE assessment. SSIM generates 
extremely high absolute Pearson correlation [64] that highlights the high level of correlation 
between the values delivered by SSIM and the video quality state.  

Based on its properties of high correlation and low complexity, SSIM is adopted as quality 
metric for video application and is used preferably to assess user QoE online for video services.    

SSIM is a pure mathematical fidelity metric of a video content quality as seen by the human 
eyes based on a Full Reference (FR) model.  It measures image degradation in terms of 
perceived structural information change [65]. SSIM measures the similarity of the two signals 
(the original and the distorted signal) by comparing the luminance, the contrast and the 
structure. This evaluation is done by using some low level structural information such as 
statistical metrics (mean, variance and covariance) of intensity values of pixels in local patches.  

SSIM is computed within a square window of size N×N, which moves pixel-by-pixel over the 
entire image as: 

 

𝑆𝑆𝑆𝑀 𝑥, 𝑦 =
2𝜇l𝜇� + 𝐶J 2𝜎l𝜎� + 𝐶b 2𝑐𝑜𝑣l� + 𝐶p

(𝜇lb + 𝜇�b + 𝐶J)(𝜎lb + 𝜎�b + 𝐶b)(𝜎lb𝜎�b + 𝐶p)
 

with µ and σ denoting the mean and the variance of the luminance value in the corresponding 
window, covxy denoting the covariance of x and y, C1, C2 and C3 being variables to stabilize the 
division with weak denominator. 
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The range of the SSIM index goes from 0 to 1, which represents the extreme cases of totally 
different or perfectly identical frames, respectively. SSIM is associated to the subjective metric 
MOS scale, which assesses subjectively the perceived video quality on a scale of 5 values, from 
1 (bad) to 5 (excellent), as reported in [66]. 

 
Table 6: Mapping SSIM to MEAN OPINION SCORE SCALE 

SSIM MOS Quality Impairment 

³ 0.99 5 Excellent Imperceptible 

(0.95,0.99) 4 Good Perceptible but 
not annoying 

(0.88,0.95) 3 Fair Slightly 
annoying  

(0.5,0.88) 2 Poor Annoying 

< 0.5 1 Bad Very annoying 

 

However, SSIM captures the spatial differences between two representations of the same frame 
and, hence, is particularly suitable to express the perceived quality of a static image when coded 
at different levels of compression. Consequently, it does not consider the effect of the temporal 
correlation between consecutive frames in a video. But, prior work has shown that the average 
SSIM computed over a sequence of frames of a video clip is generally a good QoE index for the 
video as well. Therefore, for video sequences, a Video SSIM (VSSIM) metric has been defined 
to measure the quality of the distorted video in three levels, namely the local region level, the 
frame level, and the sequence level. 

Structural SIMilarity (SSIM) as a video utility 

The evolution of SSIM as a function of the encoding rate R has been validated in [61] with the 
following parametric rate-distortion model: 

𝑆𝑆𝐼𝑀 𝑅, 𝑞 = 𝑞J. 𝑙𝑜𝑔 𝑞b. 𝑅 + 𝑞p  (1) 

where R is defined in the interval of interest [Rmin ; Rmax] and q = [q1, q2, q3] Î Q Ì R3. The 
time-varying and content-dependent vector q reflects the spatial and temporal complexity of the 
video content S. For all values of q belonging to the set of admissible values Q, equation (1) 
describes a continuous, invertible and strictly increasing function of R.  

The model of dependency between SSIM and the encoding rate of equation (1) presents an 
almost perfect correlation with Pearson coefficient always higher than 0.99 [61]. On this basis, 
we adopt SSIM as a video utility to create a QoE-based utility. The objective of our quality-
based approach is to favour the rate allocation which allows maximizing the overall video 
quality under quality fairness constraint and according to UEs channel condition. 

Figure 55 depicts curves of rate-distortion for the different video programs. It illustrates the 
monotonous increase in video quality with the encoding rate R. When R goes above a given 
limit, the progression of SSIM slows drastically down until converging to the maximal value 
SSIMmax = 1. Above the limit, R needs to augment hugely to generate a perceivable 
enhancement of SSIM. 

Additionally, we observe that heterogeneous SSIM measurements related to the various 
programs are measured for a given encoding rate. This means that when identical applicative 
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data rate is also assumed, users experiment an unfair quality according to the content 
complexity. It is also important to note that the increase in encoding rate does not always 
correspond to an equivalent increase in the quality of experience for the end user. Figure 55 
suggests that the quality experienced by a user (and hence, the SSIM) is strongly related to the 
content of a specific video. The assessment of a “good,” “acceptable” or “bad” quality is heavily 
depending on the video content. 

 
Figure 55: SSIM as a function the encoding rate and content 

 

6.5.3 HetNet Inter-Cell Interference Coordination piloting by 
QoE for heterogeneous networks 

Optimization settings: Cell Individual Offset and Almost Blanked Sub-frame 
 
3GPP eICIC involves ABS patterns to protect preferably users located at small cells edge that 
are severely disturbed by interfering macro cells (LTE Release 10). The protection is achieved 
with a time-based repartition of the Physical Resource Blocks (PRBs) distributed into "regular" 
time slots where macro cells will transmit data traffic and a number of particular some time slots 
where macro cells will mute and do not transmit any data traffic. ABSs correspond to the 
subframes during which the macro cell does not activate any traffic channels but only certain 
control channels which are transmitted with reduced power. This pattern is signalled in the form 
of bitmap of length 40 sub-frames lasting 40 ms. As shown in Figure 56, during ABS, UEs 
connected to a pico cell can receive or send data and avoid interference from the macro cell and 
thus considerably reducing the level of interference experienced on the downlink (DL) channel. 
At the same time, in order to favour user association to pico cells against macro cells, 3GPP 
eICIC defines non-negative CIO in dB for each eNodeB of pico cell to force some macro users 
to be attached to pico cells which are initially not tagged as their best serving cells as shown in 
Figure 56. The possible CIO values between each two neighbouring cells range from (0 dB) to 
(24dB) but reasonable values are in the 10dB range [62]. This phenomenon is called Cell Range 
Extension. 
 



5G NORMA Deliverable D5.1 

 

Dissemination level: Public Page 118 / 189 

 

 
Figure 56: 3GPP Interference Mitigation Mechanism 

 
Dynamic enhanced Inter Cell Interference Coordination driving by QoE 

The dynamic QoE-aware eICIC mechanism is in charge to derive the optimal radio settings 
ABSF and CIO for all eNodeBs of HetNets. As a SDM-C application running in the northbound 
the interference coordination mechanism consists in two-tier model that comprises an optimizer 
and a centralized coordinator/control located in SDM-C. SDM-C has the role of the control 
decision entity among the eNBs that send/receive periodically (eg. via X2 interface [67]) 
updated derivation of optimal radio settings (ABS and CIO) or updated measurements. Based on 
a game theoretic iterative algorithm considering the state of the whole network, the entity 
optimizer derives optimal radio settings that are sent to the eNodeBs and to be used by the local 
eNodeB schedulers for transmissions. This global inter-cell interference optimization result in 
best radio settings (ABS,CIO) for each cell as demonstrated in [62] and [63].  

The QoE-aware eICIC optimization framework is depicted in Figure 57. 

 
Figure 57 : QoE-aware eICIC optimization framework / operation description 

Since the settings (ABS,CIO) determine the time slots of signal transmission between eNodeBs 
and attached users within cells, they have an impact on the SINR distribution or repartition over 
the Hetnet deployment zone and are responsible to manage the Inter-Cell Interference. 
However, given the SINR distribution within a cell among others radio metrics, the eNodeB L2 
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radio scheduler according its policy decides how to allocate the available resource per user 
attached. Therefore, eICIC via the derivation of the optimal pairs of (ABS,CIO) impacts, in one 
hand, the resource allocations among users decided by L2 radio scheduler and in second hand, 
favours the SINR distribution that would maximize an aggregated network utility representing 
either the targeted QoS or QoE metric. 

Thus, the idea is to integrate a service-aware direct measurement of QoE in the optimisation 
function utility of the dynamic eICIC mechanism. The global inter-cell interference 
optimization piloting by QoE would therefore permit to limit the interference experienced by 
the mobile users in cell edge while improving the QoE over the network. 

In next steps, simulations will be performed in the framework of 3GPP LTE with a MATLAB-
based LTE simulator that performs a dynamic eICIC optimization in a HetNet. We extend the 
LTE framework performing a dynamic eICIC optimization in HetNets by including users 
requested heterogeneous HTTP adaptive streaming (HAS) video services via the 
implementation of an application layer in addition to the radio layer. We implement in the 
eICIC optimizer the derivation of ABS and CIO through the maximization of the utility function 
based either on the user radio throughput (SLR mode) or either on the video quality SSIM (QoE 
mode). The simulator is then used to test the optimization method for each utility in various 
scenarios and permits to measure the performance with different metrics. They are Key 
Performance Indicators (KPIs), which were selected to illustrate HetNet performance at the 
network point of view in term of radio rate and at the user point of view in term of satisfaction 
level including QoE and MOS. 

6.6 QoE based routing  
As we move from the current 4G generation to 5G networks, Quality of Experience has become 
more prominent. How to provide the best QoE to the end-user in the dynamic and 
heterogeneous environment of 5G becomes then a worthwhile challenge. This challenge should 
be tackled in multiple fronts and at multiple levels. Software-defined mobile networks are 
defined by the separation between the routing control and data forwarding, so in this section we 
focused on adding QoE considerations to the 5G NORMA’s architecture routing control. In a 
previous section, a QoS/QoE monitoring and mapping functionality was detailed, showing how 
to use multiple and diverse parameter to determine QoE and QoS.  

5G NORMA aims to control the end-to-end QoE, so the usual SDN routing control needs to 
start considering the user’s experience. In the proposed architecture, this translates to the SDM-
C modifying its control of the data forwarding in order to improve QoE. A northbound 
application will use the information available at the controller to dynamic determine the optimal 
route for a flow to take, based on users’ QoE feedback. Remember that the controller has a 
global perspective on the network. When the route is fully determined, the application can send 
it to the controller, which will then enforce this route by commanding the forwarding elements 
at its disposal. 

Exploring all conceivable routes and their relationship with QoE would be a complex and time-
consuming task: there are too many factors to consider, and it is not always clear how changes 
in the route will influence QoE. Since the user’s feedback can be dynamically retrieved, instead 
of a static solution for optimal route determination, the goal should be to have an adaptable and 
reactive system that gradually modifies its configuration towards improving QoE. The approach 
taken here is to use reinforcement learning (more specifically, Q-learning). 

Here is a breakdown of the basic process of using Q-learning for routing control: 

• All nodes have a table with values (called Q-values) that indicate the quality of the link 
to each of their neighbours 

• In our case, the estimated QoE if the flow is directed through that link 
o So, when a data provider sends a packet to the end-user 
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• Each node in the route selects the next node using its Q-value table 
• When the packet reaches the end-user, he sends a QoE feedback that travels back 

through the routing path  
• Each node uses this feedback to update its Q-value table accordingly. 

The whole process (selection, evaluation and learning) represents an adaptive, dynamic and 
evolving routing system focused on improving QoE. 

For the QoE value, the SDM-C should calculate some form of numerical value (in the literature, 
Mean Opinion Score is commonly used [68]). As mentioned before, Section 6.3 proposes a 
QoS/QoE monitoring & mapping functions that could provide this value to the routing scheme 
described here.  

QoE-based routing in mobile networks is a current and not fully explored area of research, with 
some work on wireless mesh networks [68]. Reinforcement learning for routing has been 
explored in other areas (mobile ad-hoc networks, for instance), and shown to be a good 
approach. Combining reinforcement learning with QoE seems a promising step in the right 
direction. An overview of the current state of the art on QoE-based routing can be found in 
Section 9.7. 

When looking at the basic process outlined above, some questions arise, and some decisions 
have to be made: 

• How to select which neighbour to route the flow? In the most straightforward way, the 
maximum Q-value could be used. This is not ideal. All the different links should be 
explored to reliably assess their impact on QoE. On the other hand, the selection process 
must converge in a timely manner. 

• How reactive should the system be?  
o How quickly old information is replaced? 
o How much should change in the QoE affect the system? 
o Which initial values shall be inserted in the Q-tables? 

 
Proposed Algorithm  
 
Now that we have an idea of the general process and the motivation behind this work, let us 
describe a new algorithm for QoE-based routing for the 5G NORMA architecture. 
 
First, this is how a node x updates its Q-table, when it receives the feedback from the node y 
ahead on the flow: 
 

𝑄𝑜𝐸l� = 	𝑄𝑜𝐸l���J + 	𝛼	×( 𝑄𝑜𝐸� + 	𝛽×(max𝑄𝑜𝐸�∗) − 	𝑄𝑜𝐸l���J) 
 

• QoE�� means the estimated QoE value in node x’s Q-table when directing the flow 
through node y 

• QoE�  means the user’s feedback (QoE value) received by node y 
• QoE����J  means the previous calculated QoE value 
• maxQoE�∗  means the best estimated QoE among the values on node y’s Q-table 
• The values α and β represent the learning rate and the discount factor. 
• Learning rate (α): determines to what extent the new information will override the old 

information 
o α = 0 means disregard any new information 
o α = 1 means considering only the most recent information. 

• Discount factor (β): determines how important future rewards are for the system.  
o β = 0 means only consider the current rewards 
o β = 1 means look for long-term high rewards 
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Next, this is how node x calculates the probability of neighbor y being selected as the next hop, 
when the data is going from the data provider to the user.  
 

𝑝l� = 	
𝑒
𝑄𝑜𝐸𝑥𝑦
𝑇𝑒

𝑒
𝑄𝑜𝐸𝑥∗
𝑇𝑒

 

 
§ Probability of choosing link xy is the exponential of the current calculated QoE between 

node x and node y 𝑄𝑜𝐸𝑥𝑦 divided by a temperature 𝑇𝑒, divided by the sum of 
exponential of the current calculated QoE with all the neighbors of node x 

§ The temperature variable controls how much exploration and exploitation will be done. 
Exploration here means trying many different links in order to understand fully how 
they react. Exploitation here means repeatedly using the links with good estimated QoE 
value.  High temperature value means exploration. Low temperature value means more 
exploitation. Ideally, the system should start exploring a lot, and then eventually exploit 
the good links it founds.  

§ This temperature value should decay with time. Initially, the value should be high, then 
gradually decrease 

• Every time a selection is made, reduce temperature value by a certain 
percentage 

This principle of promoting exploration applies to the initial conditions the system will operate 
with: all nodes will start by assuming high QoE values for all their neighbors. In the beginning, 
exploration should be maximized.  

Future work 

Simulations using network simulations (most likely ns-3) will be conducted. There are three 
goals to be achieved with these planned simulations: 

• Find out optimal values for the learning rate and discount factor, values that make the 
system react appropriately to changes in QoE feedback 

• Discover exactly how reactive the system is after these optimal values are discovered 

• Compare the proposed system with Shortest Path Routing and Weighted Shortest Path 
Routing. 

There are two possible extensions to the process proposed here. First, backwards exploration 
could be employed. Backwards exploration means that when a node receives a packet, it also 
receives information about the route taken by the flow so far. The best route going from the data 
provider and the user, as well as the best route going form the user to the data provider can then 
be determined. Second, dynamic ways of determining the learning rate and the discount factor 
should be explored.  

6.7 QoE assessment through vehicular simulator  
Vehicular communications are a kind of traffic that may need additional consideration in 5G 
networks. Flows initiated by vehicles (from both human and vehicles) may span over several 
kilometres, stressing hence the MME with a possible high number of handovers. Studying the 
impact that this class of flows on the cellular deployment and, hence, on the SDM-C is 
paramount to understand and correctly dimension the network infrastructure and the algorithms 
needed to ensure the optimized operation of the network. Also, the study of this kind of mobility 
patterns is an introductory step for the enforcements of vehicular-tailored QoE/QoS policies. 
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Flows assigned the vehicular category are then monitored, eventually enabling new traffic 
classes if there is the need to meet new QoE/QoS requirements. Road Side Units (RSUs) and 
short range Vehicle-to-Vehicle communications will play a fundamental role for this purpose, 
enabling both the continuous flow monitoring and the possible offloading to the Dedicated 
Short-range Communication (DSRC) Network. 

Finally, the information of how the vehicular traffic affects the network can be used to both 
dimension the cellular network deployment (including DSRC based small-cells) and the 
infrastructure on the edge and central clouds. 

Before going to a fully-fledged implementation, simulation is often a valid technique to initially 
assess the impact of vehicular movement on the network. In the clear majority of vehicular 
networking studies, the design and performance evaluation of solutions partially or fully relies 
on synthetic models of road traffic. Indeed, experimental evaluations would require large-scale 
testbeds comprising hundreds of vehicles, leading to overwhelming costs and organization 
complexity. Unfortunately, the correctness of this approach heavily depends on the selected 
tools. Therefore, an initial assessment on how to evaluate the impact of a highly demanding 
environment such as vehicular communications has on the cellular network is certainly a 
paramount step to perform. 

As reviewed in Section 9 there are already plethora of networking simulations for vehicular 
networks. However, part of the problem stems from the fact that there is currently a lack of a 
clear understanding of which level of realism in road traffic modelling is actually sufficient and 
necessary to the simulation of the networking impact of vehicular movement patterns. Some 
efforts have been made to answer this question. However, either lacks of technical deepness or 
focuses on shot range wireless communications. 

To provide a thorough evaluation of the impact of vehicular movements on a cellular network 
and hence use it to classify and enforce QoS metric for vehicular flows, some incremental steps 
need to be performed: 

• To provide a consistent definition of the level of road traffic realism needed for the 
simulation of vehicular networks in a mixed urban/highway environment. 

• Identify a set of metrics that, despite being necessarily circumscribed, covers a vast 
portion of the many and varied vehicular networking use cases. The selected metrics 
should be particularly meaningful for the classification of vehicular traffic and useful to 
identify the load introduced in the network by vehicular related service flows. 

• Design an assessment algorithm that, leveraging on the best simulation engine and the 
set of retrieved metrics, can be used to improve the network configuration to better 
support this class of services. 

The above points are summarized in Figure 58, describing the role of each sub block into the 5G 
NORMA vehicular evaluation platform. 
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Figure 58: Assessment of the 5G NORMA architecture through vehicular network 

simulation 

6.7.1 Methodology 
As reviewed in section 9.8 there are already plethora of networking simulations for vehicular 
networks. However, part of the problem stems from the fact that there is currently a lack of a 
clear understanding of which level of realism in road traffic modelling is actually sufficient and 
necessary to the simulation of the networking impact of vehicular movement patterns. Some 
efforts have been made to answer this question. However, either lacks of technical deepness or 
focuses on shot range wireless communications. 
 
In order to achieve the objectives declared previously, a realistic simulation environment should 
be set up. It must provide the following tools and data sources: 

• Digital Map: a very critical component is a comprehensive representation of the 
physical infrastructure. This is not limited to the street layout and the interconnection 
among different road segments, but it also includes information about the 
telecommunication infrastructure. Two useful data sources for gathering this kind of 
information are OpenStreetMaps (OSM) for the road infrastructure and OpenSignal 
(OSG) for the cell position and coverages.  

• Microscopic Mobility Models: The second element is represented by validated models 
of the driver’s behavior, which describe, at a microscopic level, his decisions in terms of 
acceleration, deceleration, lane changing, and, generally, his reactions to the 
surrounding environment. This provides the precise location of vehicles at each moment 
throughout the simulation. 

• Macroscopic Traffic Flows: the resulting mobility patterns should be realistic not only 
under a microscopic perspective, but from a macroscopic perspective as well. That is, 
the simulated vehicular aggregate flows should mimic the real values measured within 
the simulated area. This implies gathering information about the traffic demands 
between origins and destination in the simulated area (e.g., the so-called O-D matrix) 
and correctly assign those flows to the different available paths. 
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• Cellular network simulator: the aforementioned items are needed for obtaining the 
most precise and realistic position of vehicles with a very fine time granularity. This 
information is then used to emulate cellular network connectivity using a LTE 
simulator. The digital map is also used to infer the interference caused by buildings. The 
LTE simulator is a a multi-cell, multi- user LTE-advanced system- level simulator with 
real-time simulation capabilities developed by Nomor Research, that was also used for 
one of the preliminary 5G NORMA demonstrator [69]. The simulator incorporates LTE 
protocol stack model for the user plane. The protocol functionalities have been 
simplified to the main functionalities, in order to enable real-time performance. 
Particular focus has been laid on Medium Access Control (MAC) layer, in terms of 
functional accuracy. The physical layer (PHY) is emulated in its effect by using off-line 
link- level simulation results. This modeling also caters for the channel estimation, 
channel coding, modulation schemes, and receiver equalization. The simulator runs at 
Transmission Time Interval (TTI) level granularity along time and Physical Resource 
Block (PRB) level along frequency axis. This makes the simulations accurate and 
detailed enough to produce realistic results for analysis. The scenario used for carrying 
out the LTE network simulations comprises of multiple eNodeBs and users 
communicating over the radio interface, with 2GHz as the center frequency, 10MHz 
system bandwidth, and with TTI of one millisecond. Simulation parameters are 
presented in Table 10. 
 

Table 10: Simulation Parameters 

Parameter Value 
Center Frequency 2 GHz 
Bandwidth 10 MHz 
Fast Fading Model Urban Macro (Uma) 
eNodeB Tx Power 43 dBm 
eNodeB Height 25m 
Scheduler Proportional Fair 
Pathloss Model WINNER+ [70] 

 
 

All such components need to be integrated via a federated software suite which, i) can provide 
the requirements 1-3 with the maximum reliability and very high granularity (order of 
milliseconds), and ii) can be easily coupled with a state of the art network simulator. 
This work is based on a seminal article [71]  that provided a reliable simulating framework 
obtained by a refined OSM digital Map of the city of Bologna and a reliable O-D Matrix of the 
city. Moreover, we used  SUMO  [72], the state of the art tool for microscopic vehicular 
simulation. Finally, the Network Simulation is carried out using the emulator developed by 
NOMOR [69]. Finally we get the cell tower locations from OSG, filtering 210 Cell Towers 
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belonging to the 4 operators available in the Italian market.

 
Figure 59:  Segment Popularity of the scenario (darker links mean higher loads) 

Figure 59 represents the analysed scenario, whose characteristics are: 
• Three hours’ simulation of around 20,000 vehicles 
• Peak occupation: 4000 vehicles 
• Average trip time: from 10 to 15 minutes 

The data regarding operators and cell towers were gathered from OpenSignal. The total of 210 
towers is divided as follows: 63 of Operator 1, 60 for Operator 2, 53 for Operator 3 and 34 for 
Operator 4. Finally, vehicles are assigned to Operators according to their penetration rate: 
34.43%, 32.16%, 23.13% and 10.28% respectively. 

6.7.2 LTE performance assessment with vehicular use cases 
The goal of this work is to provide some initial assessment of the impact of vehicular 
communications on a state of the art LTE deployment. Therefore, we simulated, using the input 
vehicular mobility described above, a collision avoidance system: one of the most typical 
applications of future vehicular networks. 

Collision avoidance algorithm 

Collision avoidance systems are used to early warn vehicles in the surrounding about abrupt 
decelerations or obstacles. This information is also useful for vehicle platooning purposes. 
Therefore, we implemented a Vehicle to Infrastructure (V2I) algorithm that sends a warning 
messages (2 Kbytes of data payload) to a centralized server that sends back the information to 
all the surrounding vehicles (the ones in a 200m radius) every time the headway vehicle is 
closer than 10m from the sender. All cars check for warning state at regular intervals of 2.5 
seconds. 

Scalability considerations 

In order to overcome some of the physical limitation of the simulator, we reduced the simulation 
area to a 2 square km area, with 12 eNodeB managing 1500 vehicles. We claim that this subset 
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is a valid representation of a small-scale scenario of the entire simulation. The eNodeB 
placement is detailed in Figure 60. 

 
Figure 60: eNodeB placement in the simulated scenario 

Preliminary results 

We collect some preliminary results in the following. The first metric we consider is the uplink 
delay, that represents the total time that a packet takes to travel from one car to the central 
infrastructure. This also involves the LTE’s inherent extra delays required for scheduling, uplink 
grant access and Hybrid Automatic Repeat Request (HARQ).  
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Figure 61: Uplink delay CDF 

The CDF shown in Figure 61, detailed by each operator, show how the obtained values are well 
above the 100ms threshold usually considered as highest value for end to end vehicular 
communications [73] [74], values due to the congestion caused by the simultaneous access of 
many UE after possible temporary congestion for the red light cycles at intersections. This 
behaviour is also reflected by the time series of the delay values shown in Figure 62. 

 
Figure 62: Time series of the average delay for an eNodeB 

Besides the unconstrained delay problem, another issue that arises from introducing V2I traffic 
into the cellular infrastructure is the suboptimal utilization of the PRB, which may be used to 
obtain much higher throughput values. 
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6.7.3 Future work 
We will extend the current extent of the simulation framework to cover: 

• More heterogeneous scenarios, by isolating different areas of the digital map, showing 
how different vehicular traffic characteristics impacts on the obtained KPIs. 

• An extended set of KPIs that will cover, for instance, throughput metrics. 
Possibly different vehicular applications. 

7 Mobility Management  

7.1 Introduction 
The challenging requirements in terms of mobility support in a future 5G system are less related 
to the increased data volume but more governed by end device and applications’ variety. The 
expected amount of different terminal types covers beside handhelds and smartphones many 
different new machine-type devices and a broad range of services with mobility demands which 
range from support for zero or nomadic mobility only to that for high speed (e.g., vehicular) 
terminals.  

While the connection characteristics change during movement across multiple cells and points 
of attachment, the session has to continue either coping with an endpoint address change or 
requiring fixed addresses. Also seamlessness with respect to the user or application experience 
may differ, demanding for minimal disruption without loss of information or being able to cope 
with “break before make'' where a higher layer protocol cares for data completeness. 

Mobility management here focuses on connection continuation and other mobility related 
procedures, like location tracking or paging are seen as assistant tools not dealt in detail here. 

An efficient solution for serving all varying requests cannot be a single universally applicable 
mobility function, but has to follow a modular approach to adapt the network configuration 
according to the respective service or slice demands (i.e., the so-called mobility on-demand 
[75]). The challenge is to identify the actual demand as precisely as possible and select the best 
fitting solution depending on the overall scenario. Several criteria can be taken into account in 
the selection process, including the characteristics of the terminal and its environment (e.g., 
smartphone or sensor device in a pedestrian movement or attached to a car) as well as the 
network conditions (e.g., load of neighbouring cells and radio technology or specific parameters 
such as bandwidth and latency). On the other hand, also performance requirements of the 
application (e.g., in terms of connection reliability and session continuity) have to be 
considered.  

Potential solutions may be based on the Distributed Mobility Management (DMM) approach as 
discussed at IETF (Internet Engineering Task Force) where a split of control and user plane 
functions and basic modular logical entities for anchoring, location and forwarding management 
are proposed. A contribution to the IETF, describing the DMM extension for flow mobility was 
addressed in this framework [27]. 

Special consideration has to be given to potential bundling of multiple links to enhance 
throughput and reliability. Such a multi-path connectivity is already available as carrier 
aggregation (e.g., bundling different frequencies within LTE technology) and known as off-load 
or local break-out when a cellular device with multiple interfaces connects (e.g., to home 
WLAN to access the Internet). A commonly managed standardized solution without need for 
customer interaction and covering heterogeneous access domains has still to be developed.  

To provide extremely low delay connectivity (e.g., as demanded by tactile Internet applications) 
the content and processing resources have to be provided near the edge of the access link. Such 
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distributed functionality in the Mobile Edge Cloud (MEC) has to be migrated efficiently in case 
of session endpoint movement but also due to load balancing reasons in case of resources shared 
between multiple slices. To keep latency and jitter in required limits demands for new 
mechanisms when taking the movement decision.  

The major demands to the new mobility management protocol are, besides providing a high 
flexibility, also to grant high availability and reliability (e.g., by avoiding a single point of 
failure). Furthermore, they should contribute to achieve high resource efficiency (e.g., low 
signalling overhead, avoiding too much tunnelling, minimum redundancy in case of error 
retransmissions) and not increase the operational burden (e.g., in terms of deployment and 
network management effort). 

In the framework of the 5G NORMA WP5, we split this thorough problem into two big areas 
(Mobility Management scheme selection and Mobility Management scheme design) and two 
targeted innovative approaches Multipath and Edge Functions Mobility. The functional 
architecture is depicted in Figure 63, 

 
Figure 63: Organisation of Mobility Management Task in WP5 

Figure 63 shows the needed interfaces among the different blocks of the Mobility Management 
entity and their integration with other elements of the architecture such as SDM-C and SDM-O.  

• Mobility Management scheme identification and selection: This function takes the 
information about the mobility requirements of terminals attached to each network slice 
to select the most suitable mobility management scheme to be used. For example, an 
IoT slice do not need any specific mobility management scheme, while a Vehicular 
Network one may need an especially tailored mobility management scheme. The 
specific Mobility Management scheme is finally implemented in the framework of the 
Mobility Management scheme design function. 

• Mobility Management scheme design: this function includes the actual design of the 
mobility management scheme using the SDM-C. By following the SDN spirit, the logic 
of the mobility management scheme is implemented as a Mobility Application that 
process high level primitives through the SDM-C 5GNORMA-SDMC-Apps Interface 
that control the underlying resources.  
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• Edge Function Mobility: When dealing with mobility, the movement patterns of users 
may involve the migration or re-instantiation of VNFs to a different edge cloud. This 
will involve the Mobility Management scheme to reshape the data plane from the access 
to the core and the Orchestrator to possibly re-allocate new resources in the edge cloud. 

• Multipath:  it has been proven that exploiting path diversity both in the access and in 
the core of the network provides advantages in terms of performance and reliability. 
However, the application of this kind of approach in the framework of Mobility 
Management has still to be assessed, by first integrating it into the mobility 
management and then by assessing the obtained performance. 

 

 

 
Figure 64: Interaction of Mobility management task with others 

Mobility Management Lifecycle: 

Figure 64 provides another view of the Mobility Management task: its control loop. Mobility 
management is applied on a per-slice basis, although it can be easily extended to control more 
than one slice simultaneously by using the SDM-X concept. First, QoE/QoS requirements are 
extracted from the service and they are provided to the Mobility Management module as 
reference. Based on this, the best mobility management scheme is selected according to the slice 
characteristic. Among the selection that the Mobility Management scheme may perform there 
are the possible use of multipath and the request for Edge Function Mobility: all of them are 
delivered to the SDM-C through its NBI. The SDM-C actually performs the control of the 
network slice by acting on the data path or by issuing new resources requests to the SDM-O. 
Finally, it reports back to the Mobility Management scheme the status of the network. This 
information is used to change the selected mobility management scheme, if needed, or for 
taking other mobility decisions. 

7.2 Selection of Mobility Management scheme 
The mobility management of current mobile networks has been initially designed to provide 
“one fits all” mobility management scheme, which enables lossless handover to all services. 
Such an approach is inefficient, as lossless handover might not be needed for all services, thus 
might unnecessarily introduce additional jitter in the data path. Given the variety of services that 
5G networks can include, a more flexible mechanism for selection of mobility management 
schemes is required. In other words, in 5G networks, the mobility management scheme cannot 
remain fixed as in today’s networks, but it needs to be selected flexibly according to the context 
of the service or a network slice. Envisaged 5G services and slices exhibit different demands for 
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mobility support in terms of e.g., terminal speed, session continuation requirements, and of 
stability of the endpoint address. 

7.2.1 Binding of Mobility Management scheme to Network 
Slices 

In order to address the need for more service tailored Mobility Management (MM) support we 
aim at designing a network slice which includes specific network functions enabling a dedicated 
set of mobility functions inside this network slice. A way to realize this is to maintain specific 
flavours of network function and/or specific configuration of network functions and instantiate 
them according to the context of the network slice. The selection of appropriate mobility 
management scheme needs to be provided through a dedicated functionality, i.e. binding 
functionality. The binding functionality provides the mapping between the mobility related 
context of the slice, i.e. mobility management requirements and the mobility management 
scheme that supports the mobility requirements in the most suitable way. In particular, the 
binding function chooses a specific MM scheme for each network slice for a specified amount 
of time. The binding functionality takes into account not only the network slice context but also 
the predetermined policies in order to select a suitable mobility management scheme. Mobility 
management schemes can differ in many ways, e.g., requiring special handover policies and 
settings in the RAN, flexible mobility anchoring, adaptive gateway relocation rules, or 
customized network elements (e.g., local gateways or gateways with specific mobility support 
functionality). The selected mobility scheme determines the behavior of the BS and GW 
functions of a mobile network.  

 
 

Figure 65: Binding functionality – building blocks 

The binding functionality includes three blocks as depicted in Figure 65:  
• Binding Policy Management 
• Binding Function 
• Network Slice Selection and Configuration 

The binding between the mobility management scheme and the network slice configuration 
needs to be done based on predetermined policies which are maintained in the Binding Policy 
Management, see Figure 65. The Binding Policy Management function translates service 
requirements, operator targets, and KPIs to policies that have to be enforced on the network 
slice. Based on this, the Binding Function executes the actual selection of the mobility 
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management scheme according to the predetermined rules, as well as the adaptation of such 
selection if needed. The Binding Function includes: 

• A Mobility Scheme Selection function that translates mobility requirements to mobility 
mechanisms/schemes based on policy and mapping rules as provided by the Binding 
Policy Management function as well as context information available from the network. 

• An Adaptation function that is applied during the runtime, which verifies the actuality 
of the mapping between current mobility requirements of a slice and currently deployed 
mobility management scheme and performs according modifications, i.e. re-mapping 
between mobility requirements and mobility management schemes.  

Finally, a Slice Selection and Configuration function is responsible for selection of the right 
templates for slice instantiation (e.g. with right VNFs type selection and right composition and 
configuration of different VNFs). 

Such a binding functionality in envisioned to be integrated with Management and Orchestration 
Layer of 5G NORMA, see Figure 66. For a given service requirements and network context the 
binding functionality gives two important outputs: the fitting template for slice 
instantiation/configuration and   suitable mobility management mechanism/scheme. The 
resulting slice template will be used to instantiate and configure the network slice. Based on the 
slice template the new MM App will be instantiated on top of the SDM-C executing the MM 
scheme which resulted as the most suitable one. Alternatively, the suitable mobility 
management scheme can be updated/reconfigured on the existing MM App on top of the  
SDM-C.  

 
Figure 66: Mapping the Binding functionality into 5G NORMA architecture 

7.2.2 Common vs. dedicated Mobility Management 
Given the variety of possible slicing scenarios and existence of multiple slices at the same time, 
a mobile user can simultaneously connect to more than one network slice. We can envision that 
in such cases the slices can either have dedicated Core Network (CN) instances or have different 
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level of CN sharing i.e. only some parts of the CN can be shared or entire CN can be shared 
among slices. In such scenarios, the exact implementation of mobility management especially in 
terms of designing it as dedicated (per slice) Mobility Management (MM) or common MM 
across multiple slices is impacted by the design and the level of sharing between CN elements. 
Hereby we can identify three options for mobility management implementation based on level 
of CN sharing among network slices to which an UE is simultaneously connected: 

• Dedicated mobility management in a dedicated CN for each network slice handling the 
UE - UE obtains services from different network slices running different CN instances. 
This allows clear isolation between the CN instances of slices.  

• Common mobility management in CN which is partially shared among networks slices. 
E.g., MM and identity/subscription management is shared between the network slices. 
In this case, other CN functions, such as, session management, are implemented in 
separate CN instances of network slices.  

• Common mobility manager in completely shared control plane of the CN.       

The dedicated MM approach in a dedicated CN although enabling the clean separation of 
network slices might come with the potential drawback of adding signalling in the network and 
over the air. On the other hand, designing the MM as a common entity adds implementation 
complexity and lowers the level of isolation between network slices. 

Dedicated mobility management can be implemented in 5G NORMA architecture as an 
application on top of SDM-C, whereas common mobility management can be implemented as 
an application on top of SDM-X. In our current work (see Section 7.2.1) we considered the 
dedicated MM approach.  

7.3 Mobility management scheme design  
Research challenges addressed in this section is to define a framework for MM protocols, which 
in the context of 5G NORMA architecture is a SDM-C Applicatoin, in order to control 
user/service/device mobility per network slice and potentially in between slices (intra-/inter-
slice mobility). 

7.3.1 Mobility design in terms of MM functions granularity 
description 

A highly granular service-aware mobility design shall be abstracted for both HetRAT (radio 
access agnostic) and multi-service environment to support a broad range of use cases.  As far as 
possible the complexity to handle major use cases shall be reduced, at the same time allowing 
for adaptability to future new ones (not yet known). 

Potential MM scheme implemented in a MM-App from a more formal point of view are 
whether and how they should include: 

• Cross-Layer support (L2/3/4 and above) – i.e. either inherit from lower layer additional 
information in an abstracted way to improve the specific parameters (e.g. frequency of 
sending requests or updating timers) or rely on higher layer mechanisms to ensure that 
the service-specific session performance which was agreed on can actually be provided 
(since it is done anyway – such as packet re-ordering etc.)..). 

• Cross slice/Domain/provider operation – dealing with the open questions whether a 
single MM functionality is responsible for multiple slices (like the SDM-X), how many 
different administrative domains of access networks can be combined by same (master) 
MM function, or whether several providers share a common (central) MM function (in 
analogy to roaming scenarios in traditional 3GPP architecture) . 

• Required Granularity – in terms of session endpoint movement speed (e.g. per 10 km/h 
steps) or session continuity demands (per 10 s-session duration) or handover loss 
robustness (in amount of lost packets).). 
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• Distinction between local and global range – i.e. the question whether overall MM is 
composed of different Hierarchical MM functions to be applied, e.g. at access domain 
level, at core level, at inter-slice level etc. – and how the different mechanisms 
interwork with each other. 

• Degree of Technology abstraction – being related to HetRAT specificity and also the 
cross-layer question. 

• Multiple connectivity support – i.e. to which extent has the MM scheme consider multi-
path and multi-link characteristics in a future multi-technology (hybrid) scenario on 
both access, backhaul transport and core level. 

• Flexibility within an ongoing session – denoting the question whether during an 
ongoing session the mobility-related parameters may change (e.g. active radio 
interfaces) and how the affected service can be kept uninterrupted. 

To be as generic as possible for each of the foreseen differentiation criteria a new entry in terms 
of e.g. the IPv6 protocol header may be specified. This could be done e.g. in terms of a more 
general connectivity option –– perhaps even as option in the Hop-by-Hop Options header so that 
each node must process it –– but in case of nodes not supporting the feature a silent discarding 
of the information should be possible. In this option flags for either choosing default values 
allowing for minimum overhead in case of the “no mobility” case for fixed session endpoints – 
or additional information on the different mobility processing capabilities might be provided. 
Potential Option Data could consist of flags within an 8-bit word e.g. as ‘LDGHTMFR’, 
denoting the above criteria each to be detailed in terms of an additional extension header only 
present in case the flag value is not 0. The eight flags are represented as following:  

L: Layer sensitive information processing 

D: cross Domain operation 

G: Granularity of mobility support is further specified 

H: Hierarchical mobility treatment in terms of e.g. local/global differentiation 

T: Technology of access to be considered 

M: Multiple physical links to build up a flow (or packet fragments) 

F: Flexibility in change of session parameters 

R: Reserved – for future use or inclusion of another extension covering more criteria  

7.3.2 Decision on MM criteria  
This discussion is ongoing (e.g. degree of UE mobility/session continuity level - see discussion 
at 3GPP SA2). 

For aspect G: Granularity seems to be one of the extreme multi-faceted and diverse features as it 
may range from session endpoint speed via various session parameters to the required session or 
service performance to be supported. Accordingly, sub-features to be further specified may be 
defined here in terms of  

• Movement granularity 
• Session continuity 
• HO performance 
• Etc. 

In case of an 8-bit word Mobility Extension > 0 for each of the flags set to 1 an additional sub-
option information shall provide details on the criterion if possible and required – or the 
information provided allows to locate where the required information can be retrieved from, e.g. 
a Customer Data Base (CDB) or the EPS-entity HSS (Home Subscriber Server). 
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An exemplary default MM construction without any of the features above may apply for use 
case SNM (Sensor Networks Monitoring and event driven alarms) as the sensors are fixed and 
the performance is assumed to be less than best effort (here). This would mean: 

• no layer sensitive information processing (only IP level context available) 
• Single-domain MM operation 
• No mobility support i.e. portability (session re-build after connectivity loss) 
• One (global) mobility area only 
• Single-technology (e.g. LTE-only) 
• Single-connectivity (one active or available radio interface only) 
• Fixed mobility session parameters (here: none) 
• No further aspects to be considered 

7.3.3 MM processes to detail signaling and interaction 
between (logical) entities (MSC) 

In this section an exemplary MM process shall be analysed in terms of impact of the design 
criteria above. Choosing the Paging process as being potentially required for different types of 
mobility (e.g. portability as well as high speed moving terminals) the proposed message 
sequence chart is shown in Figure 67. This MSC is simplified here insofar as the exceptional 
handling of session requests due to sleep mode for UE and potential reasons for wake-up 
(ending this mode) are not shown. In case of discontinuous sessions a UE periodically enters an 
idle state to save resources. The access node (here: eNB) exchanges with an SDN-C App for 
MM (MM-App) information on UE status (e.g. connected at radio level) and currently active 
sessions (together with their mobility and support demands). The detail of these context data 
depends on the chosen granularity in terms of the above criteria as agreed on e.g. within the 
underlying policies, and/or determined by UE capabilities and session demands. This context 
information is centrally stored (here: at CDB/HSS) to be made available to the GW-App 
representing the interface to external networks and servers (e.g. where sessions are initiated or 
terminated). In case of such an external request for session continuation the required 
information as MDD (multi-dimensional descriptor containing e.g. slice instance and service 
type data) helps the MM-App to decide on the required level of granularity in MM design. E.g. 
the amount of associated domains or available technologies to be used for UE attachment may 
restrict the location areas and the effort to physically page the terminal. On the other hand in 
case of multi-hierarchical MM and outdated localisation information a paging process on global 
level may be initiated directly before spending too much resources on localised searches. 
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Figure 67: General message sequence chart for exemplary MM process Paging 

7.3.4 Mapping of potential MM design approaches to use 
cases 

As shown in Table 11 for the selected use cases of 5G NORMA (see [24]), a first try for 
identification of required MM features per use case is attempted. Here the column input ‘x’ 
denotes that the corresponding feature is further specified, i.e. with a flag set to ‘1’ further 
specification of MM has to be provided (elsewhere). In case all flags are ‘0’ default MM design 
(i.e., no mobility) is assumed for this use case (as detailed above) – e.g. for SNM use case. 

 

Table 11 Mapping of selected MM feature impact on typical 5G NORMA use cases [D2.1] 

Use 
case 

details Mobility 
demand 

Comments L D
  

G H
  

T  M
  

F R
. 

eMBB High DR high Mult. Serv. x   x x x x  

V2X Var. DR high Safety/ctx x x       

911 Min. DR variable EE/prio/  x x      

Jam Var. QoS low High dens.    x x x   

RT RC MEC variable ULL x  x      

QaC Var. QoS variable ctx x  x  x  x  

Bl.Sp. Multi link low   x    x   

OA F Var. QoS low High dens.    x x  x  

Ind.c. ULL/UHR Low/no       x   

SNM V Low DR Low/no EE/HR         

mMTC  variable    x      

FMC Var. DR variable ctx   x      

Other t.b.d.           

 

The justification and some more details on the use cases are given below:  

Enhanced Mobile broadband (eMBB): Users ubiquitously connect to mobile network which 
provides extremely high data rates (DR): Users use multiple services and the network (service-
aware) adapts accordingly. – Major functional requirements include multi-layer and multi-RAT 
connectivity and separation/prioritization of common resources. 

Vehicle communications (V2X): Vehicles connect using 5G communications: Network 
provides multiple services to improve traffic safety, to assist drivers with real-time information 
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about road and traffic conditions, etc. – Functional requirements cover massive scalability of 
protocol NW functions and especially to to keep track of devices’ precise location. 

Emergency communications (911): Network can be destroyed due to natural disasters: 
Network is able to adapt to emergency service requirements, prioritizing emergency services, 
minimizing energy consumption, etc. – Specific functional requirements are to support devices 
as relays and security. 

Traffic Jam (Jam): a non-predictable high concentration of people using different services: 
Network reconfigures and adapts on a per-service basis to deliver appropriate quality to each 
end-user. – Functional requirements as sudden significant increase/decrease in access and 
signaling demand have to be fulfilled. 

Real-time Remote Computing (RT RC): Remote execution of tasks allows relief of 
processing load at UE, rising battery lifetime and service speed: Specific service requirements 
have to be taken into consideration, adapting and allocating the computing load accordingly. – 
Functional requirements apply here as support of mobility scenarios (handover) (in terms of 
performance: at very high speed up to high speed train). 

 Quality-aware Communications (QaC): To offer an optimal service quality, network must be 
aware of specific requirements of each service type: Contextual information enables optimal 
network re-configuration for service quality delivery to end-users. – Performance requirements 
are important as fast/efficient handling of changing conditions (mobility, etc.) 

Blind Spots (Bl.Sp.): Areas lacking resources and/or coverage due to scarce network 
performance (e.g. as to traffic demands and UE battery life): To effectively cope with this, 
service-awareness allows optimizing service delivery in this areas. – Functional requirements 
mainly as ask for multi-connectivity and reaction to transport capabilities. 

Open Air Festival (OAF): Similar to traffic jam use case, high concentration of users accessing 
the network: Network needs to adapt and configure accordingly on a service basis to deliver a 
proper quality. – Functional requirements as the ability to separate and prioritize non-exclusive 
resources play an important role. 

The following use cases have been characterised in [24] as having only medium or low relation 
to multi-service scenario: 

Industry control (Ind.C.): no mobility, very low latency, high availability, high reliability and 
uplink data rate in a dense environment, self-organized dynamic networking for local multi-hop 
network – with functional requirements as fast failover and integration of heterogeneous radio 
technologies 

Sensor Networks Monitoring and event driven alarms (SNM): support of service activation 
from RAN, of connection-less access, for high small and sporadic UL traffic (small packets) and 
high reliability of transmitted data in uplink – Functional requirements include no mobility 
signalling because of no “connected” state 

Massive nomadic/mobile machine-type communications (mMTC): Support of dedicated 
slice(s) for massive machine type communication, of local as well as wide range device 
connectivity, and of on-demand mobility (e.g. no mobility required for stationary/nomadic 
sensors) - Functional requirements apply as direct device-to-device/gateway/cluster head/radio 
node connectivity. 

Fixed-Mobile Convergence (FMC): changing mobility level, high heterogeneity in terms of 
environment, access and devices, converged network functions for both fixed and mobile 
networks result in simplified network operation (e.g. for AAA, ID management, billing). – 
Performance requirements as fast and seamless handover between (access) technologies and 
(fixed/mobile) domains must be considered. 

Based on the analysis of use cases vs. design criteria in Table 11 a preliminary decision on 
Prioritization of MM design criteria is made: 
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Most prominent out of ten use case was Granularity (5 use cases) and a cross Layer/Technology 
operation (4 Use cases), respectively. 

Use case with all three of these or at least two of the criteria present are: QaC (L, G, T, …) / 
eMBB (L, T, …) / RT RC (L, G, …). Planned for this document is to describe concept details 
for major MM model parameters selected (until M15, e.o. Sept. 16) which could be done in 
terms of process description for selected UCs (e.g. how to achieve mobility characterised by 
HHO / VHO / SHO / …BBM/MBB) – where the MM-App has to be adapted on all chosen 
slices flexibly but also efficiently.  

7.3.5 Cross-Layer design of MM approach 
Cross Layer information utilization could be to derive from signal strength and SNR or SINR 
criteria for promising connection quality to decide on HO from or to a new AP/AN. 

Whereas in single technology (e.g. 3GPP LTE) for handover inter-layer information is used by 
nature already – at least from lower layers whereas information from higher layers (e.g. 
requirements and states at application level) not yet plays an important role at the moment. 

A L3-based MM solution (i.e. on the first converged Layer in a heterogeneous access 
environment) requires for inclusion of multiple different Technologies when re-using lower 
Layer information to abstract this information from technology specifics. This can be achieved 
by usage of Media Independent Handover (MIH) framework developed by IEEE802.21 [76] 
proposed within many approaches as e.g. reviewed in in [77]. MIH shall provide capabilities to 
detect and initiate handoff from one network technology to another by defining mechanisms to 
easily exchange network information. The standard has designed a function to control access to 
the lower layers (layer1 and layer2) via Service Access Points (SAPs) and allows for 
information to be queried by the upper layers (layer3 and above). Media Independent Handover 
Function (MIHF) can be seen as layer 2.5 in the mobility control plane located between MAC 
and PHY layers, and the upper layers, namely IP and above. MIHF facilitates cross layer and 
cross-entity interactions as MIH Information exchange via MIH Command Services like Event 
Information Service (e.g. Media Independent Event Services as Link up / Link down). MIHF 
can be used to perform Network- initiated handoff and support the MTs handoff process.  

MIH is also referred to in [78] which propose a mechanism via integrating a higher layer 
Multiple InterFaces Application Program Interface (MIF API) and IEEE 802.21 to support 
application service better. The two mechanisms, MIF API  and MIHF, are working in different 
layers, defined by different organizations, but require compatibility e.g. in terms of some MIF 
API functions to be supported by a connection manager (i.e. the MIHF), and vice versa. 

[79] describes a Mobility Services Framework Design (MSFD) for the IEEE 802.21 Media 
Independent Handover (MIH) protocol addressing identified issues associated with the transport 
of MIH messages. Mechanisms for Mobility Services (MoS) discovery and transport-layer 
mechanisms for the reliable delivery of MIH messages are described while for securing the 
communication between a mobile node (MN) and the Mobility Server either lower- layer (e.g., 
link-layer) security mechanisms or overall system-specific proprietary security solutions usage 
is assumed. Also higher layer information can be used in addition to support MM.  

Context-Aware Mobility Management System (CAMMS) is introduced in [77] as cross-layer, 
context-aware, and interactive approach to seamless handover of users and services which 
defines components at both core/access network and user equipment node and takes into 
account factors such as QoS and cost. Several new architectures and techniques proposed until 
2012 for dealing with such scenarios have been reviewed in [77]. The approaches are partly 
providing protocols for the application layer, the transport layer, or the network layer only. A 
number of mobility management systems have also been designed to support specific 
applications (such as IP Multimedia Subsystem and Ambient Networks). 
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The survey [77] presents a comprehensive review of literature on multiple mobility management 
architectures for seamless handover of mobile users in heterogeneous networks adopting a 
cross-layer approach such that gathering an assortment of information from several sources 
turned out to be a common technique. 

Considering that the process of authentication (or re-authentication in the case of inter-domain 
handover) can lead to unacceptable delays, especially for streaming and interactive applications 
such as video conferencing and VoIP techniques and protocols to deal with handover keying can 
be part of the authentication component of such a MM architecture. 

A cross-layer information system provided with context awareness at all layers of the protocol 
stack. The paper [77] focuses on mobility notifications and describes how application-mobility 
could be simplified in a network-layer mobility environment. An IPv6 solution is described that 
further enhances existing  mobility management solutions. Discussed is the issue of how cross-
layer communication could enhance detection of a mobility event. By sharing information 
between layers; mobility impact could be managed better (e.g. indicating link-layer parameters). 
This solution would also enable mobility adoption of multimedia traffic [80] . 

In [81] the benefit of cross-layer information is evaluated from a Cognitive Radio application 
point of view which also can support mobility decisions e.g. in terms of information exchanged 
between the link layer and layers above it. Network coding which spans across the physical, 
link, and network layers; also gains from information sharing between layers for correct 
operation.    

Awareness of the traffic demands of other users is important to allow addressing the trade-off 
between fulfilling the user demand and achieving increased radio resource utilization. Transport 
layer throughput can be maximized by employing cross-layer schemes e.g. for TCP to consider 
link layer frame size.  

[82] states that most of existent solutions for seamless handover attempt to solve the problem at 
L2 (access and switching) and L3 (IP) with particular consideration given to L4 (transport). The 
fact that they are generally not yet working properly, may result in service disruptions. Because 
of this, it is important to develop cross-layer architectural solutions where cooperation is 
established between L2 and L3 to assist the IP handover process and to improve the 
performance. Even better would be to develop architectural solutions where IP has control over 
specific L2 handover-related actions.  

Important limitations are the lack of cross-layer awareness and cooperation. For instance, the 
congestion control mechanism of TCP is not able to distinguish packet losses due to link 
properties from those due to handover. Because of this, TCP does not perform well for seamless 
roaming. In a similar way, the lack of L2/L3 cross-layer interaction further deteriorates the 
performance. Another fundamental limitation of transport protocols is because they cannot deal 
with mobility on their own.  

[82] propose an application layer mobility system (based on SIP [83]) together with IEEE 
802.21 and Media-independent Pre-Authentication (MPA).  

[84] proposes a cross-layer mobility handover scheme for IPv6-based vehicular networks. The 
scheme is based on a proposed architecture for vehicular networks made up of three hierarchies. 
A vehicular network is made up of multiple road domains, a road domain consists of multiple 
road segments, and a road segment includes multiple clusters. A vehicle can either be cluster 
head (CH) with routing and forwarding function, cluster member (CM) without routing or 
forwarding function, or an isolated vehicle (IV). A CH communicates directly with a base 
station, and a CM achieves the communication with the Internet through its CH. An IV is a node 
which does not join a cluster. The corresponding cluster generation algorithm is based on the 
link duration time. The cross-layer mobility handover algorithm launches the handover in the 
network layer (L3) before the one in the link layer (L2). Through the L3 handover process the 
information on the L2 handover can be acquired in order to achieve the fast L2 handover. 
Moreover, during the L3 handover process, a vehicle does not need to be configured with a 



5G NORMA Deliverable D5.1 

 

Dissemination level: Public Page 140 / 189 

 

care-of address (CoA), so the L3 handover delay and packet loss are reduced. Evaluations 
comparing this approach with standard MIPv6 and ePFMIPv6 (enhanced Fast Handover for 
PMIPv6 for Vehicular Networks) [85] show that as a function of speed both loss rate and delay 
will considerably benefit, though less at higher velocity. Numerical results reported in [85] 
underline e.g. loss rate decrease to about a tenth and delay reduction by at least a quarter, 
respectively (i.e., loss rate decreases from 6-8% to less than 1% at 100 km/h and 3% to 0.3% at 
70 km/h and delay is reduced by 15-9% at 100 km/h and 24-17% at 70 km/h, 77-82 ms to 70ms 
at 100 km/h and 64-69 ms to 53 ms at 70 km/h). 

[86] gives an overview on major architectures supporting management of handover in mobile 
wireless communications. Examination of about hundred schemes highlights that a solution to 
provide optimum handover management is not yet available. Disadvantage of widespread 
approach based on MIPv6 is the unmanageable deployment in current IPv4 networks and the 
existence of symmetric firewalls and NATs preventing an end-to end communication. This fact 
together with popular applications and protocols violating protocol stack stratification by using 
cross-layer information leads the authors to the conclusion that exploiting two proxies on top of 
the transport layer (locally and externally) is more workable than some network-layer solutions. 

The handover support of MIPv6 solutions without cross-layer interoperation is restricted to 
single-network interface usage at the MN due to expected poor performance in terms of 
introduced latencies and connection continuity intervals in case of multi-homing. 

For short- or medium- term the re-use of application and related protocols-based use of external 
proxies (e.g. VoIP-, SIP-, and partially HTTP-based ones) to cater for mobility issues as has 
already been proposed earlier by same authors in [87]  and [88]. 

Cloud computing environments are seen as usable infrastructure providing dynamically set up 
(and release) of the proxies on the server-side, allowing for an on-demand resource utilization 
and cost model. 

Parameters available at the physical and datalink layers which could be used for differentiation 
in cross-layer design and as metric to decide on a handover are mentioned throughout literature. 
At PHY level they comprise the Received Signal Strength Indicator (RSSI) (as measurement of 
power level received at the NIC to decide on best AP), In-phase Quadrature (IQ) sampling 
information, Channel state information (CSI), Propagation information, External interference as 
e.g. Interference Signal Code Power (ISCP) and SINR patterns [81]. At L2 the number of frame 
retransmissions (needed at the Data-Link layers for delivery between MN and AP), MIH 
primitives offered at the operating system level (as described in [76]), or at L4 the Transmission 
Error Detector (TED) (as software tool providing the MN with information about success rate of 
datagram reception at the AP) [87] can be delivered to higher (i.e. application) layers of the 
protocol stack to trigger a handover decision respectively. In this way, it is possible to devise 
cross-layer strategies for managing NICs and performing vertical handovers. 

Outcome of the review above is a collection of parameters measured or parameter changes 
detected, and provided by different layers to support MM decisions. Depending on the 
technologies used at various layers and also the applications or environments in mind this may 
comprise:  

• L1 (PHY): RSSI, IQ sampling information, CSI, Propagation information, ISCP and 
SINR   

• L2 (Link): Retransmissions, Frame size 
• L2.5/L3: MIH primitives, MIHF, Event Information Service  
• L3 (Network): IP Routing information 
• L4 (Transport): TED 
• Above L4 (e.g. Application): MIF API, VoIP/SIP/HTTP Proxy 
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7.3.6 Cross-Technology MM schemes 
As the diversity of available networks increases, it is important that mobility technologies 
become agnostic to link layer technologies, and can operate in an optimized and secure fashion 
without incurring unreasonable delay and complexity [89]. Supporting handovers across 
heterogeneous access networks, such as IEEE 802-basedWi-Fi or WiMax and global mobile 
cellular communications – and in the view of FMC also fixed line connections - is a challenge, 
also due to different characteristics in terms of QoS, security, access control, and bandwidth. 
Similarly, movement between different administrative domains poses a challenge since MNs 
need to perform access authentication and authorization in the new domain. Thus, it is desirable 
to devise a mobility protocol enhancement or even a protocol-independent optimization 
technique that can reduce these hurdles and subsequent delays as e.g.  described in [90]. As the 
technology characteristics differ generally on lower layers similar issues as in cross layer 
information issues apply: In MIH, the handover procedures can use the information gathered 
from both the mobile terminals and the network infrastructure. At the same time, several factors 
(some of which are slice- or service-specific) may determine the handover decision, e.g., service 
continuity, application class and QoS, negotiation of QoS, security, power management, 
handover policy etc. IEEE 802.21 facilitates, speeds, and thereby increases the success rate of 
inter-technology handover decision making and other pre-execution processes. 

Similar as above also for a cross-technology handover a context aware decision making should 
be supported. The underlying context management shall be standardized across the technologies 
and must be fast enough to provide the fresh context for decision making procedure, while the 
overhead of gathering the context should be tolerable. A unified framework managing network 
context information is helpful to integrating heterogeneous networks. [91] has identified the gap 
that currently there is not any standard method for context management in context-aware 
handovers. Vertical Handover Decision (VHD) Criteria cover Received Signal Strength (RSS), 
Network connection time, Available bandwidth, Power consumption, Monetary cost, Security, 
and User preferences.  

A detailed analysis of VHD algorithms resolves that a multi-criteria solution is needed. The 
criteria for comparison of 12 algorithms referred to in [91] are Delay, Number of handovers, 
Handover failure probability, and Throughput – and a grouping into four categories, i.e. RSS 
based, Bandwidth based, Cost function based, and Combination algorithms has first been 
provided by [92]. 

A Handoff Protocol for Integrated Networks (HPIN) proposed in [93] implements access router 
and network discovery based on message exchanged between the IDE (Interworking Decision 
Engine) and mobility agents, minimizing the usage of limited wireless resources and providing 
fast mobility and secure transfer. The Resource Management Module (RmM) enables QoS 
mapping and re-negotiation between participating access technologies. A Handover Decision 
Module (HdM) shall enforce handover policies, i.e. which technologies to be considered. 

Summary on VHO/cross technology and heterogeneous mobility is the need for a flexibility to 
consider multiple types of context information which has to be available in an abstracted and 
thus comparable manner. Based on the criteria (differing per service and slice) to trigger a 
handover initiation the decision algorithm has to compare different technology performance 
parameters. Based on lower Layer information a priority mapping containing each of the 
available technologies has to be provided to the MM decision algorithm. 

7.3.7 Granularity consideration in MM protocols 
Granularity of a MM protocol is understood as flexibility to serve different types of users and 
usage scenarios with respect to e.g. the coverage offered in combination with a service. This 
may be reflected in required cell size according to speed of the terminal. According to [94] a 
classification can be applied as given in the following definitions: 
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• Mega-mobility is the mobility between the networks of different providers or 
technologies, e.g. satellite to UMTS to WLAN to Bluetooth, etc.  

• Macro-mobility is the mobility between different “visited domains” but still within one 
network. 

• Micro-mobility is the mobility between different “location areas” but still within one 
visited domain. 

• Mini-mobility is the mobility between different “access point regions” but still within 
one location area.  

• Pico-mobility is the mobility between different “access points” but still within one 
access point region.  

• Nano-mobility is the mobility within the zone covered by one access point, where the 
cell zone can vary from mega-cell down to nano-cell (of personal area with 1m-10m cell 
size). One access point may employ several logical channels. 

Mobility of various granularities can be discussed in terms of typical operations of mobility 
management as location and handoff processes Usually MNs can be operated in different states 
– e.g. active and idle state during which the location has to be known (and be tracked) with 
different precision. In the simplest case an MN in active state has to be tracked at the finest 
granularity such as its current base station whereas  an MN in idle state needs to be tracked at a 
much coarser granularity (paging area). The MN updates the network less frequently in idle 
mode (every paging area change) than in active state (every base station). The cost of paging, 
however, is the complexity of the algorithms and the protocols required to implement the 
procedures, and the delay incurred for locating an MN. In addition to these two states more 
granularity would be provided by introducing states in between (as e.g. semi-active or semi-idle 
allowing for more delay between successive data transmissions, e.g. for web browsing or non-
real time file transfer compared to streaming). 

A different understanding of granularity is followed by [86]: Their classification relates to the 
granularity of the service, i.e. to the target (node, channel, packet, etc.) to be assigned to a 
selected NIC. When triggered, per-node solutions migrate every active flow by adopting a 
coarse-grained approach and exploiting one NIC only, according to the requirements of the 
whole node. The MM feature is how fine granular the protocol can support an independent per 
packet/flow/session handover or between multiple channel (in case of aggregation or bundling) 
or multiple access nodes and technologies (assuming that the MN has activated the 
corresponding NICs). 

Criteria for granularity identified so far are network and service specific features such as cell 
size and MT speed, MT type (e.g. handhelds, vehicles, MTC devices – see results mentioned 
above in section 7.3.5 and [85]), MT activity, session continuity requirements, QoS degrees to 
be supported. A tight correlation with amount and type of available access technologies has to 
be considered. 

7.4 Edge Mobility 
Mobile edge clouds are a new approach for reducing the load on the core network, since moving 
applications and services to the edge allows for lower operational costs, network overhead and 
latency. Users will be served by different edge clouds as they move around the world. They will 
also expect service continuity. This means that applications, services and VNFs will have to be 
somehow migrate across the network as users change their covering edge cloud. Migration will 
entail different transmission costs, and potentially lead to brief service outages. On the other 
hand, continue to serve a user now located in distant edge cloud will increase latency and 
potentially degrade QoE. Assuming a user moves from one cloud to another, the challenge then 
is to decide if/when to make this migration.  
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The 5G NORMA architecture allows for dynamic allocation/instantiation of VNFs, placing 
them either in the edge cloud or in the central cloud. User mobility influences service 
performance, especially for edge clouds, so the architecture must have a placement decision 
method for those functions. This method should use different criteria and provide the optimal 
position for the function to be at any given time.  

It is important here to emphasize that migration could mean either live migration or duplication 
and reconfiguration. Live migration means the instantiation of the same VNF, followed by the 
live transfer of memory, storage and network connectivity from the original VNF to the new 
VNF. This type of migration is suitable for a function like Content Caching. Duplication and 
reconfiguration means a new instance of the VNF in another location, followed by redirecting 
all users to using the new instance. There is no transfer of memory or storage. This type is best 
suitable for stateless functions. 

When a user moves away from the area covered by an edge cloud, three decisions can be made: 
the VNF continues to run at the original edge cloud, rerouting its packets through the central 
cloud; the function is migrated to the new edge cloud; or migrated to the central cloud. Various 
factors like delay requirements, reallocation/instantiation costs and QoE should be taken into 
account for this decision. 

The goal is seamless service connectivity. The decision method for VNF migration should 
minimize service outages, while at the same time prevent QoE from degrading when users move 
between edge clouds. Any proposed solution should be a trade-off between these two 
requirements. It could be assumed that the VNF should always follow the user to maximize 
QoE, but that would lead to the VNF hopping between edge clouds as the user moves around. 
Therefore, the migration should only take place when the impact of remaining in the original 
cloud is large enough to warrant “paying” the migration costs. 
 
Any placement decision method must model the following issues:  

• The user mobility 
• The migration and communication costs 

For the user mobility, the model is a uniform 2-D random walk model, where the user moves 
within a hexagon cell structure. At each time step, the user has the probability m of moving to 
any of its neighbour cells, while the probability of staying in the same cell is 1 – 6m. The 
migration cost model will be based on distance between the cell of the mobile edge cloud and 
the current position of the user. The central cloud is considered equidistant between both 
original and serving edge clouds. In figure 54, EC means a cell being covered by the original 
edge cloud, CC means the virtual location where the central cloud would be, and USER 
represents which the user is, currently being served by another edge cloud. 
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Figure 68: User Mobility Model 

 

Next, the migration and communication costs must be modelled. The migration costs represents 
the “price” to pay for migrating, and the communication cost represents the price of continuing 
to use the VNF hosted in the original cloud, transmitting the data to the serving cloud. Ideally, 
we would like to have a way to model the migration and communications costs as functions 
only of the distance between hosting and serving cloud in our mobility model. Many factors 
influence migration and communication costs, but we are interested in comparing them head-to-
head in our decision method.   

A function called constant-plus-exponential can be used.  

𝑐 𝑑 = 1 −	𝜃G 

Variable d here represents the length of the shortest path between two cloud hosting cells. 
Parameter θ can be manipulated to create any arbitrary cost function that best fits the migration 
and communication costs for a certain network function. If the user is in the same cell as the 
hosting cloud, then the cost is zero.  Using this cost function, it is possible to quickly calculate 
the migration and transmission costs of all cells in the considered grid at a certain time.   

Our placement decision method will use Markov Decision Processes (MDPs). The main 
decision here is if at any given time the network function should be moved. User movement is 
random and the migration and communication costs are not constant. This type of scenario 
(outcomes are partially random and partially under control) is ideal for MDPs. 

Let us define the MDP: 
 

• The set of state S will consist of all position in the hexagon structure where the user can 
be 

• The action set A has three possible actions : no migration anm, migrate to central cloud 
amcc and migrate to serving cloud amsc 

• The state transition probabilities are given by the mobility model: the user has the 
probability m of moving to any of its neighbour cells, while the probability of staying in 
the same cell is 1 – 6m  This holds regardless of which action is taken 

• The reward function is the communication cost cc minus the migration cost cm. As 
mentioned before, the costs function are based on the distance between two cells. The 
distance used varies depending on the action: 

o For anm and amsc ,use the distance between the hosting cloud and cloud the 
user will be, to calculate both the communication and migration costs 
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o For amcc , use the distance between the hosting cloud and the central cloud to 
calculate the migration cost, and the distance between the central cloud and the 
cloud the user will be, to calculate the communication cost  

o The discount factor γ can be set through fine-tuning 

Modified policy iteration can be used to solve this MDP. Every time the user changes cell, this 
solution will be run again. If migration occur, the same procedure can be executed, only with 
changed hosting cloud, central cloud and serving cloud positions.   

While there is some work on the area of service migration in mobile edge clouds, the solution 
described expands this by considering the division of edge and central cloud. The existence of 
the central cloud makes the current solutions not sufficient, since they assume services can only 
reside on a mobile edge cloud.  

We plan to have simulations in other to compare our placement decision model to other 
approaches: 

• never migrate (functions will never move, and user requests are routed to the edge cloud 
running the functions) 

• always migrate (functions follow the user closely) 
• always migrate first to the central cloud 

The SDM-O will have a module for determining the placement of a network functions or 
service. As output, the module will provide a placement decision. The SDM-O will then 
organize the migration using the VNFMs and VIMs. 

7.5 SDM-C based mobility 
The current distributed architecture for RAN and EPC is based on different interfaces that 
interconnect several eNBs to the elements that take care of control and data planes. With 
network programmability and network virtualization, this difference is much more blurred. 

These are two key features of the SDM-C approach. However, to increase the flexibility of the 
controller, heterogeneous Southbound interfaces and Applications may be designed. 

Namely, with the involvement of the RANaaS concept, the higher layers of the RAN stack can 
be decoupled from the lower ones and possibly integrated into the functionalities that are 
commonly carried out by EPC. According to the chosen RANaaS split, different optimizations 
are possible. They are detailed throughout the rest of the section. 

7.5.1 RRC-PDCP 
The first possible split below the full eNB configuration (a use case already considered by the 
current ONF architecture) is the RRC-PDCP split. The proposed architecture is depicted in 
Figure 69. 

This split is a pure c-/u-plane split. The RRC layer does not handle any data- path 
functionalities, so the architecture is identical to the one already proposed by the ONF. S1-U 
tunnels are directly managed by the PDCP layer, so the tunnel creation requests are handled as 
the usual way. 
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Figure 69: RRC-PDCP split 

Although not directly related with the ONF architecture, possible improvements are possible 
within the MME entity, that can be enriched, leveraging the information coming from the RRC. 
Ideally, having a unified RRC layer allows to take joint handover decision, removing part of the 
message exchange for handover requests, allowing thus a more optimized handover procedure. 

In this case the mobility management algorithms are not affected by the split itself, but rather by 
the availability of centralized handover decisions. This will help the handover decisions and it 
will be the first step towards the joint optimization of RAN and Core functions. 

Modules 

The SDM-C application that optimizes the handover decisions takes into account the several 
base stations it manages, and assign user flows (GTP tunnels through the S1-U interface to the 
best path). The information about the available eNB comes from the already considered, but not 
yet standardized X1-C interface. This communication can be in band or out of band. 

Interfaces 

For this split, two interfaces need to be defined. The one marked as A in Figure 69 that controls 
the switch configuration. This interface has to configure GTP tunnels from the eNBs (up to the 
PDCP) and the SDN enabled switches that act as S- and P-GW. Similar extensions are currently 
being standardized by ONF, in which tunnels IDs are directly used to setup Openflow rules. 

Additionally, two control interfaces are needed to abstract the RRC and Mobility Management/ 
NAS messages. RRC information can be delivered through an X1-C interface, while the 
interface to the Mobility Management functions has to be abstract from the Low level mobility 
messages (i.e., UE attach, Handovers, Paging…). 

As reference we include in Figure 70 the MSC for a generic handover process and how the MM 
Application (and the GW-application controlling the gateways) performs an handover between 
eNBs. 
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Figure 70: MSC for the Handover procedure using the SDM-C Mobility Management 

The granularity required by the Mobility Management interface include messages currently 
exchanged between the UE and the NAS.  

7.5.2 PDCP-RLC 
This deeper splits involves more complex procedure compared to the RRC-PDCP split detailed 
above. As the functional split is performed through two u-plane functions, different primitives 
have to be defined in order to deliver user flows (radio bearers in this case) between the 
machines running the RLC and PDCP entities. 

More in details, two specific problems have to be tackled: 

• Define a message format for delivering data from RLC to PDCP. 3GPP is currently 
standardizing the Xn interface, which may be used as starting point for this split. 

• In order to apply the SDM-C concept to this function, some of the PDCP functionalities 
may be treated with a Logic – Agent approach as defined by SDM-C. 

The RLC layer expose logical channels to the PDCP layer: 

• Transparent Mode, TM (BCCH, PCCH, CCCH): Packets are send through these 
channels without any modifications. It is used for Broadcast, Paging and RRC Control 
Messages. 

• Unacknowledged Mode, UM (DTCH): Packets sent through this channel are segmented 
and reassembled but unacknowledged. Therefore, they need re-ordering and 
decapsulation (performed at PDCP layer) 

• Acknowledged Mode, AM (DTCH): Packets sent through this channel are segmented, 
reassembled and acknowledged. Re-ordering and decapsulation are also needed. 

These three channel types are clearly envisioned for providing different kind of services: 
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• Transparent Mode: PDCP layer is completely bypassed here. RRC control messages are 
sent using this mode. No concatenation, segmentation or guaranteed delivery. 

• Unacknowledged Mode: Used for delay-sensitive and error-tolerant traffic. RLC 
performs re-ordering, re-assembly using a RLC header. 

• Acknowledged Mode: Used for error-sensitive and delay-tolerant traffic (TCP traffic). 
RLC performs re-ordering, re- assembly and retransmissions using a RLC header. 

Therefore, RLC offers three SAPs to the upper layers: TM-SAP, UM-SAP and AM- SAP that 
should be used by a “centralized” implementation of the PDCP layer using extensions of the 
OpenFlow protocol. The functionalities carried out at the PDCP layer are essentially three: i) 
header compression, ii) security and iii) re-transmission and re-ordering during an handover. 

The architecture of PDCP is depicted in Figure 71 Control Bearer and Data Bearer are mapped 
to different PDCP entities and then to different RLC Channels (AM for control, AM or UM for 
data). Note that sRB-0 is sent over transparent mode (no ciphering) and bypasses the PDCP. 

For this purposes three kind of PDUs are defined: CP Data PDU, UP Data PDU and PDCP 
Control PDU. They are used by the Control Plane and User Plane packet management as 
depicted in Figure 72 and Figure 73. 

Splitting between RLC and PDCP means to handle the concept of radio bearer, as it is not 
transparently handled by the sub-RRC anymore. Different radio bearers (SRB-1,2 and all the U-
RBs) have to be explicitly handled by the PDCP OpenFlow extensions, carrying out some 
atomic functions that are currently fulfilled there: Sequence Numbering, Integrity and ciphering, 
Header Compression and Header Management. 
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Figure 71: PDCP - RLC split 

 
Figure 72: PDCP functionality (Control) 

Sequence numbering: For each UE, there are at least 2 Service Radio Bearer to be managed 
and many User Radio Bearer. According to the type (Service or User), the Sequence Number 
has a different length (5 bits for Service, 7 or 12 bits). Therefore, this functionality can be split 
into his control plane (UE ID, Bearer ID, initial sequence number) and the actual incremental 
sequence number generator. This functionality can be useful for sequence number continuity 
even if the UE traffic is managed by different switches. 

Integrity - Ciphering: the output of this procedure (used just by Control Plane traffic) is the 
MAC-I value. It is calculated using the sequence number of the packet, the bearer ID and the 
session keys. Those can hence be supplied from the handler application on a per-UE basis. The 
same applies for ciphering, that takes the same subset of parameters (plus the MAC-I for control 
packets). Therefore, an Integrity-Ciphering handler may use OpenFlow extension to set up rules 
such as the security keys for each service or data bearer. As for the sequence number generation, 
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the advantage of this approach is to have a centralized management for the security part that 
may be useful for enhanced mobility management solutions. 

 
Figure 73: PDCP functionality (User) 

Header compression. PDLP implements ROHC a technique that improves the channel 
utilization by compressing the header of packets. For this purpose, headers fields are classified 
into 5 categories (i.e., inferred, static, static-def, static-known and changing) according to their 
level of “predictability”. It is typically used for VoIP traffic. 

According to the kind of traffic, different profiles are defined (see Table 12). 
Table 12 ROHC configurations 

Profile  Usage  Ref  

0x0000  No compression  RFC 4995  

0x0001  RTP/UDP/IP  RFC 3095, RFC 4815  

0x0002  UDP/IP  RFC 3095, RFC 4815  

0x0003  ESP/IP  RFC 3095, RFC 4815  

0x0004  IP  RFC 3843  

0x0006  TCP/IP  RFC 4996  

0x0101  RTP/UDP/IP  RFC 5225  

0x0102  UDP/IP  RFC 5225  

0x0103  ESP/IP  RFC 5225  
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0x0104  IP  RFC 5225  

Also, three operation modes are defined: Unidirectional, Bidirectional Optimistic, and 
Bidirectional Reliable mode. According to the chosen mode, each Radio Bearer needs to be 
assigned to one or more channels (i.e., SAPs) at RLC level. New features may be added to 
extended to support this case as in Figure 74. 

Upon new flow creations, the MME+RRC application decides (according to overall QoS 
parameters of the network) what is the best operation mode and profile to be associated to each 
flow. A ROHC engine at the switch performs the protocol operation and decapsulates datagrams 
that are then sent over a GTP-tunnel. The advantages of this approach are, besides the 
multiplexing gain of centralizing the computation, the possibility of an overall dynamic decision 
on the ROHC parameters to be used by each flow.  

In-order delivery. Especially during handovers, RLC packets may arrive out of sequence. One 
of the tasks of PDCP is to re-order them and encapsulates them into GTP-U tunnels (for user 
traffic) or to the RRC (for control traffic). This functionality cannot be really controlled by a 
handler with OpenFlow extension, but it must be implemented in the OpenFlow enabled switch. 

 
Figure 74: SDM-C ROHC Application 

7.5.3 Other Splits 
The RANaaS concept envisions further functional splits (e.g., RLC-MAC, Upper/Lower MAC, 
MAC-PHY). However, they highly fall outside the Mobility Management realm. Still, the 
advantages introduced by the programmability features of SDM-C can be introduced in these 
cases and will be further investigated. 

7.6 Multipath  
Multipath TCP (MPTCP)-alike techniques are not the only way of introducing multipath 
capabilities in 5G NORMA. Exploiting multiple paths is possible at both radio access 
technology (RAT) level and in the edge cloud. Using a SDN approach, different virtual Network 
Function appliances may be connected by using multiple paths, increasing reliability and 
performances. Moreover, multiple paths may be exploited to opportunistically anticipate mobile 
terminal movements to fulfil its QoE/QoS constraints by providing replicas of the virtualized 
Network Function in the correct edge cloud. 

This is a networking related issue that has a strong relation with VM migration and re-location 
schemes. It can be seen as one of the operation that has to be available on the SDM-C SBI when 
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triggering the movement request: SDM-O is in charge of relocating/instantiating the virtual 
machine, while the SDM-C builds multipath connectivity among edge clouds. 

The advantages given by this kind of approach are especially useful for mobility purposes, but 
also other application may exploit them as well. The first application is hence the make-before-
break technique: the data plane may be bifurcated before the actual change of point of 
attachment in order to minimize the possible disruptions at the UE. Another possible target 
scenario is the one depicted in Figure 75. The resiliency provided by multipath solution such as 
MPTCP may be employed to enhance the reliability between a pair VNFs belonging to the same 
service chain. Multipath transport solution may react to the possible outages in the transport 
network, increasing therefore the overall reliability of the system: one of the envisioned goals of 
5G Mobile Networks. 

Exploiting multiple paths improves the resiliency of the system. However, several challenges 
should be tackled to introduce this family of solutions in the 5G NORMA architecture. 

• A thorough evaluation of how many paths (or flows) should be used according to the 
network conditions (i.e., required KPIs, status of the links) is necessary in order to 
provide the optimal operation of the network. 

• The set of primitives that must be used by the SDM-C SBI has to be defined. Also, 
multipath capabilities should be offered to SDM-C applications on the northbound 
interface. 

• An assessment of the SDM-C implementation of multipath routing strategies should be 
provided.  

  
Figure 75: Multipath between VNFs 

7.6.1 Problem statement 
As stated above, MPTCP is one of the most promising solutions for introducing heterogeneity in 
the path selection, especially in the access network. However, the enhanced reliability and 
efficiency provided by multipath solution may also be beneficial for core Network Functions. 
Currently multi-path solutions may be based on complex and heavy path monitoring. On the 
contrary, MPTCP (see Section 9.1 for more details on the state of the art) may naturally benefit 
by its path selection algorithm to automatically select the least congested ones. Therefore, if 
VNFs in a service function chain transparently use MPTCP, they can instantaneously benefit 
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from the availability of multiple paths between network functions, created using, for example 
VXLAN. Not all the VNFs in a service chain may use this approach, but Network Functions 
like TCP Optimizers and P-GWs may include MPTPC-Proxys that automatically translate 
single-path TCP to MPTCP. 

 
Figure 76: The multipath scenario 

Therefore, we focus on the scenario depicted in Figure 76, in which a Multipath capable 
Network Function has to send multipath flows to the next VNF in the service function chain. 

MPTCP may work using two operational modes: mesh and ndiffports. The first one is the most 
used and works as follows: each host opens a different subflow among each srcIP – dstIP 
combination. If both the hosts are single-homed, then the connection rollbacks to a single path 
TCP. This is likely to be the case of core VNFs however, MPTCP may be used with the 
ndiffports operational mode. In this case the sender hosts generate k different subflows using the 
same srcIP – dstIP changing the source port value. This can be easily accommodated to a 
typical virtual machine setup in a datacenter with a L2 overlay topology. 

In this scenario there are two sub problems that have to be tackled 

• Given that the number of disjoint paths towards the destination is unknown, what is the 
optimal number of sub-flows that have to be generated 

• The best forwarding strategy to be applied ad the edge switches. Sub-flows may be 
forwarded through different paths according to several policies: this task should 
optimize the overall utilization of the available links. 

The answer to both sub problems should be provided in a joint fashion, maximizing both the 
achieved throughput and the reliability obtained by the solution. 

7.6.2 Forwarding strategies 
As stated above, as the number of available paths n to the destination is an unknown parameter, 
defining the number of subflows k that have to be generated impacts on the overall performance. 
If k < n then not all the available paths are exploited. On the other hand, if k > n there may be 
penalties in terms of flow oversubscription. 

Path assignment is a topic that has been widely studied in the literature, since the introduction of 
ECMP (Equal cost multipath routing). However, in this case the problem is fundamentally 
different, as we are not considering path assignment of single path flows, but rather path 
assignment of subflows belonging to same parent multipath flow. 

MPTCP, in fact, is composed by two main elements: i) a scheduler, managing the k generated 
subflows, and ii) a decoupled congestion control algorithm that decides the size of the windows 
to be transmitted. 

In order to tackle the problem mentioned above we followed an empirical methodology, 
measuring the achieved throughput using different configuration of number of VNFs hosted by 
the container, number of available paths and generated sub-flows. The goal is to assess the 
behaviour of the protocol according to different configurations. 

We compared two different forwarding strategies: 

VNF1 VNF2

vSwitch vSwitch

N	disjoint	paths

Host	A Host	B



5G NORMA Deliverable D5.1 

 

Dissemination level: Public Page 154 / 189 

 

• Hash Forwarding: the selected output path is computed using a hash function that 
takes into account the 4-tuple (srcIP – dstIP – srcPort –dstPort): F → [0…n-1]. 
Therefore, as for each end to end connection the only changing parameter is the srcPort, 
the selected path has a pseudo-random behaviour. This solution is completely stateless 
and guarantees the path symmetry. 

• Round Robin: This forwarding strategy is stateful as it has to maintain state for each 
flow. That is, the port selection happens in an incremental manner. When the first 
subflow of a 3-tuple (srcIP – dstIP–dstPort) arrives, a Random path q is selected. Then, 
when the following subflows arrive the path q+1, q+2, … are selected. The space is 
circular, so when q = n, next q is 0. The resulting path selection is even, but it comes at 
a price of maintain state for each flow. As a central controller is needed in this case, we 
assume that the number of available paths is known. 

7.6.3 Preliminary results 
We selected the achieved throughput as the final evaluation metric: we tested the two 
forwarding strategies in a controlled, virtualized, environment. We emulated the VNFs hosted in 
a physical container using Dockers9 connected through a pair of OpenvSwitch10. As mentioned 
above, we initially performed a sweep varying different parameters such as the number of VNFs 
hosted by each physical machine, the number of generated subflows or the capacity of each 
path. We have two link configuration defining the capacity of the links. Namely, Link 
configuration #1 is 10Mbps/path and Link configuration #2 is 20 Mbps/path We included the 
results of single path TCP as reference. The MPTCP congestion control is OLIA. Results, 
depicting the normalized throughput (the achieved throughput across all the flows divided by 
the available capacity) are shown in Figure 77 and Figure 78. 

Results clearly show the efficiency of a multipath solution; single path techniques cannot 
exploit the full available path heterogeneity. However, we wanted to evaluate also the behaviour 
of the different forwarding strategies. We can appreciate how the evenly spread number of 
flows can achieve always the best results. 

Hash forwarding has a different behaviour when compared to Round Robin. It can achieve 
suboptimal results for either a non-spread path selection (left-hand side of Figure 78) or 
oversubscription of subflows to path (right-hand side of Figure 78). 

                                                        

 
9 https://www.docker.com/ 
10 http://www.openvswitch.org/ 
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Figure 77: Throughput: 4 paths scenario 

 
Figure 78: Throughput: 8 paths scenario 
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7.6.4 Next steps 
Our next goal is to understand the pro and cons of applying the aforementioned forwarding 
strategies for multipath traffic. We will evaluate the scalability and the performance of each 
solution under different perspectives (improvement to the Hash Forwarding strategies, 
lightweight Round Robin forwarding solution). In addition, more concrete results concerning 
the non-MPTCP solution will be provided. 

8 Conclusions  
This document has reported on the current progress of WP5 in the 5G NORMA project. A 
substantial part of the effort in the WP so far has been focused on the design of a consistent 
architecture that integrates all the functions of the WP5 architecture. To this aim, the WP has 
identified three main building blocks (Mobility management, inter-slice management and intra-
slice management) that implement the key concepts of the WP (Software-Defined Mobile 
Network Control, Network Orchestration and Network Slicing). The project has defined a high-
level architecture that specifies the interaction between each building block and has broken 
down the design for each one into a number of sub-modules with the corresponding interfaces. 
This contribution is contained in Part I of the document. 

Besides the architectural design, the other main contribution of this document is the initial 
design of the novel algorithms and protocols required for each of the modules defined. This is 
contained in Part II of the document. For each module, we have justified the need for new 
solutions required in the context of the proposed architecture, and we have designed the 
necessary protocols and algorithms to implement the required functionality. In many cases, the 
novelty of these algorithms comes from the fact that, when designing a fundamentally new 
architecture as the one based on the proposed concepts, new problems arise that require new 
algorithms, applications and protocols, such as the ones shown by the following examples: 

• A good example of a new algorithm is the optimization algorithm for network 
orchestration, which solves a problem that we do not have in traditional networks. 

• An example of a new application is the design of SDM-C Apps that run on top of the 
controller – again such applications were not part of the design of traditional networks 

• Finally, examples of new protocol are the south and northbound interfaces of SDM-C 
and the associated protocols, which again were not needed in traditional networks. 

It is important to highlight that the innovative aspects of the WP comprise the novel conceptual 
ideas behind the WP architecture, such as SDM-C and network slicing, as well as the design of 
new algorithms and protocols. The novelty of these ideas is confirmed by the publications 
resulting from these ideas, and the potential for exploitation is supported by the standardization 
proposals that have been prepared. 

As a summary, the following main achievements can be highlighted because of the work 
conducted by WP5 so far: 

• We have proposed a new architecture comprising key 5G concepts such as SDN-based 
control (SDM-C), NFV/orchestration (SDM-O) and slicing (SDM-X). The main value 
of this architecture is that it consolidates current trends in mobile networks, such as 
NFV, SDN and orchestration, which have only been proposed as high-level concepts so 
far, into a fully-fledged and completely defined architecture, being a pioneering 
architecture in this respect. 

• We have identified key modules and interfaces, and have validated the overall design 
via processes. The architecture proposed is very detailed, specifying the modules and 
interfaces required, and has further been validated by means of processes that assure the 
that the various functional requirements are satisfied. 
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• We have provided the design of more than 15 different algorithms/protocols required 
for or enabled by this novel architecture. All these proposals contain novel ideas and 
most of them have been patented, standardised or presented in major scientific venues. 

As for the next steps that will be conducted in WP5 and reported in future deliverables, we can 
highlight the following: 

• Finalize last details of architecture specifications. While the architecture definition 
presented here is fairly detailed, as a result of the validation process currently in place 
we may detect some open issues that need to be fixed in the next iteration of the 
architecture definition. In any case, we consider that only minor refinements will be 
needed. 

• Continue the design of individual modules (algorithms and protocols). While the design 
of the protocols and algorithms is fairly complete in some cases, in other cases it is still 
ongoing, and some open issues remain in many cases. Therefore, one of the important 
pending tasks is to finalize and/or refine the design of the various algorithms and 
protocols. 

• Performance evaluation of the modules design and (partially) their interaction. While 
some performance evaluation results have been presented in this document, most of the 
work on evaluating the performance of the various algorithms and protocols still 
remains. Thus, one of the major pending tasks is to complete the evaluation of the 
various proposals, including the evaluation of individual algorithms as well as their 
interaction. 



5G NORMA Deliverable D5.1 

 

Dissemination level: Public Page 158 / 189 

 

9 Annex: State of the art 
In this section, we are describing the state of art of a set of challenges addressed in the following 
document. 

9.1 Multipath: 
TCP/IP communication is currently restricted to a single path per connection, yet multiple paths 
often exist between peers.  The simultaneous use of these multiple paths for a TCP/IP session 
would improve resource usage within the network and, thus, improve user experience through 
higher throughput and improved resilience to network failure. Multipath is described in RFC 
[95]. 
 
 The opportunity of using multiple flows on different interfaces (and different IP addresses) has 
been extended to support seamless mobility across different point of attachment to the networks. 
Therefore, opportunistic mobility using MPTCP has been proposed by many works [96] [97], 
proving its feasibility and showing promising performances. 

The main drawback of using MPTCP for mobility management approach is its need to be 
configured end-to-end. Both the mobile user terminal and the application server have to be 
MPTCP-capable, otherwise the communication falls back to a single-path communication. 

To overcome this limitation, proxy-based solutions have been proposed [98] [99], and 
increasing interest in this class of solutions has fostered the creation of several Draft RFCs in 
the MPTCP working group at IETF. 

In addition to MP-TCP also other protocol schemes for hybrid bandwidth aggregation have been 
proposed. These include among others a GRE Tunnel Bonding solution with per-packet 
switching and recombination on the remote end [100] and a LISP based solution [101], which 
enables load balancing between routers within the mobile node and the network including a 
reorder and feedback function. Protocol “Flow Binding for Mobile IPv4” [102] specifies header 
extensions to the Mobile IP protocol [103] which allow a mobile node with multiple interfaces 
to simultaneously establish multiple IP tunnels with a router (home agent) by registering a care-
of  address for each of its network interfaces and enabling policy negotiation. A corresponding 
solution for end hosts using Mobile IPv6 and for mobile routers enabled based on flow binding 
as defined in [104]  and the extensions for Proxy Mobile IPv6 (PMIPv6) are currently under 
final evaluation [27]. 

Furthermore a “Solution to augment bandwidth for a Mobile Router in a vehicle” was proposed 
in [105]  and implemented which is based on existing RFCs [106] and [107]. More details are 
given in a living document maintained by IETF Mailing List (ML) BANANA (BANdwidth 
AggregatioN Activity) [108].  

9.2 Mobility Management: 
Mobility management schemes standardized by IETF for IPv6 networks are extensions to or 
modifications of the well-known Mobile IPv6 protocol (MIPv6) [109], and can be classified into 
two main families: client-based mobility protocols, and network-based mobility protocols. 

Client based mobility solutions, such as MIPv6, enable global reachability and session 
continuity by introducing the Home Agent (HA), an entity located at the home network of the 
Mobile Node (MN) which anchors the permanent IP address used by the MN, called the Home 
Address (HoA). The HA is in charge of defending the MN’s HoA when the MN is not at home, 
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and redirecting received traffic to the MN’s current location. When away from its home 
network, the MN acquires a temporal IP address from the visited network – called Care-of 
Address (CoA) – and informs the HA about its current location. An IP bi-directional tunnel 
between the MN and the HA is then used to redirect traffic to and from the MN. 

With network-based mobility management protocols, such as Proxy Mobile IPv6 (PMIPv6) 
[110], MNs are provided with mobility support without their involvement in mobility 
management and IP signalling, as the required functionality is relocated from the MN to the 
network. In particular, movement detection and signalling operations are performed by a new 
functional entity called the Mobile Access Gateway (MAG), which usually resides on the 
Access Router (AR) for the MN. 

The IP prefixes (home network prefixes) used by MNs within an Local Mobility Domain 
(LMD) are anchored at an entity called the Local Mobility Anchor (LMA), which plays the role 
of local home agent of the LMD. Bi-directional tunnels between the LMA and the MAGs are set 
up, so the MN is enabled to keep the originally assigned IP address despite its location changes 
within the localized mobility domain. 

Whatever flavour of IP mobility a modern day MNO chooses to deploy, a constant feature of 
the operator’s architecture will be the presence of a central entity (HA/LMA/PGW/GGSN) 
which anchors the IP address used by the mobile node. 

While this centralized way of addressing mobility management has been fully developed by the 
Mobile IP protocol family and its many extensions, it brings several limitations that have been 
identified in: sub-optimal routing, scalability and reliability problems. 

To address these issues, a new architectural paradigm, the so-called DMM, is being explored by 
both research and standards communities. DMM11 introduces the concept of a flatter system 
architecture, in which mobility anchors are placed closer to the user, distributing the control and 
data infrastructures among the entities located at the edge of the access network. 

The conceptual aspects of DMM have been addressed both in terms of the mentioned functional 
split into AF, FM, and LM [111], and in terms of protocol implementation scenarios for NFV-
based CP/DP function deployment as e.g. described in [112] for existing Evolved Packet Core 
(EPC).). A detailed analysis of the breakdown of DMM functionalities to a framework of 
functional entities in DP and UP has been provided in [113] both for a condensed deployment as 
a mobility protocol centric solution and for a cooperative deployment in form of a distributed 
architecture. Several underlying protocols to be used in DMM approach have been specified and 
numerous draft extension proposals exist describing both tunnel based (e.g. PMIP [110] or 
AERO [114]) and also standard routing protocols (e.g. BGP or OSPF). Since naming and 
addressing is an important aspect especially in the heterogeneous 5G environment also  
approaches to separate endpoint location from the identifier/name of the customer or device 
(e.g. based on IETF Locator/Identifier Separation Protocol, LISP [115], or IRTF proposed 
Information Centric Networking, ICN) shall be taken into consideration here since although 
new functional entities for mapping and a change in infrastructure is required for scenarios 
considering global/inter-domain operation within separated domains a considerable efficiency 
improvement is expected. 

In the Evolved Packet Core architecture, many of the DMM functionalities may be implemented 
in the Mobility Management Entity (MME) that is in charge, for example, of the selection of the 
gateway: Serving Gateway (SGW) or the centralized Packet Gateway (PGW). Hence, the 
strategy adopted by the MME heavily affects the overall performance of the network. As PGW 
in current deployments usually cover very large portions of the operator network (usually there 

                                                        

 
11 https://datatracker.ietf.org/wg/dmm/ 
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are few of them in each one) and IP mobility is not supported for PGW – PGW handovers, the 
straightforward solution of having a PGW covering a much smaller portion of the network 
cannot be easily implemented with standard techniques.  

In 3GPP Release 10 - 12, a Local GW (LGW) has been introduced (LIPA, SIPTO), [116] [117]. 
It has been also discussed to use a local mobility anchor but finally in Rel.12 LIMONET work 
item the requirement for mobility was removed. One approach to provide local break out and 
mobility on demand is DMM as specified in IETF [118] [119]. Further, within IETF WG DMM 
(Distributed Mobility Management) solutions for application aware on-demand mobility (such 
as permanent reachability, transient session continuity, short-term connectivity without 
mobility) are under development currently focusing on granular and resource/time efficient 
choice/assignment of fixed, sustained, or nomadic IP addresses. [120] describes a solution for an 
application on a mobile terminal to indicate the required type of mobility in terms of IP session 
continuity or IP address reachability by different IP addresses, whereas [121] defines a new 
option as extension to DHCPv6 protocol [122] to specify the type of mobility services 
associated with an IPv6 address. 

9.3 Network Sharing: 

9.3.1 RAN Sharing 
(RAN sharing emerged as a rather static sharing concept for 2G and 3G networks, e.g., for 
sharing base stations among multiple (up to 6) tenants/operators. It was expected to be 
particularly beneficial for rural areas with reduced overall traffic volume so that not each mobile 
network operator would have to deploy network equipment. The concept has been supported by 
radio network equipment from different vendors with different degrees of sharing. Three typical 
examples as depicted in Figure 79. 

• Passive RAN sharing (with or without transmission sharing) – Sharing is limited to 
antennas. 

• Active RAN sharing – Sharing includes base stations and radio network controller 
(BSC, respectively).). 

• Roaming-based sharing – Sharing is further extended (beyond RAN) to include selected 
functions of the mobile core network. 

 
 

Figure 79: Network sharing methodologies 
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9.3.2 MORAN / MOCN 
Multi-Operator RAN (MORAN) and Multi-Operator Core Network (MOCN) exploit the 
concept of network sharing. For example, a MORAN-enabled LTE network access network 
could use the following basic configuration: 

• LTE six cell configuration 2+2+2, where each operator has one cell per sector. 

• Enhanced Node B (eNB) is configured so that each cells broadcasts the Primary Public 
Land Mobile Network (PLMN) plus the dedicated PLMN for that cell. 

• S1 flex needs to be enabled. 

• Each operator sharing the RAN has its own core network, i.e. the core does not need to 
support (be aware of) MORAN. 

• Two separate LTE carriers are supported by one RF Module or RRH within one 3GPP 
RF band. 

• One RF Module or RRH supports two LTE cells at one RF band simultaneously per RF 
sector (TX/RX and RX pipe).). 

 

 
Figure 80: MORAN- Basic features 

 

In the depicted example (see Figure 80), shared resources include: 

• Transport interface (resource splitting).). 
• eNB hardware. 
• baseband capacity. 
• Feeder cables and antennas (combiner if needed).).  
• Racks, power supply and batteries at a NB level. 

The following resources are dedicated: 

• Cell level parameter settings (a dedicated PLMN is broadcasted).). 
• Licensed frequencies.  
• S1 interfaces. 
• EPC and services. 

Further MORAN / MOCN variants with varying levels of sharing exist. 

9.3.3 Dedicated Core Networks 
3GPP TSG SA2 currently works on a work item description targeting dedicated core networks 
[123]. It targets architecture enhancements for dedicated core networks. This work is motivated 
by the assumption that devices and customers with very different characteristics, such as 
machine type devices, MVNO, data usage, etc., need to be supported in the future. These classes 
of devices and customers may have different requirements from the core network in terms of 
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optional feature support, traffic characteristic support, availability, congestion management, 
ratio of signalling to user plane traffic, etc. One mechanism for operators to support these 
different classes of devices and customers is to create separate dedicated core networks 
consisting of specialized core network elements that are designed and deployed to meet the 
requirements of these different devices and customers. 

 
Figure 81: Dedicated core networks for exemplary service categories, use cases, or 

customers 

As shown in Figure 81, dedicated core network consists of a set of MMEs,  SGWs and PGWs. 
The objective of the WID includes studying and creating solutions for the following: 

• Defining the subscription information and configuration used to determine the selection 
of the specific dedicated core network that shall serve the UE. 

• Enable the initial allocation of serving MMEs or SGSNs from the dedicated network 
selected for the UE and maintaining the UE’s association with the selected dedicated 
network during MME/SGSN change. 

• Enable the allocation/reallocation of serving SGW and PGW from the dedicated 
network selected for serving the UE.  

• Whether other network elements, e.g. Policy and Charging Rules Function (PCRF), also 
need to be included as part of the dedicated network and if additional functionality is 
needed for selection of such network elements. 

• Whether dedicated core network may also consist of Gn/Gp SGSNs and GGSNs is to be 
determined during the study. 

• Handling of possible relocation of UEs from one dedicated network to another. 
Handling of dedicated core networks in roaming scenarios and GWCN/MOCN shared 
networks. 

9.4 Multi-Domain Interfaces: 
In this section, we present a brief review of the interfaces supported between different domains. 
For the IETF model of Abstraction and Control of Traffic Engineering (TE) networks (ACTN) 
as referred to above the interface specification work has been started and is described in [124]. 
The coordinator function defined as MDSC (Multi Domain Service Coordinator) is a multi-
functional building block which implements beside multi domain coordination (both towards 
customer and physical network domains) also capabilities for virtualization/abstraction, 
customer mapping, and virtual service coordination. Service (or slice) specific tasks include 
requests for creation of network resources, topology or services for corresponding applications, 
but also report of potential network topology availability if queried for current capability from 
the Customer Network Controller – representing here a tenant or slice owner. 
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The ACTN model foresees different interfaces towards different network controller per 
coordinator communicating creation requests, if required, of new connectivity of bandwidth 
changes.  

Examples for potential internal system architectures and corresponding building blocks of the 
MDSC can be found in the Application Based Network Operations (ABNO) architecture [125] 
and in ONF defined SDN architecture [26]. 

[125] specifies the element of an Application Service Coordinator where an application may be 
a sophisticated control system that is responsible for arranging the provision of a more complex 
network service such as a virtual private network and in general in some way is responsible for 
coordinating the activity of the network to provide services for use by applications. In practice, 
this coordinator function may be distributed across multiple applications or servers and 
communicates with the ABNO Controller to request operations on the network. The ABNO 
controller is seen as main gateway to the network for NMS, OSS, and Application Service 
Coordinator for provisioning advanced network coordination and functions.  The ABNO 
Controller governs the behaviour of the network in response to changing network conditions 
and in accordance with application network requirements and policies. It is the point of 
attachment, and it invokes the right components in the right order. 

[26] on the other hand specifies SDN architecture at a high level in terms of reference points 
and open interfaces to enable the development of corresponding control software. This software 
can control network connectivity provided by a set of physical and/or virtual network resources 
and the flow of network traffic utilizing these resources. Control may include inspection and 
modification of traffic in the network. Virtualization permits abstract views of network 
resources. These resources can be tailored to a particular client or application, and can be 
interrogated and manipulated by those clients or applications. An SDN application interfaces the 
SDN controller via the A-CPI (application-controller plane interface). Both application and 
controller also contain coordinator functionality. Various architectural topics detailed in [26] 
include delegation of control, control hierarchies, virtualization, an information model, 
interworking with non-SDN environments, deployment considerations, as well as aspects of 
management and security. 

9.5 QoE video optimization delivery: 
One of the remaining challenges is the provisioning of enhanced and fair Quality of Experience 
(QoE) to multiple multimedia users in mobile network.  In fact, besides a higher probability of 
traffic congestion in the wireless networks, mobile users will still experience different channel 
conditions with limited link capability and large throughput fluctuations due to the time-varying 
nature of the wireless interface.  

HTTP Adaptive Streaming (HAS) [126] has emerged as the prominent technology. In addition 
to the commercial implementations, i.e., Microsoft smooth streaming (MSS) [127], Apple 
HTTP live streaming [128] and Adobe HTTP dynamic streaming [129], HAS has been recently 
standardized by 3GPP [130], and denoted as Dynamic Adaptive Streaming over HTTP (DASH) 
[131].  

In HAS based technologies, the video content is encoded at multiple bit-rates, also called 
profiles, which may consist of different temporal, spatial and quality resolutions. For each 
profile, the video is diced in several chunks, whose durations generally range between 2 and 10 
seconds. At the end of profiles encoding, or periodically during encoding, the server generates a 
manifest file, which contains synthetic information describing the available profiles of each 
chunk. The client, after receiving a chunk, requests the subsequent chunk by selecting one of its 
available profiles according to the playout buffer status and current downloading rate, thus 
enabling adaptive streaming.  
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So far, HAS principle has targeted an end-to-end optimization between the client and the server 
in an OTT view which prevent the implementation of many optimization through specific 
network capabilities inside the network and break the OTT behavior of the video delivery. In 
addition, in multiuser cellular systems the achievable data-rate depends on the UEs channel 
conditions, which may be widely heterogeneous. Hence, QoS/QoE-aware channel-dependent 
optimization is the primary key-tool to improve the fairness among HAS UEs. 

However, if the optimization is performed only in term of QoS, e.g., by trying to provide the 
same data-rate to the UEs [132], the QoE may become significantly unfair. In fact, the UEs 
requesting low-motion videos, e.g., interviews or news, require less data-rate to achieve an 
excellent QoE compared to UEs streaming high-motion videos, e.g., sport or music events. We 
should keep in mind that video quality does not depend on the encoding rate only, but it also 
depends on the complexity of the video scenes [133] [134]. Moreover, the QoE can be 
significantly degraded if stalling occurs during the video playout due to a re-buffering event. In 
particular, the probability of stalling may increase for the user equipments (UEs) coming up into 
the network when the cell load is high, since they may have less possibility to build an adequate 
play-out buffer with respect to the already present UEs.  

Early researches on HAS have focused on the optimization of a single server-client link, by 
improving the Rate Decision Algorithm (RDA) of state-of-the-art commercial clients according 
to the trade-off among number of re-buffering events, video quality, quality oscillations and 
video play-out deadline [135] [136]. However, a user-driven approach is generally suboptimal 
in a system where multiple HAS clients compete for the same radio Massive Broadband (MBB) 
slice resources. In fact, the Authors in [137] have shown that, in a constant bandwidth multi-
user scenario, three major issues, i.e., efficiency, stability and bandwidth estimation accuracy, 
have to be tackled. The Authors in [138] analyzed the main causes of these problems and 
proposed a novel fair, efficient, and stable adaptive RDA. It combines an optimized bandwidth 
estimator based on the harmonic mean of the past measured throughput samples, an improved 
profile selector that allows the RDA to converge to a stable profile, and a randomized chunk 
scheduler, which increases the accuracy in the estimation of the bandwidth. Nevertheless, the 
large window used to estimate the throughput, which improves the stability of the quality levels 
selection, could not cope with uneven large throughput drops typical of wireless channel with 
mobility. To improve the stability-responsiveness trade-off, the Authors in [139] proposed 
PANDA, a probe and adapt client RDA, which results in better bandwidth utilization. The work 
in [140] extended the PANDA approach to also consider the content of the video by showing 
that content-aware adaptation schemes achieve better QoE when compared to conventional 
PANDA scheme. 

9.6 QoS in LTE: 
In 4G network, QoS is handled by the use of QCI [141] defined in the core network. In the 
Policy and Charging Enforcement Function (PCEF) it is possible to handle QoS control on a 
service data flow level. In fact, the PCRF/PCEF policy infrastructure was primarily designed to 
describe and enforce individual limitations and subscription boundaries (closely integrated with 
the charging system) to enable the implementation and enforcement of various subscription 
plans.  

The QoS concept in LTE is based on EPS bearer as illustrated in Figure 82. An EPS bearer/E-
RAB is the level of granularity for QoS control in the EPC/E-UTRAN. That is, service data 
flows (SDFs) mapped to the same EPS bearer receive the same bearer level packet forwarding 
treatment (e.g. scheduling policy, queue management policy, rate shaping policy, RLC 
configuration, etc.). 
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Figure 82: LTE EPS bearer concept	

One EPS bearer/E-RAB is established when the UE connects to a Packet Data Network 
(PDN),), and that remains established throughout the lifetime of the PDN connection to provide 
the UE with always-on IP connectivity to that PDN. That bearer is referred to as the default 
bearer. Any additional EPS bearer/E-RAB that is established to the same PDN is referred to as a 
dedicated bearer. Each dedicated bearer is associated with a Traffic Flow Template (TFT) that 
defines a set of packet filters (typically a 5-tuple).  

The initial bearer level QoS parameter values of the default bearer are assigned by the network, 
based on subscription data. The decision to establish or modify a dedicated bearer can only be 
taken by the EPC, and the bearer level QoS parameter values are always assigned by the EPC. 
Setup of default and dedicated bearer requires end to end signalling between UE and MME on 
NAS (Non-Access-Stratum) level and between UE and eNB on AS (Access-Stratum) level. 

The LTE bearer centric QoS architecture is not able to differentiate traffic flows that are served 
by same EPS bearer unless dedicated EPS bearers are used for different traffic flows. However, 
different traffic flows of the same service that needs to be treated in the network in different 
way for better QoE/QoS support may not differ in 5-tuple. Or 5-tuple needs to change very 
dynamically in order to differentiate the traffic flows via different EPS bearer, which may 
introduce significant overhead to the network to update UE and GW for traffic flow mapping. 

9.7 QoE-based Routing: 
In recent years, Quality of Experience is becoming more prominent for mobile networks. The 
emphasis has switched from guaranteeing Quality of Service, to ensuring the end-user has the 
best experience. Software Defined Networking, by decoupling control and data plane, gives the 
network the flexibility to improve QoE. The routing can be dynamically changed based on the 
feedback from the users.  

Reinforcement learning (Q-learning) is a promising approach for QoE-based routing. It is used 
in many scenarios, such as wireless mesh networks, optimizing QoS routing [142] and mobile 
networks [143].  

The system in [143] uses reinforcement learning to provide QoE in mobile networks. A data 
provider sends a data packet to the end-user, and each routing node selects the next node using a 
Q-value table. When the packet reaches the end-user, he sends a QoE feedback that travels back 
in the routing path. Each node then updates its Q-value table using that feedback. This process 
of selection, evaluation and learning creates an adaptive, dynamic and evolving routing system 
that can guarantee end-to-end QoE. 

A recent proposal for QoE-based routing in multiservice wireless mesh networks applies double 
reinforcement learning, using the QoE knowledge acquired in each node to adjust dynamically 
their routing schemes. Double reinforcement learning means that each node in a flow sends its 
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predecessor the expected path quality, and sends the estimated path quality towards the user to 
its successor. Alternative paths are explored with some probability, in order to find better routes.  

An alternative to the use of reinforcement learning is fuzzy logic. A fuzzy routing protocol for 
wireless mesh networks is introduced in [144], which determines the best route for video 
streaming and multimedia based on the user experience. It also tries to optimize the usage of 
network resources by minimizing the number of transmissions and the link delay.  Subjective 
and objective QoE metrics are used to assess the quality of multimedia applications. However, 
this proposal is not a dynamic adaptive mechanism. 

9.8 Vehicular mobility pattern: 
Vehicular movement patterns are a well-studied topic: the study of the interactions among 
vehicles at both microscopic and macroscopic levels has been targeted for years, but just 
recently the topic acquired significance in the field of wireless networking due to the rise of 
V2V communications. 

The studies proposed in [145] [146] analyse the vehicular mobility pattern under a vehicular 
networking perspective for highway environments. Analogously, in [147] the vehicular mobility 
patterns are studied for the case of a large city. 

Wireless connectivity in VANETs is mainly provided by two radio access technologies: the 
cellular and the short range one. While those technologies have different, intrinsic, 
characteristics, they share the fact of having a fixed deployment. Both Road Side Units (RSU) 
for the case of Dedicated Short Range Communications (DSRC) and Remote Radio Headers 
(RHH) have a stable, known, position, thus can be used as proxy for the User Equipment (UE) 
position. 

Two metrics are especially relevant to studies on the impact of user mobility on cellular 
network: i) cell-inter-arrival, i.e., the time elapsed between two subsequent arrival of users at a 
given cell, and ii) the cell residence time (also called sojourn time), i.e., the time spent by users 
within a cell. 

By merging the analysis on cell inter-arrival time (a paramount metric for evaluating the 
handover frequency) and the cell residence time it can be possible to map certain flows to the 
vehicular category. 

9.9 Monitoring: 
Monitoring mechanisms that minimize the signalling overhead are currently an open research 
topic that most likely will experience a push due to the rise of SDN. 

Existing mechanisms are for example OpenTM [148], a traffic matrix estimation system for 
OpenFlow networks that uses built-in features provided in OpenFlow switches to directly and 
accurately measure the traffic matrix with a low overhead; and A-GAP [149], a protocol for 
continuous monitoring of network state variables that aims at achieving a given monitoring 
accuracy with minimal overhead. 

There is a large body of research and projects focusing on various aspects of Monitoring and 
Measurement Systems (MMS). Nagios [150] and Ganglia [151] are traditional tools for IT 
infrastructure monitoring. They are mature and stable. However, these tools only provide basic 
statistics of monitoring data and cannot satisfy the complex processing requirement today. The 
MISURE system [152] is an application-level cloud monitoring system that uses stream 
processing. It proposed a scalable and fault tolerant framework for monitoring applications 
running in a cloud environment; however, MISURE is mainly for application monitoring and 
therefore is not suitable for infrastructure monitoring.  
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Ceilometer is a telemetry component of OpenStack, an open source cloud platform. It provides 
mechanisms for monitoring virtual compute, network, and storage resources. Ceilometer 
provides very limited analytics capability for monitoring data (only average, sum, max, and 
min). CloudView [153] and MONaaS [154] are other systems that integrate with Open- Stack, 
but they have the same limitation as Ceilometer. The authors in [155] and [156] present 
solutions for cross layer monitoring. In [156], we use Ceilometer and assume that application 
layer data are available using a monitoring as service model, which raised the question of how 
to provide application layer monitoring data as a service. This question is addressed in this 
paper. 

For SDN, FlowSense [157] is a push-based SDN monitoring system for network utilization. It 
provides basic OpenFlow network monitoring. PayLess [158] proposed a network monitoring 
framework for monitoring OpenFlow networks. It uses a variable frequency flow-statistics 
collection algorithm to improve the monitoring overhead. OpenNetMon [159] provides per-flow 
metrics monitoring in an OpenFlow network: bandwidth, delay and packet loss. The SDN 
monitoring research work are area specific and cannot be used as a general monitoring system 
in a cloud environment, but it can provide network monitoring data for the MonArch system. 

On the monitoring analytics side, Monalytics [160] presents a hierarchical monitoring and 
analytics system. It proposes integration of monitoring and online analytics, and suggests that 
analytic tasks should be executed locally at the monitoring data acquisition point. This analytics 
model suffers from lack of global view and fault tolerance. 

9.10 QoE Management: 
QoE management is currently a wide-open evolving research topic, in which research can go in 
many directions. Even the definition of the term QoE is still not very well defined [161] and 
different QoE measurement scales are being considered [162]. However, QoE research has seen 
important advances mainly in the field of multimedia applications [163], but it needs to evolve 
towards other applications and scenarios such as mobile networks and services. 

One aspect addressed in literature is for example that the overall user’s QoE rate can be derived 
as a functional combination of the different QoE metrics. To address this, a useful concept is to 
consider a QoE space, being the orthogonal dimensions the different QoE metrics. Methods to 
derive the QoE rate from the QoE space is for example the “ideal quality vector” and the “ideal 
point” method [164]. Topics like this are to be explored and advanced focusing on 5G networks. 

The subjective QoE is correlated with the objective QoS parameters presented by the 
communication and network conditions at that moment. An approximation of this correlation is 
depicted in the following Figure 83 [164], where the horizontal axis represents the QoS 
disturbance (deviation from the optimal). 

 
Figure 83: Correlation between QoE and QoS. 
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In turn, QoS can be divided in Network QoS (NQoS) which is the one provoked by the 
network-related aspects (e.g. delay, jitter, etc.) and Application QoS (AQoS) which is due to 
application-related aspects (e.g. transmission rate, frame rate, etc.). 

9.11 Edge Function Mobility 
5G NORMA allows for network function to be dynamically allocated either at the edge cloud, 
or at the network cloud. When a user leaves the area of an edge cloud, three options present 
themselves: the network function could continue running in the same cloud, move to the 
network cloud, or be reallocated to the new cloud serving the user. This decision should take 
into account parameters like delay requirements, communication overhead, reallocation costs 
and user QoE. The goal is to provide seamless service continuity. However, a tradeoff between 
guaranteeing QoE and reducing cost exists. Usually, keeping the network function closer to the 
user would be ideal, but that can incur high costs.  

Research in the area of dynamic automated placement of network functions is quite new. Some 
relevant works in the area will be listed and detailed here. 

The work in [165] proposes architecture based on an orchestrator that performs the automatic 
placement of virtual nodes and the allocation of network services on them. As an example of 
network function, the authors choose a virtual router. Their placement algorithm for network 
functions is based on host status. It can focus on keeping load balance (least used host strategy), 
saving energy (N at a time in a Host), and balancing network traffic (least busy host).  

In the area of service migration in mobile edge clouds, the works in [166] use Markov decision 
processes (MDPs) and dynamic programming [167] to minimize the total migration and 
transmission cost. The approach in [166] considers 2-D mobility, with the state space of the 
MDP approximated by the distance between user and service location. User mobility is assumed 
to follow a Markov chain, and the transition probabilities are known. In [167], the solution 
given makes decisions using a look-ahead window. Placement decisions are made using 
dynamic programming based on the predicted costs within that window.   

Markov decision processes also show up in [168], related to the Follow Me Cloud (FMC). The 
idea behind FMC is a framework that provides smooth service migration for federated clouds 
and mobile networks. Multiple federated data centers connect with EPC gateways serving 
certain geographical areas. Using a MDP, a decision policy for service migration was created. It 
is triggered when an UE is at a certain distance from the source data center providing the 
service. A one-dimensional mobility model with a specific cost function for one user is 
considered. Value and policy iteration are used to solve the MDP. These methods can be quite 
time-consuming when the MDP is large. 

9.12 Service Function Chain: 
Common way of deploying the Service Function Chain (SFC) is by connecting the VMs 
running the individual virtual service functions. The resulting composition of VMs builds the 
SFC graph. However, such solution experiences a latency issue due to the communication 
between VMs. There are numerous approaches on how to mitigate such delay. One of the 
options is utilizing the DirectPath I/O [169] acceleration technique. DirectPath I/O is a 
technology that enables the direct access from the VM to the physical device, i.e. without the 
intervention of the hypervisor in every I/O. Since the VM can access the physical device 
directly, latency is much lower in this mode. Pass-through and SR-IOV [170] is another 
approach for acceleration of VM to VM communication where a host's PCI network device is 
directly assigned to a guest. In this way it is possible to bypass the hypervisor and other 
switching processing done inside the host and thus improve the networking performance of the 
guest. Some recent works [171] have analysed the benefits of using the Data Plane 
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Development Kits (DPDKs) for running VNFs. The results show very good i.e. near-native 
performance in the cases of small and large packet processing. In addition, Field-Programmable 
Gate Arrays (FPGAs) can be seen as another approach for enhancing the performance of VNFs 
[172] and [173]. However, as mentioned above, although by such acceleration means the 
networking performance between virtual machines that host the service functions can be 
accelerated still their benefits are subject to availability and might not be sufficient to overcome 
the latency introduced by the classical SFC deployment. 

9.13 Virtual Network Function Orchestration 
Over the last few years the area of NVF has gained a significant research attention from both 
industry and academia. A general framework on NFV management and orchestration is detailed 
within ETSI12. One of the earliest related research works in the area is [30] which was an initial 
effort to provide a systematic unification model of middle-boxes which can be considered as 
nodes that can host VNFs. The aim was to provide a model where different middle-boxes could 
be orchestrated without considering optimization models and/or efficient algorithms for 
orchestration. The work in [31] proposes the so-called Stratos13 framework, which can be 
considered as a network orchestration layer built on top of a Floodlight controller.  The role of 
Stratos orchestrator is estimate where to place various network functions in the network, to 
inform a VM manager about this decision, and finally to instructs an OpenFlow14 controller to 
distribute flows to the corresponding switches. Another effort on the control/orchestration is the 
OpenNF framework [32] that provides a design of the APIs to provide a joint control between 
network forwarding state and internal VNF state. The work in [33] can be deemed as another 
effort to provide orchestration between virtualized NFs especially focusing on issues such as 
VM migration and split/merging flows. The work in [34] provides an optimization problem for 
placing the chained VNFs in a network taking into account as constraints various requirements 
of the tenants and the operator – but routing between and location of VNFs is not explicitly 
taken into account. An overview of the challenges, which emerge in virtual network function 
scheduling is presented in [174]. The authors explain the application of SDN and NFV 
technologies focusing in optical networks. The VNF problem is viewed analogous to the 
classical Job-Shop problem. For this reason, the authors use a mixed integer mathematical 
program outline to frame the scheduling problem. Within this framework, results of the problem 
yields optimal results for small topologies. The authors in [36] address inefficiencies in resource 
and energy consumption in online virtual network embedding scenarios. The Energy Aware-
Virtual Network Embedding-Node-Link Formulation (EA-VNE-NLF) is proposed to addresses 
these inefficiencies by considering two objective functions; the first to address resource usage 
and the second for energy consumption. The performance of the ILP formulation is compared to 
results obtained using a shortest distance path heuristic. The simulation results show gains in 
favour of the proposed minimization formulation compared to those of the heuristic. In [37] the 
authors provide a holistic treatment of VNF opportunities, emerging new architectures, and 
discussion for successful deployments. In [38] four different greedy heuristic algorithms are 
detailed for the problem of VNF chaining and a wide set of numerical investigations are 
presented providing an insight on the performance of the different heuristic algorithms. The 
work in [39] focus on delay requirements for VNF placement with application in 5G networks; 
An optimization problem is formulating resembling the resource constrained shortest path 
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13 http://www.projectfloodlight.org/floodlight/ 
14 https://www.opennetworking.org/sdn-resources/openflow  
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problem with the aims to minimize routing latency for flows requiring variable number of 
VNFs.  

9.14 QoS/QoE Mapping – State of the art 
QoS/QoE mapping is currently a vibrant area of research. A number of researchers are currently 
using different methods considering different media type (e.g. video, voice and image), and for 
each media, different measurement methods requiring different computational resources. In 
addition, different mapping models are under consideration.  

Generally speaking, the goal here is to get a QoE value (or a QoE vector composed by different 
QoE components) from a set of measurable input parameters. This can be seen as the general 
problem of modelling a mapping function f to assign QoE values from a set of measurable 
parameters P1, P2, … ,Pn as represented in Figure 84. 

 
Figure 84: The QoS/QoE Mapping General Problem 

In the following sections we will summarize the QoS/QoE Mapping state of the art considering 
the three main components involved in the problem: the input parameters, the mapping function 
itself and the QoE output. 

9.14.1 Mapping Function Input Parameters 
Before talking about QoE itself, a key point is to clarify what input parameters are normally 
under consideration. Following two different types of input parameters can be considered: 

- QoS Objective Parameters 
- Other QoE Influence Factors 

The QoS objective parameters are the physical and objective network and application 
parameters (jitter, delay, etc.); these are the parameters conventionally used in legacy and 4G 
mobile networks, where QoE is derived from these metrics through a QoS/QoE mapping 
process using the appropriate mathematical functions. In this case, the general approach is to use 
parameters in the OSI network and application layers (i.e., layers 3 and 7) [175]. The 
Application Layer includes services, which are provided by the application in order to achieve 
the required QoS. For example, if we consider a video streaming application, parameters such 
resolution, frame rate, color or the video codec type are considered. However, usage of the 
application layer sometimes could require using DPI in order to access the desired parameters. 
On the other hand, the Network Layer services (provided by devices such routers and switches) 
consider parameters line jitter, delay, packet loss, etc. 

On the other hand, the QoE Influence Factors are the user-centric parameters, that is, those 
parameters that cannot be measured directly in the network or the application, but can influence 
the final user experience (i.e., environment, terminal type, user age, business factors, etc.). The 
consideration of these influence factors is what makes the difference between conventional QoS 
measurements and the more modern and accurate QoE rating approaches. This of course adds 
some complexity to the problem; as a sample Table 13 shows a general classification 
considering different QoS parameters and other QoE influence factors: 
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Table 13: QoS parameters and other QoE influence factors 

Domain Level Example Factors 

Network 

Fixed  
network-level QoS Propagation delay, link capacity and error rates. 

Variable  
network-level QoS 

Throughput, link utilization, congestion level, jitter, 
loss. 

Application 

Application-
level QoS 

Fixed 
Encoding, resolution, sampling rate, frame rate, loss 
level of compression and coding. 

Variable Re-buffering duration and frequency. 
Application type Multimedia, gaming, augmented/virtual reality. 

Content type Voice, speech, music, video, 3D movie. 

Service Service-level QoS Service failure or availability (or non-access), setting-
up delay and time. 

Terminal Terminal-level QoS 
Display resolution, screen size, screen brightness, 
blurriness, image scaling procedure, display rendering, 
screen capability for reproducing motion. 

User 

Physical Sensory Human Visual System (HVS) & Human Auditory 
System (HAS) models, vision/hearing impairments. 

Corporal Heartbeat, body temperature, blood pressure. 

Psychologica
l 

Capability Skills, capabilities, expertise. 
State Mood, concentration, attention, motivation, tendency. 

Cognition 
Expectations, personality, needs, goals, beliefs, 
preferences, tastes, socio-cultural, economic and 
educational aspects. 

Psychophysical Minimum noticeable difference of stimuli variation. 

Context 

Spatial Functional place (home, work, street, train, plane…), 
location coordinates, velocity, movement direction. 

Physical Peacefulness, noisiness, lighting conditions, weather 
conditions (temperature, humidity…). 

Temporal Time of day, time of year, season. 

Social 
Culture, inter-personal relations during the experience, 
social networks involved, shared information between 
users, behaviour and habits of family and friends. 

Task 
User activity (working, resting, sitting, standing, 
walking, jogging…), other tasks carried out during the 
experience (multi-tasking). 

Business  

Price, subscription type, brand-related aspects (brand 
fans, customer-brand attachment…), marketing 
effectiveness, Customer Relationship Management 
(customer service, technical support…). 

9.14.1.1 Data Integration 
One important point regarding input parameters is the input data integration. As we see, input 
parameters could come from heterogeneous sources, and also on different temporary windows. 
For example, information about the user’s terminal could be a collection of text strings stored in 
a database, while real-time jitter measurements could be represented as a rational number stream 
that should be integrated during an interval specified by certain sliding window. The 
normalization and integration of such a different data is also a challenge that needs to be 
considered.  

For the QoE/QoS control process, Data Integration can be a major issue when the number of 
input parameters is high and their relationship is not clear. For example, together with real time 
measurements and static data from databases it would be necessary also to integrate data from 
user surveys (we will see about this below); this could be done statically or even in real-time.   
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As a whole, Data Integration as become the focus of extensive theoretical work and numerous 
open problems remain unsolved. In [176], [177] and [178] you can get an approach to the state 
of the art regarding this topic. 

9.14.2  Mapping Functions Modelling 
Of course, the main goal here is to find a good mapping function that best relates the input 
parameters with the QoE. To get this, two methods commonly used are the so-called “objective” 
and “subjective” approaches. In the objective approach the QoE is obtained only from physical 
QoS network measurements (jitter, delay, etc.), while the subjective approach can integrate 
(also) the users experience and a defined set of QoE influence factors in some way15.   

9.14.2.1 Objective approach 
In this case the selection of the input parameters set is just a selection of predefined QoS 
physical parameters. A mix of network parameters such delay, jitter, packet loss or throughput 
is used. The selection of the proper set of input parameters is delegated on an experts team. The 
main advantages of this method came from the automatization: it is low cost, and once the 
QoE/QoE mapping function is defined, it is possible to get online QoE values in real time.  

This approach can be understood as the classical top-down computing approach; i.e., to delegate 
on an experts team that, based on their experience, could define the mapping function and select 
the set of service parameters that could have a major influence on the user’s experience (see 
Figure 85 below). It is assumed that from this set of parameters it should be possible to infer a 
function that could assign the correct weight to each input parameter in order to get the expected 
QoE. 

 
Figure 85: Objective Approach 

Besides, within the objective approach, there are two different ways to do things: the objective 
approach can be also ‘intrusive’ or ‘non-intrusive’. The non-intrusive methods are purely based 
on monitoring the already available QoS parameters (i.e.: latency, jitter, packet loss…), while 
intrusive methods are based on installing specific purpose applications to get additional QoS 
parameters; an example could be to install a specific program in the user’s terminal to compare 
original and received images in order to detect signal distortions [179] [180]. Other solutions 
focus on including new network elements (e.g., network probes and analyzers, deep packet 
inspectors, etc.) which are responsible for capturing the traffic from a certain service and 
analyzing its performance [181]. Generally speaking, intrusive methods are accurate, but it is 
not always possible to install or execute special purpose applications to get QoE (or related 
measurements). Non-intrusive methods are more easy to implement (no specific applications or 
infrastructure is needed), but not always is easy to map QoE with already available network 

                                                        

 
15 Also, a combination of objective and subjective approaches can be performed to overcome limitations of each 

indivicual technique. A relevant example is the “PSNR-mapped-to-MOP” method has been ratified by the ITU-T 
J.144 Recommendation [197]. 
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parameters. Anyway, the use of intrusive or non-intrusive methods does not makes any relevant 
difference in the general approach; the only difference lies in the additional input parameters 
coming directly from the application installed in the end users terminal. 

A well-known example of objective approach is the so-called "IQX hypothesis" which is often 
used to estimate the QoE in VoIP and web browsing [182]. The IQX hypothesis expresses QoE 
as an exponential function of the QoS degradation. This is the expression commonly used16: 

 
QoE = α * exp(-β * QoS) + γ (1) 

Here QoS is evaluated through three different criteria: packet loss, jitter and download time. 
Results are good for the specific field of application, but the main weakness of the model is that 
it does not consider how the time-varying nature of the internet protocol influences quality as 
perceived by end users. 

No doubt, the objective approach is perfectly valid and efficient in many cases, but: How to be 
sure that a really good mapping function for general use is obtained? What if the network usage 
varies and some parameters that were very relevant when the function was defined are no longer 
so important?17 How to be sure that selected parameters and the weight assigned to each one 
really have an effect on QoE perceived by users? The experts team could be too influenced by a 
purely technical point of view and not by the real users experience, so we can’t be totally sure 
about if the experts team really represent the final users experience; it is true they are experts, 
but they are not in fact the final user, so we should be wary about this. 

The main drawback of the objective approach is that we do not have feedback from the final 
users, just the assumptions of the experts’ team who initially designed the system. The network 
conditions can change over the time (i.e. we do not send much SMS or MMS right now, but in 
the past these were very popular services), but these changes could not be easily integrated in 
the original model. To try to avoid those drawbacks the subjective approach is used. 

9.14.2.2 Subjective approach 
A good illustrative example of the subjective approach is the well-known MOS method, which 
has been used for decades in telephony networks to obtain the human user's view of the quality 
of the network. The MOS method is standardized in the ITU-T recommendation [183]. It is a 
quantization method that defines a numeric scale from 1 to 5 (i.e. from ‘poor’ to ‘excelent’); 
users are asked about their subjective experience according that scale, and their responses are 
used to improve QoE in some way. Besides MOS, other common subjective methods, which 
also collect data from users, are the TUQ method (Testing User-perceived QoS) and the SSQ 
method (Surveying Subjective QoE) [184]. The ITU has developed a classification to 
standardize different objective models based on a focus of each model type [185]. Obviously, 
the most evident advantage using objective methods is that we really get information directly 
from the final user. On the other hand, the main drawbacks are high cost, time consuming and 
that it can be annoying for the user and complex regarding time correlation (i.e.: time when the 
poll is done vs time when the service is actually used), and of course, users may lie when they 
are asked (perhaps the last bill was to high). Although the outcome of this type of methods is 
not perfect, if the poll is well designed and a sufficient population is asked the final result can be 
accurate enough. 

                                                        

 
16 α, β and γ are positive parameters. 
17 Few years ago services like SMS or MMS were intensively used, while today the video streaming services has 

become very common. 



5G NORMA Deliverable D5.1 

 

Dissemination level: Public Page 174 / 189 

 

The subjective approach could be seen as a bottom-up computing approach, i.e., the information 
provided by the users is used to infer the mapping between certain set of objective parameters 
(jitter, delay, etc.) and QoE. The final users could also influence the input parameters set. This is 
illustrated in Figure 86. 

 
Figure 86: Subjective Approach 

That is, the core idea here is to generate models integrating the final users experience in order to 
determine the influence of a set of objective QoS parameters into the perceived QoE. So, not 
only experts analysis is used, but also the reported users experience. 

9.14.2.3 Getting the Mapping Functions 
Of course, obtaining a good mapping function is the core task of the QoS/QoE mapping process. 
In some cases, when relationship between input parameters and QoE is fairly evident, the direct 
intuition can be used to develop a good algorithm18, but normally (when the number of input 
parameters is high and their relationship is not self-evident) other resources are necessary.  

According the literature, a possible approach to get the mapping functions is by using the so-
called Utility Functions. These functions have been widely used to map one or several QoS 
metrics to QoE [186] [187]. As a whole, a utility function measures the user’s relative 
preference for different levels of decision metric attribute values19. They can be used to map one 
or several QoS metrics to QoE. Utility functions can be used for both: objective and subjective 
approaches. For the first case input parameters are just objective QoS measurements, since for 
the second case, the feedback from the end users should be included in some way. An example 
of this method can be found in [188]. 

A different approach to get the mapping functions is the usage of  Statistical Analysis. This is 
based on using techniques like the classical statistical regression and other more modern 
techniques such as Principal Component Analysis (PCA) or Linear Discriminant Analysis 
(LDA) [189] [190]. Statistical analysis can be used for both: objective and subjective 
approaches. For the objective approach, it can be used to find the formula relating QoS 
measurements with QoE. For the subjective approach, it can be used to find and isolate the 
objective parameters that are affecting the final user experience. In this case, to build the model, 
a set of final users could be asked about their subjective experience, and once the most relevant 
parameters are identified, a simple formula can be used to determine QoE in real time by 

                                                        

 
18  For example, for a given type of service (i.e. load a web page) a high delay usually implies a low QoE (or vice 

versa). 
19 The term utility comes from the field of Economics. It is an abstract concept and is derived largely from Von 

Neumann and Morgenstern [12]. 
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measuring the relevant QoS parameters; i.e: the formula is a model containing information 
about real users experience. 

An example of this method used for evaluating QoE for video streaming can be found in [191]. 
In this case, viewers were presented with the same video with descending or ascending order of 
quality. Then viewers marked the point at which the change of quality becomes noticeable. 
Then, linear discriminant analysis is used to find a linear combination of features in the video 
streaming that can be used later for QoE rating. The resulting discriminant function formula is a 
linear function like this: 

QoE = u1*QoS1 + u2*QoS2 + … + up * QoSp 
 

(2) 

where QoS1 … QoSp are the relevant QoS parameters found thanks to the statistical analysis, 
while u1 … up are the  corresponding empirically found factors for each one. 

Other commonly used approach to find the mapping function is using Machine Learning (ML) 
methods. This approach is mainly suitable for the subjective approach, where the relation 
between the user’s responses and the objective parameters is not evident; anyway, it could be 
used also for the objective approach when the amount of data to manage is big. Actually, this 
case is very similar to the previous one (statistical analysis) but, instead of using traditional 
statistical methods to figure out the relevant input parameters and their relationship, modern 
machine learning methods are used (Artificial Neural Networks [192], Genetic Algorithms 
[178], Decision Trees [177] or Support Vector Machines [176] for instance). The whole idea is 
basically the same, i.e., to collect data from real users about their quality perceptions, and use 
those data to train the selected machine learning algorithm. Sometimes accuracy obtained with 
these methods is very high, being above 90% in some cases [193]. Probably this is because the 
ability to find relevant objective parameters and non-linear relationships among them using 
these techniques. 

9.14.3 The Mapping Function Output 
The mapping function output expresses, of course, the sought QoE value; but this value could 
be encoded in different ways according the application requirements. In practice, it can be a 
bounded rational number, or a vector with multiple components to express QoE for different 
features (audio, video, etc.). It can be delivered also as an event (or events set) to notify only 
when the QoE value reaches certain threshold, or it can be encoded also as a qualified QoE 
value (QQoE), i.e., a numeric value linked to a certain code to explain the possible QoE lack.  

Also, besides the way it is encoded, QoE can be associated to different metrics. For example, it 
could be necessary to compute the QoE regarding the noisiness/loudness, responsiveness or 
video distortion.  The following Table 14 shows a classification of different QoE metrics. 

 

Table 14: QoE metrics examples and classification 

Type Description Sub-levels Example QoE metrics 

Direct 
perception 

Created immediately 
and spontaneously; 
related to human 
sensory channels. 

Visual 

Brightness, contrast, flicker, sharpness, 
distortion, colour saturation, fragmentation, 
movement disturbance, blurring, freezing, 
blocking, stalling. 

Audio  Clarity, intelligibility, noisiness, loudness, 
continuity, timbre, echo. 

Audio- Balance, synchronism. 
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visual  

Interaction 

Perception of human-
to-human and human-
to-machine actions and 
reactions 

 

Responsiveness, naturalness of interaction, 
rapport, communication effectiveness, 
involvement, social presence/ immersion, user 
input redundancy. 

Service 
usage 

Perception of the 
service usage situation 

Hedonic 
Enjoyment, gratification, goal fulfilment, user-
friendliness. 

Pragmatic Learnability, effectiveness, efficiency, 
accuracy, ease of use. 

Service 

Perception of the 
usage of the service 
beyond a particular 
instance 

 
Appeal, utility, acceptability, trustworthiness, 
reliability. 

In addition, sometimes very specific encoding functions are used. An example is the usage of 
the Weber-Fechner law (WFL) of psychophysics [194], which relates the physical stimulus that 
a person receives with the subjective perceived intensity in a logarithmic manner (see Figure 
87). The subjective perception is comprised of discrete noticeable intervals (horizontal dashed 
lines) within which the user perceives the same subjective intensity. This concept can be seen 
comparing points A and B in the figure. In the A-B interval, the subjective perception of the 
user is the same, while the upper part of the interval (point B) involves up to twice as much of 
resources as the lower part (point A). The conclusion is that to achieve the same user perception, 
moving away from point A involves a waste of resources. 

 
Figure 87: Weber-Fechner law of psychophysics 

Of course, this is just an illustrative example of how relevant QoE events could be generated to 
save resources and energy. Other approaches could be used depending on the specific 
application and needs.  
So, as a general conclusion we can tell that, like with the mapping function itself, if we consider 
the different encoding schemes and the different QoE metrics, the mapping function output can 
be expressed in very different ways as well. There is no general consensus on this, being the 
solution depending very much on each specific application field and requirements. 
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