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Abstract—Power-line communications are becoming a key
component in home networking. The dominant MAC protocol for
high data-rate power-line communications, IEEE 1901, employs
a CSMA/CA mechanism similar to the backoff process of 802.11.
Existing performance evaluation studies of this protocol assume
that the backoff processes of the stations are independent (the
so-called decoupling assumption). However, in contrast to 802.11,
1901 stations can change their state after sensing the medium
busy, which introduces strong coupling between the stations and,
as a result, makes existing analyses inaccurate.

In this paper, we propose a new performance model for 1901,
which does not rely on the decoupling assumption. We prove that
our model admits a unique solution. We confirm the accuracy of
our model using both testbed experiments and simulations, and
we show that it surpasses current models based on the decoupling
assumption. Furthermore, we study the tradeoff between delay
and throughput existing with 1901. We show that this protocol
can be configured to accommodate different throughput and
jitter requirements, and we give systematic guidelines for its
configuration.

I. INTRODUCTION

Power-line communications (PLC) are increasingly impor-
tant in home networking. HomePlug AV, the most popular
specification for PLC, is employed by over 120 million devices
worldwide [1], and the new HomePlug AV2 devices offer data
rates up to 1 Gbps [2]. Moreover, PLC plays a powerful role
in hybrid networks comprising wireless, Ethernet, and other
technologies [3], as it contributes to increasing the bandwidth of
such networks with an independent, widely accessible medium.
Yet, despite the wide adoption of HomePlug specifications in
home networks, little attention has been paid to providing an ac-
curate analysis and an evaluation of the HomePlug MAC layer.

The vast majority of HomePlug devices employ a multiple-
access protocol based on CSMA/CA that is specified by
the IEEE 1901 standard1 [4]. This CSMA/CA mechanism
resembles the CSMA/CA mechanism employed by IEEE
802.11, but with important differences in terms of complexity,
performance and fairness. The main difference stems from
the introduction of a so-called deferral counter that triggers a
redraw of the backoff counter when a station senses the medium
busy. This additional counter significantly increases the state-
space required to describe the backoff procedure. Moreover, as
we explain in more details later, the use of the deferral counter
introduces some level of coupling between the stations, which

1This CSMA/CA mechanism is the same for all HomePlug specifications,
including 1.0, AV, AV2 and GreenPhy.

penalizes the accuracy of models based on the decoupling
assumption. This assumption was originally proposed in the
802.11 analysis of [5] and has been used in all the works that
have analyzed the 1901 CSMA/CA procedure so far (i.e., [6],
[7], [8]). In this paper, we show that this decoupling assumption
leads to inaccurate results, and the modeling accuracy can be
substantially improved by avoiding it.

The decoupling assumption relies on the approximation that
the backoff processes of the stations are independent and that,
as a consequence, stations experience the same time-invariant
collision probability, independently of their own state and of
the state of the other stations [5]. In addition, to analyze 1901,
it has been assumed that a station senses the medium busy
with the same time-invariant probability (equal to the collision
probability), during any time slot [6], [7]. In this paper, we
show that the deferral counter introduces some coupling among
the stations: After a station gains access to the medium, it
can retain it for many consecutive transmissions before any
other station can transmit. As a result, the collision and busy
probabilities are not time-invariant for 1901 networks, which
makes the decoupling assumption questionable.

Figures 1 and 2 provide some evidence on the coupling
phenomenon described above, for a HomePlug AV testbed
with two stations. While Station A transmits during several
consecutive slots, Station B is likely to remain in a state where
it has a larger probability of colliding or sensing the medium
busy. B is then even less likely to attempt a transmission
while in this state, and it might have to wait several tens of
milliseconds before the situation reverts. Thus, the collision
probabilities observed by the stations are clearly time-varying,
which invalidates the decoupling assumption. Note that a
consequence of this coupling is short-term unfairness, which
in turn translates into high delay variance (i.e., high jitter).

In this paper, we propose a theoretical framework for
modeling the CSMA/CA process of 1901 without relying on
the decoupling assumption. First, we introduce a model that
accurately captures the 1901 performance without assuming
that stations are decoupled. This model is relatively compact:
computing the throughput of the network only requires solving
a system of m equations, where m is the number of backoff
stages (the default value for 1901 is m = 4). Second, we prove
that this system of equations admits a unique solution. We
confirm the accuracy of the model by using both simulations
and a testbed of 7 HomePlug AV stations. To the best of
our knowledge, this is the first study that validates a 1901978-1-4799-6204-4/14/$31.00 c©2014 IEEE



0 10 20 30 40 50

A

B

Successful transmissions per station for 1901

Transmission index

S
ta

ti
o

n
 n

a
m

e

0 10 20 30 40 50

A

B

Successful transmissions per station for 802.11a

Transmission index

S
ta

ti
o

n
 n

a
m

e
59 ms

Fig. 1. Testbed trace of 50 successful transmissions by two saturated stations
with 1901 and 802.11a. The experimental settings and the details on our testbed
are given in Section V-A. 1901 exhibits short-term unfairness: a station holding
the channel is likely to keep holding it for many consecutive transmissions
(during several tens of ms, for example 59 ms as shown above), which causes
high jitter. 802.11 is fairer, which makes the decoupling assumption viable
in this case. This experiment took place under ideal channel conditions. In
realistic channels, where frames are retransmitted due to errors, the jitter might
even be higher.
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Fig. 2. We study a testbed trace of 5 · 104 successful transmissions for both
1901 and 802.11a when two saturated stations A and B contend for the medium.
Let Xi be the variable that indicates which station transmits successfully at
the i-th transmission. We take Xi := 1 if A transmits and Xi := 2 if B
transmits. We show the autocorrelation function of Xi, 1 ≤ i ≤ 5 · 104.
Observe that it is positive for 1901 at lags smaller than 15. Hence, if Xi = 1
for some i, it is likely that Xi+1 = 1. For 802.11a, we have in contrast a
negative value of autocorrelation at lag 1 and a positive one at lag 2, which
means that if Xi = 1 for some i, it is likely that Xi+1 = 2 and Xi+2 = 1.

MAC performance model on a real PLC testbed. We have
employed a similar testbed setup to study and validate the
short-term unfairness (but not a complete model) of the 1901
MAC in [9]. In addition, we investigate the accuracy of our
model and that of previous works that rely on the decoupling
assumption, showing that, to the best of our knowledge, ours is
the first model for 1901 reaching this level of accuracy. Finally,
we study in detail the tradeoff between throughput and delay
variance (or equivalently, short-term fairness), caused by the
deferral counter in 1901. We observe that this tradeoff can
be accurately controlled in 1901, and propose a systematic
method to configure a 1901 network to obtain the best delay
performance under arbitrary throughput constraints.

The remainder of the paper is organized as follows. We
present the 1901 backoff process in Section II. We then review
the related work on MAC layer in Section III. We present our
model for 1901 in Section IV. We evaluate the performance of
our model and discuss the decoupling assumption in Section V.
We study the tradeoff between throughput and fairness in
Section VI. Finally, we give concluding remarks in Section VII.

II. BACKGROUND

In this section, we present the CSMA/CA protocol of
1901 [4], and highlight the mechanism that causes the strong
coupling between the stations. This mechanism is the main
difference between 1901 and 802.11. In CSMA/CA protocols,
such as 802.11, stations wait for a random number of time
slots (determined by the backoff counter) before transmitting,
in the attempt to avoid that some other station transmits
at the same slot, which causes a collision. Nevertheless, a
collision can still occur and when it does, the stations involved
increase the range in which they select their backoff counter
(called the contention window CW ) to further reduce the
collision probability. Clearly, there exists a tradeoff: if CW
is large, the collision probability is small, but under low-
load conditions stations waste many slots on average before
transmitting, which decreases throughput. As we explain later,
to tackle this backoff inefficiency, 1901 aims at reducing CW .
To counterbalance the resulting large collision probability, 1901
introduces an additional mechanism that increases CW before
a collision occurs: when a station senses a considerable number
of transmissions in the channel, it increases CW . To count
the number of times a station has to sense the medium busy
before increasing CW, a new counter is introduced, called the
deferral counter.

We now describe the technical details of the 1901 CSMA/CA
procedure. It includes three counters: the backoff counter (BC),
the deferral counter (DC) and the backoff procedure counter
(BPC). Upon the arrival of a new packet, a transmitting station
enters backoff stage 0. It then draws the backoff counter BC
uniformly at random in {0, . . . , CW0−1}, where CW0 denotes
the contention window used at backoff stage 0. Similarly to
802.11, BC is decreased by 1 at each time slot if the station
senses the medium to be idle (i.e., below the carrier-sensing
threshold), and it is frozen when the medium is sensed busy. In
the case the medium is sensed busy, BC is also decreased by 1
once the medium is sensed idle again. When BC reaches 0, the
station attempts to transmit the packet. Also similarly to 802.11,
the station jumps to the next backoff stage if the transmission
fails. In this case, the station increments the BPC counter
and enters the next backoff stage. The station then draws BC
uniformly at random in {0, . . . , CWi − 1}, where CWi is
the contention window used for backoff stage i, and repeats
the process. For 802.11, the contention window is doubled
between the successive backoff stages, i.e., CWi = 2iCW0.
For 1901, CWi depends on the value of the BPC counter and
the priority of the packet: There are four backoff stages that
are mapped to the BPC counter, as given in Table I. Also,
there are four different priority classes (CA0 to CA3) that
correspond to different values for the CWi’s.

The main difference between 1901 and 802.11 is that a 1901
station might enter the next backoff stage even if it did not
attempt a transmission. This is regulated by the deferral counter
DC, which works as follows. When the station enters backoff
stage i, DC is set at an an initial DC value di, where di is
given in Table I for each backoff stage i. After having sensed
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Fig. 3. An example of the time evolution of the 1901 backoff process with
2 saturated stations A and B. Initially, both stations start at backoff stage 0.
Station A wins the channel for two consecutive transmissions. Observe the
change in CWi when a station senses the medium busy and has DC = 0.
This figure also exposes the short-term unfairness when there are 2 contending
stations; a station that grabs the channel for a successful transmission moves
to backoff stage 0, whereas the other station enters a higher backoff stage
with larger CW and has lower probability to transmit.

the medium busy, a station decreases DC by 1 (in addition
to BC). If the medium is sensed busy and DC = 0, then
the station jumps to the next backoff stage (or re-enters the
last backoff stage, if it is already at this stage) and re-draws
BC, without attempting a transmission. An example of such a
backoff process is shown in Figure 3.

Class CA0/CA1 Class CA2/CA3
backoff stage i BPC CWi di CWi di

0 0 8 0 8 0
1 1 16 1 16 1
2 2 32 3 16 3
3 ≥ 3 64 15 32 15

TABLE I
IEEE 1901 VALUES FOR THE CONTENTION WINDOWS CWi AND THE
INITIAL VALUES di OF DEFERRAL COUNTER DC , FOR EACH BACKOFF

STAGE i AND EACH PRIORITY CLASS. CA0/CA1 PRIORITIES ARE USED FOR
BEST-EFFORT TRAFFIC AND CA2/CA3 FOR DELAY-SENSITIVE TRAFFIC.

The deferral counter was introduced in 1901, so that 1901
can employ small contention window values – which provide
good performance for a small number of stations – while
avoiding collisions, thus also providing good performance for
a large number of stations2. In particular, to reduce collisions,
1901 stations redraw their backoff counter when they sense a
number of transmissions before their backoff counter expires;
in this way, they can react to a high load in the network without
the need of a collision, which is in contrast to 802.11 that only
reacts to collisions.

Although the above mechanism achieves its goal, i.e., provid-
ing good performance in terms of throughput, it might lead to
short-term unfairness: When a station gets hold of the channel
and uses a small contention window, it is likely to transmit
several frames and thus trigger the deferral counter mechanism
of the other stations, which further increase their contention
windows and hence reduce even more their probability of

2Indeed, it can be seen from Table I that 1901 contention windows are small.

accessing the channel. Such a coupling effect penalizes the
accuracy of existing models that assume that the backoff process
of different stations are independent. Furthermore, another
consequence of this behavior is that a station either holds the
channel, and thus experiences low delays, or has to wait a long
time before it can transmit. This causes high jitter (i.e., high
delay variance).

III. RELATED WORK

The backoff process of 802.11 can be considered as a
version of 1901 where the deferral counter DC never reaches
0 (i.e., di = ∞, for all i). Hence, in the following, we first
review relevant studies on 802.11, both with and without the
decoupling assumption, and then we present the existing work
on 1901. Finally, we discuss related works on fairness.

A. Analyses of IEEE 802.11

Most work modeling 802.11 performance relies on the decou-
pling assumption, initially proposed by Bianchi in [5]. In his
paper, Bianchi proposes a model for single contention domains,
using a discrete-time Markov chain to model the backoff
procedure of 802.11. Under the decoupling assumption, the
collision probability experienced by all stations is time-invariant
and can be found via a fixed-point equation that depends on
the parameters of the protocol. Kumar et al. [10] examine the
backoff process of 802.11 using the same assumptions and
renewal theory. The authors also extract a fixed-point equation
for the collision probability. Although strong, the decoupling
assumption has later been examined and found to be a valid
assumption for 802.11 (shown analytically and experimentally
in [11], [12], respectively).

Sharma et al. [13] study 802.11 without the decoupling
assumption. They analyze an m-dimensional chain (m being
the number of backoff stages) that describes the number of
stations at each backoff stage. Drift equations capture the
expected change on the number of stations at each backoff
stage between two consecutive time slots, and their equilibrium
point yields the average number of stations at each backoff stage
in steady state. Similarly to [13], we also use drift equations
to obtain an accurate model for 1901, without resorting to
the decoupling assumption. However, as the 1901 protocol is
much more complex than 802.11, so is our analysis; it differs
substantially from the one of [13].

B. Analyses of IEEE 1901 under the Decoupling Assumption

To the best of our knowledge, the only works analyzing the
backoff mechanism of 1901 rely on the decoupling assumption.
First, Chung et al. [6] introduce a model using a discrete-
time Markov chain similar to Bianchi’s model for 802.11 [5].
The additional state required to capture the effect of the
deferral counter DC significantly increases the complexity
of the Markov chain.

Second, we [7] propose a simplification of the Markov
chain [6] and an equivalent model in the form of a single
fixed-point equation. We apply the same theoretical framework
as [10] and prove that this equation admits a unique solution.



Finally, Cano and Malone [8] provide a simplification of
the analysis of [6] for computing the delay under unsaturated
traffic scenarios and discuss the assumptions used in [6]. Here
too, their analysis relies on the decoupling assumption.

C. MAC Layer Short-Term Fairness

Various investigations evaluating short-term fairness of MAC
protocols have been conducted. First, Berger-Sabbatel et al. [14]
study the 802.11 short-term fairness both analytically and
experimentally. They prove that the 802.11 MAC is short-term
fair when there are few contending stations. Second, Bredel
and Fidler [15] elaborate more on the 802.11 backoff process
and investigate fairness both in short-term and long-term.

Finally, we explore the 1901 fairness both analytically and
experimentally using simulation and a testbed in [9]. We reveal
that, compared to 802.11, 1901 is short-term unfair, particularly
when there are 2 stations contending for the medium.

IV. ANALYSIS

In this section, we introduce our model for the 1901
CSMA/CA protocol. Our analysis relies on the following
assumptions:
• There are N stations that belong to a single contention

domain.
• All stations are saturated (always have a packet to send).
• There is no packet loss or errors due to the physical layer,

and transmission failures are only due to collisions.
• The stations have an infinite retry limit; that is, they never

discard a packet until it is successfully transmitted3.
The 1901 standard introduces four different priority classes

(see Section II) and specifies that only the stations belonging to
the highest contending priority class run the backoff process4.
In our analysis, we follow this property, and we consider a
scenario in which all the contending stations use the same set
of parameters (corresponding to the highest priority class).

Our model is a dynamical system that describes the expected
change in the number of stations at each backoff stage between
any two consecutive time slots. In the stationary regime, the
expected number of stations at each backoff stage is constant,
hence we can compute performance metrics by finding the
equilibrium of the dynamical system.

Let us now introduce the variables of our model. Let m be the
number of backoff stages and let ni, 0 ≤ i ≤ m−1 denote the
number of stations at backoff stage i. Note that

∑m−1
i=0 ni = N .

Let us further denote with τi the transmission probability at
stage i, i.e., τi is the probability that a station at backoff stage i
transmits at any given time slot. In addition, for a given station
at backoff stage i, we denote with pi the probability that at
least one other station transmits. We also denote with pe the

3Contrary to 802.11, the 1901 standard does not specify a retry limit.
However, there is a timeout on the frame transmission that is vendor specific.
For instance, for the HomePlug AV devices tested in Section V, the timeout for
CA1 priority frames is 2.5 s, which is very large compared to the maximum
frame duration (2.5 ms [4]). Therefore, the infinite retry limit assumption is
not strong.

4In practice, the contending priority class is decided during a so-called
priority resolution phase, using a simple system of busy tones.

probability that no station transmits (or equivalently, that the
medium is idle). Under the assumption of independence of the
transmission attempts in a single contention domain, we have
pe =

∏m−1
k=0 (1− τk)nk , and therefore

pi = 1− pe
1− τi

= 1− 1

1− τi

m−1∏
k=0

(1− τk)nk . (1)

In 1901, a station with DC equal to di can change its
backoff stage either (i) after attempting a transmission or (ii)
due to sensing the medium busy di + 1 times.5 To compute
the probabilities of events (i) and (ii), we introduce xik: it is
the probability that a station at backoff stage i jumps to the
next backoff stage i + 1 in k or fewer time slots due to (ii).
Note that we can compute xik directly from pi. Let T be the
random variable describing the number of slots among k slots
during which the medium is sensed busy. Because a station at
backoff stage i senses the medium busy with probability pi at
each time slot, T follows the binomial distribution Bin(k, pi).
This yields

xik = P(T > di) =

k∑
j=di+1

(
k

j

)
pji (1− pi)

k−j . (2)

Let us denote with bci the expected number of time slots
spent by a station at backoff stage i. Now, recall that when
entering stage i, the stations draw a backoff counter BC
uniformly at random in {0, . . . , CWi − 1}. Let k denote the
value of BC, and di be the value of DC when the station
enters stage i. Depending on k, one of the following happens:
• If k > di, then event (i) occurs with probability (1−xik),

in which case the station spends (k + 1) slots in stage
i (the (k + 1)th slot being used for transmission). This
event is illustrated by the two transmissions of station A
in Figure 3. Now, (ii) occurs with probability xik. More
precisely, (ii) occurs at slot j, for di + 1 ≤ j ≤ k, with
probability (xij−xij−1)6, in which case the station spends
j slots in stage i.

• If k ≤ di, then (ii) cannot happen. Event (i) takes place
with probability 1, which yields that the backoff counter
expires and that the station spends (k+ 1) slots in stage i.

By grouping all the possible cases described above, it follows
that bci is given by

bci =
1

CWi

CWi−1∑
k=di+1

(k + 1)(1− xik) +

k∑
j=di+1

j(xij − xij−1)


+

(di + 1)(di + 2)

2CWi
. (3)

Now, the transmission probability τi can be expressed as
a function of xik and bci, using the renewal-reward theorem,
with the number of backoff slots spent in stage i being the

5A major difference between 1901 and 802.11 is that, contrary to 1901, a
station using 802.11 can only adapt its backoff because of (i), not of (ii).

6Observe that (xij − xij−1) is the difference of two complementary CDFs
and denotes the probability that (ii) happens exactly at slot j.



renewal sequence and the number of transmission attempts (i.e.,
0 or 1) being the reward. The expected number of transmission
attempts at stage i can be computed similarly to bci. Hence,
by dividing the expected transmission attempts at stage i with
the expected time slots spent at stage i, τi is given by

τi =

∑CWi−1
k=di+1

1
CWi

(1− xik) + di+1
CWi

bci
. (4)

Similarly, we define βi as the probability that, at any given
slot, a station at stage i moves to the next backoff stage because
it has sensed the medium busy di + 1 times. It can be easily
seen that βi is given by

βi =

∑CWi−1
k=di+1

1
CWi

∑k
j=di+1 (xij − xij−1)

bci
. (5)

Note that τi and βi are functions of pi (through xik and bci).
We next introduce our model. A key feature of our model

is that we do not assume that the stations are decoupled, as
the collision probability is allowed to depend on the station’s
state. To study the system, we use a vector that includes the
number of stations at each backoff stage. In particular, let
X(t) = (X0(t), X1(t), . . . , Xm−1(t)) represent the number of
stations at each backoff stage (0, 1, . . . ,m− 1) at time slot t.
We use the notation n(t) = (n0(t), n1(t), . . . , nm−1(t)) to
denote a realization of X(t) at some time slot t.

To analyze our system, we assume that the backoff counters
are geometrically distributed with the same mean of that of
the real uniform distribution. With this assumption, a station at
backoff stage i transmits at any slot t with a constant probability
τi given by (4), independently from the previous slots, and the
vector X(t) is a Markov chain. Furthermore, we assume that
at backoff stage i a station might move to the next backoff
stage due to sensing the medium busy with probability βi.
Note that pi, τi, and βi can be computed from (1), (4) and (5),
given the state vector n(t) (hereafter, to simplify notation we
drop the input variable t from pi(t), τi(t), βi(t), and n(t) as
the equations are expressed for any slot t).

Let now F (n) = E[X(t + 1) − X(t)|X(t) = n] be the
expected change in X(t) over one time slot, given that the
system is at state n. The function F (·) is called the drift of
the system, and is given by

Fi(n) = (DRIFT)
∑m−1
k=0 nkτk(1− pk)− n0(τ0 + β0), i = 0

ni−1 (τi−1pi−1 + βi−1)− ni(τi + βi), 0 < i < m− 1

nm−2 (τm−2pm−2 + βm−2)− nm−1τm−1(1− pm−1),

i = m− 1.

(DRIFT) is obtained by balancing, for every backoff stage, the
average rate of stations that enter and leave this backoff stage.
In particular, F0 increases only when some stations transmit
successfully. Since such stations could be in any of the other
backoff stages and there are nk stations in stage k, this occurs
at rate

∑m−1
k=1 nkτk(1−pk). Similarly, F0 decreases when some

stations at stage 0 are either involved in a collision (which

occurs with probability n0τ0p0), or do not transmit and sense
the medium busy d0 + 1 times (which occurs with probability
n0β0). The decrease of the drift in both cases is 1, thus the
expected decrease is equal to the sum of the two probabilities.

Similarly, Fi, 0 < i < m− 1 is computed by observing that
in these backoff stages, Fi changes if and only if some stations
sense the medium busy, or transmit. Finally, Fm−1 increases
after some stations at stage m − 2 experience a collision or
sense the medium busy dm−2 +1 times. It decreases only after
a successful transmission at stage m− 1.

Notation Definition (at backoff stage i, 0 ≤ i ≤ m− 1)
ni Number of stations
pi Probability that at least one other station transmits at any slot
pe Probability that the medium is idle at any slot (same for all i)
xik Probability that a station leaves stage i due to sensing the

medium busy di +1 times (the backoff counter does not expire)
bci Expected number of backoff slots
τi Probability that a station transmits at any slot
βi Probability that a station leaves stage i due to sensing the

medium busy di + 1 times at any slot
Fi Expected change in ni between two consecutive slots
n̄i Expected number of stations

TABLE II
NOTATION LIST

The evolution of the expected number of stations n̄(t) :=
E[X(t)] is described by the m-dimensional dynamical system

n̄(t+ 1) = n̄(t) + F (n̄(t)), (6)

where F (n̄(t)) is given by (DRIFT). In order to know the
average number of stations at each backoff stage at steady state,
we can compute the equilibrium point(s) of this system, which
is the stationary regime where the average number of stations
at each backoff stage remains constant. This information will
later enable us to compute actual throughput figures.

Next, we compute the equilibrium point of (6) by imposing
F (n̄(t)) = 0, which yields

n̄i =

(
τi−1pi−1 + βi−1

τi + βi

)
n̄i−1, 1 ≤ i ≤ m− 2,

n̄m−1 =

(
τm−2pm−2 + βm−2

τm−1(1− pm−1)

)
n̄m−2.

Let us define

K0 := 1, Ki :=
τi−1pi−1 + βi−1

τi + βi
, 1 ≤ i ≤ m− 2,

Km−1 :=
τm−2pm−2 + βm−2

τm−1(1− pm−1)
. (7)

Since
∑m−1
i=0 n̄i = N , it follows that the equilibrium of

system (6) is given by the following system of equations:

n̄0 =
N∑m−1

k=0

∏k
j=0Kj

, n̄i =
N
∏i
j=0Kj∑m−1

k=0

∏k
j=0Kj

1 ≤ i ≤ m− 1.

(EQ)

Recall that τi and βi are functions of pi, given by (4) and (5).
Thus, the n̄i’s in (EQ) are also functions of pi, 0 ≤ i ≤ m−1.
From the above, substituting (EQ) in (1) yields a system of
m equations and m unknowns pi for 0 ≤ i ≤ m − 1. The



following theorem is one of our main results. It states that,
for configurations satisfying CWi+1 ≥ 2CWi − di − 1, 0 ≤
i < m− 1, the system (EQ), (1) admits exactly one solution,
hence that the equilibrium point of (6) is unique. Note that,
from Table I, these constraints are compliant with the standard,
except for the class CA2/CA3 at backoff stage i = 1. We leave
the extension of the uniqueness result to this priority class, and
the investigation of the stability of (6) for future work.

Theorem 1. Assume that CWi ≥ 6 and di ≤ bCWi/2 −
1c, 0 ≤ i ≤ m − 1. In addition, assume that CWi+1 ≥
2CWi − di − 1, 0 ≤ i < m− 1. Then the system of equations
formed by (EQ) and (1) has a unique solution.

Proof: Recall that pe =
∏m−1
k=0 (1− τk)n̄k . For any value

of pe, τi can be computed from the fixed-point equation that
results from combining (1) (i.e., pi = 1 − pe/(1 − τi)) with
(4), where (4) is expressed as a function of pi through (2)
(see [16] for more details). Hence, τi can be computed as
a function of pe, and so can pi, βi. Now, n̄i can also be
computed as a function of pe, given (EQ). With this, let
Φ(pe) :=

∏m−1
k=0 (1− τk(pe))

n̄k(pe). Then, a solution of (EQ)
has to satisfy the following equation:

pe = Φ(pe). (8)

We next show that there exists only one value of pe that
satisfies (8). Due to space constraints, we show in [16] that
Φ(pe) has at least one fixed-point. To this end, we show that
Φ(pe) is monotonically decreasing with pe. The derivative of
Φ(pe) can be written as

dΦ(pe)

dpe
=

m−1∑
j=0

(
∂Φ

∂pj

∂pj
∂pe

+
∂Φ

∂βj

∂βj
∂pe

+
∂Φ

∂τj

∂τj
∂pe

)
. (9)

We now examine separately each of the partial derivative
products of (9) with respect to pj , βj and τj .

First, Lemmas 1 and 2 in Appendix imply respectively
that ∂pj/∂τj < 0 and ∂τj/∂pe < 0. Because ∂pj/∂pe =
(∂pj/∂τj) · (∂τj/∂pe), we have ∂pj/∂pe < 0. Also, by
Lemma 5 in Appendix, ∂Φ/∂pj > 0. Thus, the first product
of partial derivatives in (9) is negative for all j. Second, by
Lemma 3 in Appendix, ∂Φ/∂βj ≥ 0. Now, Corollary 2 states
that ∂βj/∂pj > 0 and we have shown above that ∂pj/∂pe < 0.
Hence, we have ∂βj/∂pe < 0, and the second product of partial
derivatives in (9) is also negative. Third, by Lemma 4 we have
∂Φ/∂τj < 0, and by Lemma 2 we have ∂τj/∂pe > 0. We thus
have shown that all the partial derivative products of (9) are
negative, and so Φ(pe) is monotonically decreasing with pe.

Since (9) is strictly negative, there exists a unique value for
pe that solves (8). Computing the corresponding value for pi
by (1), we have a solution to (EQ). The uniqueness of the
solution then follows from the fact that all relationships between
τi, βi, pi and pe are bijective, and any solution must satisfy (8),
which (as we have shown) has only one solution.

In Section V, we observe that our model is very accurate for
all configurations. We explain how collision probability and
throughput are computed in the same section.

V. PERFORMANCE EVALUATION

In this section, we evaluate the 1901 performance under
different configurations. First, we validate experimentally our
simulator and our model by using a testbed. Second, we
evaluate our model and compare it with the models based
on the decoupling assumption [6], [7]. These models perform
different computations, but are strictly equivalent in terms of
predicted throughput. We thus refer to these models as (the
unique) “D.A.” model.

A. Experimental Validation

We use simulations to evaluate 1901 performance. We wrote
a Matlab simulator, which implements the full CSMA/CA
mechanism of 19017. In this subsection, we validate the
accuracy of our model and simulator with experimental results
from a HomePlug AV test-bed.

We built a test-bed of 7 stations, each comprising a
PLC interface8. The stations are ALIX boards running the
OpenWrt Linux distribution [18]. Each board is equipped with
a Homeplug AV miniPCI card (Intellon INT6300 chip). In
our tests, N stations send UDP traffic (at a rate higher than
the link capacities) to the same non-transmitting station using
iperf. We run tests for 1 ≤ N ≤ 6. At the end of each test we
request the number of collided and successfully transmitted
frames from each station using the Qualcomm Atheros Open
Powerline Toolkit [19]. Using this information, we evaluate the
collision probability.

We compare the collision probability measured on the testbed
with the one obtained with our model. To this end, we use our
model to compute the steady-state expected number of nodes
n̄0, . . . , n̄m−1 at each backoff stage. Once we have the average
number of stations at each each backoff stage, the probability
pi of collision at backoff stage i is readily given by (1).

Let γ be the average probability that a transmission in
the system collides. The probability that a given transmis-
sion in the system corresponds to a station at backoff
stage i is given by n̄iτi/

∑m−1
k=0 n̄kτk. We thus have γ =∑m−1

i=0 n̄iτipi/
∑m−1
i=0 n̄iτi.

The average collision probabilities obtained from 10 testbed
experiments, 10 simulation runs, and our model are shown in
Figure 4. We observe an excellent fit between experimental
and simulation/analytic results.

Contrary to some existing 802.11 interfaces, the MAC
parameters of the HomePlug AV devices cannot be modified,
because they are stored in the firmware, and the required offsets
of their binary values are not publicly available. Therefore, the
results on throughput and fairness have been obtained with our
validated simulator.

7Our simulator and the guidelines to reproduce all the testbed experiments
of this work are available in [17].

8The stations also have a wireless interface, a miniPCI card Atheros DNMA-
92. This interface is used only for the experiments of Section I. To avoid
interference with other devices in our building we set the mode to 802.11a
and the wireless channel to 44. To obtain the packet trace of Figures 1, 2 for
802.11a we use tcpdump. To capture the transmitted frames for 1901, we
use the tools described in [17], because this MAC employs frame aggregation
and the number of Ethernet packets per PLC frame varies with time.
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Fig. 4. Collision probability obtained by simulation, our drift model of
Section IV and experiments with HomePlug AV devices for the default
configuration CA1 of 1901 given in Table I.

B. Simulation Parameters and Throughput Computation
Our simulator uses the same time slot duration and timing

parameters as specified in the standard (see Table III). The PLC
frame transmission has a duration D and is preceded by two
priority tone slots (PRS), and a preamble (P ). It is followed
by a response inter-frame space (RIFS), the ACK, and finally,
the contention inter-frame space (CIFS). Thus, a successful
transmission has a duration Ts := 2PRS +P +D+RIFS +
ACK + CIFS. In the case of a collision, the stations set
the virtual carrier sense (VCS) timer equal to EIFS, where
EIFS is the extended inter-frame space used by 1901, and
then the channel state is idle. Hence, a collision has a duration
Tc := EIFS. Finally, we assume that all the packets use the
same physical rate.

Parameter Duration (µs)
Slot σ, Priority slot PRS 35.84
CIFS, RIFS 100.00
Preamble P , ACK 110.48
Frame duration D 2050.00
EIFS 2920.64

TABLE III
SIMULATION PARAMETERS.

To analytically evaluate throughput, we employ the model of
Section IV. After solving the equations for finding the steady-
state number of nodes n̄0, . . . , n̄m−1 at each backoff stage,
we can compute the throughput of the network as follows.
The probability that a slot is idle is pe. The probability of a
successful transmission of a station at stage i is τi(1 − pi).
Therefore, the probability ps that a slot contains a successful
transmission is given by ps =

∑m−1
i=0 n̄iτi(1 − pi). Let pc

denote the probability that a slot contains a collision. We have
pc = 1−pe−ps. We now have enough information to compute
the normalized throughput S of the network as

S =
psD

psTs + pcTc + peσ
, (10)

where D is the frame duration, Ts is the duration of a successful
transmission, Tc is the duration of a collision, and σ is the
time slot duration.

C. The Decoupling Assumption Does Not Hold for 1901
For 802.11, the decoupling assumption has been shown to

be viable in various settings as N → ∞ [11]. In addition,
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Fig. 5. Simulations of 1901 (with CA1 parameters) and 802.11 for N =
2, 5, 10. Points show the collision probabilities at different backoff stages for
all stations, and lines represent the solution of the fixed-point equations for the
collision probability from the D.A. models [5], [7]. The decoupling assumption
is viable for 802.11 even for N = 2, whereas the collision probability depends
on the backoff stage for 1901. Our model accurately predicts the collision
probability at each backoff stage i (shown at the right for N = 2).

it turns out that it also works well for small numbers of
stations [5], [12]. For 1901, the coupling induced by the deferral
counter makes the collision probabilities state-dependent, which
penalizes models based on the decoupling assumption when
N is small. To see this, we plot on Figure 5 the collision
probabilities experienced by 802.11 and 1901 stations, as
a function of the backoff stage (i.e., as a function of the
stations’ state). On the same figure, we also show the collision
probabilities computed with our model. Let Ck be the sequence
of outcomes of attempted transmissions, i.e. Ck := 0 if the kth
transmission attempt results in a success, and Ck := 1 when
the outcome is a collision. The decoupling assumption asserts
that the sequence {Ck} consists of independent and identically
distributed (i.i.d.) random variables. In Figure 5, we observe
that for 1901, {Ck} cannot be considered as i.i.d., because the
collision probability observed at different backoff stages is not
the same. The collision probability depends on the previous
transmission attempts (backoff stage changed due to collision)
or on other stations activity (backoff stage changed due to
sensing the medium busy). In fact, the collision probability
for 1901 is an increasing sequence of the backoff stage i, as
shown in Figure 5, and proved in Corollary 1 in Appendix.

D. Model Evaluation

We now compare our drift model with the D.A. model for
various configurations and number of stations. In Figure 6,
we show the throughput obtained by 1901 with the default
parameters for the two priority classes CA1 and CA3 (CA0 and
CA2 are equivalent). We also show the throughput predicted by
the two models. The model based on the decoupling assumption
is less accurate for CA1 when N is small, because the class



CA1 uses larger contention windows, which increases the time
spent in backoff and, as a result, the coupling between stations.
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Fig. 6. Throughput obtained by simulation, with our model, and the models
based on the decoupling assumption (D.A.), for the default configurations of
1901 given in Table I.

We now study the accuracy of the two models in more
general settings. To this end, we introduce a factor f , such that
at each stage i, the value of di is given by di = f i(d0 +1)−1.
This enables us to define various sequences of values for the
di’s, using only f and d0. At each stage i, CWi is given by
CWi = 2iCWmin, and there are m backoff stages (i ∈ {0,m−
1}). In Figure 7, we show the throughput for various such values
of d0 and f , with CWmin = 8 and m = 4. We observe that
the D.A. model achieves good accuracy when the di’s are large,
because in these configurations, the deferral counter is less
likely to expire, which reduces the coupling among stations.
Note that the drift model achieves good accuracy when the
di’s are small.
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Fig. 7. Throughput obtained by simulation, with the drift model, and the D.A.
model for different configurations. The initial values di of the deferral counter
at each backoff stage are given by di = f i(d0 + 1)− 1.

Finally, in Figure 8 we show the throughput for different
values for CWmin, with m ∈ {4, 6}. In all cases, the drift
model fits very well, contrary to the model based on the
decoupling assumption. The accuracy of the D.A. model is
penalized more when CWmin is large, because the likelihood
that the deferral counter expires increases.

VI. THROUGHPUT, FAIRNESS AND COUPLING

In this section we show how the coupling between 1901
stations is related to throughput and jitter (or, equivalently,
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Fig. 8. Throughput obtained by simulation, with the drift model, and the D.A.
model for various values of CWmin and m ∈ {4, 6}.

unfairness). Moreover, based on our model, we propose a
method to optimize jitter under a given throughput requirement.

In the introductory example of Figure 1, we observe a
bistability effect with two 1901 stations, where stations are
likely to remain for long durations in states with large transmit
(resp. backoff) probabilities. We explain that this effect is
caused by the deferral counter, which creates a coupling
between the stations and penalizes the accuracy of models
assuming decoupling. It turns out that this coupling is beneficial
for throughput9, and different 1901 configurations determine
different tradeoffs between fairness (or jitter) and throughput.
We now investigate this effect further in terms of short-
term fairness. A MAC protocol is short-term fair when the
stations get similar transmission opportunities over short time
scales. Conversely, an unfair protocol advantages some stations
over others, which in practice results in high delay variance
(jitter). To measure short-term fairness, we compute Jain’s
fairness index [20] over windows of N frame durations.
More precisely, if we let xi(w) be the number of frames
successfully transmitted by station i during a window of w
frame durations, Jain’s index during window w is defined as
J(w) = (

∑N
i=1 xi(w))2/(N

∑N
i=1 xi(w)2). In the following,

we take w = N , as this is the smallest value of w such that
J(w) can be equal to 1 (for a perfectly fair protocol). The
reported results are obtained by averaging the values of J(N)
over windows moving along the whole packet traces.

In Figure 9, we plot throughput and short-term fairness
as a function of the initial values of the deferral counter (in
terms of d0 and f ), for N = 2 and N = 5. Interestingly, it
appears that that there is a direct link between throughput,
fairness and coupling. When the initial deferral counters are
small (corresponding to small d0 and f ), the stations are more
likely to react on sensing the medium busy and thus become
coupled. Indeed, as confirmed by Figure 7, the configurations
employing small deferral counters yield larger throughput but
lower accuracy when assuming decoupling. Conversely, these
configurations have the worse short-term fairness and thus
cause higher jitter.

We study further the throughput/fairness tradeoff on Fig-

9Intuitively, this is easy to understand: without proper synchronization,
having one station transmitting for long durations is more efficient than
alternating transmissions.
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the deferral counter at backoff stage i is given by di = f i(d0 + 1)− 1.
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Fig. 10. Short-term fairness and throughput obtained by simulation for
parameters CWmin = 8, m = 6 and various values of d0 and f . The
deferral counter tunes a tradeoff between throughput and fairness in 1901.

ures 10 and 11. Both figures show the throughput and fairness
achieved on networks with a varying number of stations.
Figure 10 presents throughput and fairness for various initial
deferral counter values (in terms of d0 and f ). Figure 11 shows
these two metrics for different numbers of backoff stages m.

Again, both figures show a clear tradeoff between throughput
and short-term fairness. Furthermore, this tradeoff can be tuned
by adapting the parameters that control the number of backoff
stages and the initial values of the deferral counters. This
possibility is a remarkable feature of 1901, enabled by the
deferral counter. We summarize the impact of all parameters
on throughput and fairness in Table IV.

A. Finding Efficient Configurations

We can use the findings summarized in Table IV, together
with our drift model, to find efficient configurations that
meet specific QoS criteria. For example, we propose a simple
heuristic algorithm that finds an efficient configuration in terms
of jitter, given an arbitrary throughput requirement (if such a
configuration exists). Our method is detailed in Algorithm 1
and works as follows. It orders (by increasing order of values)
the sets of possible values taken by d0 and m in two sequences
named D and M, respectively. It then performs a binary
search on D: for a given d0 in D, it tests all combination
of parameters (m,CWmin) (by increasing order of m). When
such a configuration satisfies the throughput requirement, the
algorithm stores it and tries a larger value for d0 (as a
larger d0 can potentially yield better jitter). Conversely, if no
configuration meeting the throughput requirement is found, the
algorithm considers smaller values for d0 (which yield higher
throughputs, potentially at the expense of jitter). The algorithm
ends when it finds the best configuration that corresponds to
the largest possible d0 that satisfies the constraint.
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Fig. 11. Short-term fairness and throughput obtained by simulation with
parameters CWmin = 8, d0 = 0, f = 2 and various values of m.

d0 f m CWmin

small T ↗ T ↗ T ↘ T ↗ if N is small
F ↘ F ↘ F ↗ F →

large T ↘ T ↘ T ↗ T ↗ if N is large
F ↗ F ↗ F ↘ F →

TABLE IV
SUMMARY OF THE QUALITATIVE EFFECTS OF EACH PARAMETER ON

THROUGHPUT (“T”) AND SHORT-TERM FAIRNESS (“F”).

Because it employs a binary search, the complexity of
this algorithm is O(|C| · |M| · log(|D|)). We evaluate it
on the sequences C = (8, 16, 32, 64), M = (4, 5, 6) and
D = (0, 1, 2, 3)10. First, we run simulations of all the possible
configurations in {C ×M×D}, and we compute short-term
fairness J(N) and normalized throughput S. Let Smin be the
minimum S achieved by all configurations in {C ×M×D},
and similarly Smax be the maximum S. To test our algorithm,
we draw 100 throughput requirements uniformly at random in
[Smin, Smax]. Then, for each sample i with throughput Si, we
run Algorithm 1 that returns the configuration configi. Now,
let Ji be the short-term fairness of the configuration configi at
sample i, and let Jmaxi denote the maximum short-term fairness
of all configurations that satisfy the throughput constraint Si.
To evaluate the algorithm, we employ a normalized fairness
index that is defined as Ji/Jmaxi . The normalized fairness is
a metric that evaluates the distance between the fairness of the
configuration configi and the maximum achievable fairness
given the the throughput constraint Si.

The results of the algorithm evaluation are presented in
Figure 12. We present the normalized fairness of the configu-
rations returned from 100 runs of Algorithm 1. We repeat the
procedure described above for 2 ≤ N ≤ 8. We observe that
Algorithm 1 always returns a configuration with good fairness
given the throughput constraint. Thus, it can be employed
to optimize the performance for delay-sensitive traffic that
operates with 1901.

VII. CONCLUSION

The IEEE 1901 CSMA/CA protocol has received little
attention from the research community so far, although it is
adopted by the vast majority of power-line communication
devices. In this paper, we focus on the analysis of the
performance of this protocol. One of the key results is the

10We use the factor f = 2 because the contention windows are also doubled
between successive backoff stages. Algorithm 1 can be modified to include
different f values given the performance tradeoff of f in Table IV.



Algorithm 1: 1901 configuration for minimum jitter
1 Input: Throughput requirement S, number of stations N ,

sequences D, M and C of possible values for d0, m and
CWmin, respectively

2 Output: A configuration (d0,m,CWmin) that minimizes the
jitter and provides throughput at least S, if it exists (returns
null otherwise)

3 Initialize:
4 Sort the sequences M and D by increasing order of values
5 Set h1 ← 0 and h2 ← |D| − 1
6 Set config ←null

7 while h1 ≤ h2 do
8 Set break flag ←false
9 h3 ← d(h2 − h1)/2e+ h1

10 Set d0 ← Dh3 (i.e., the h3-th element of sequence D)
11 for each m ∈M and CWmin ∈ C do
12 evaluate throughput Ŝ from model when using

configuration (d0,m,CWmin)
13 if Ŝ ≥ S then
14 Set config ← (d0,m,CWmin)
15 Set h1 ← h3 + 1
16 Set break flag ←true
17 break out of for loop
18 end
19 end
20 if break flag ==false then
21 Set h2 ← h3 − 1
22 end
23 end
24 Return: config
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Fig. 12. Normalized fairness of the configurations Algorithm 1 returns when
run for 100 throughput requirements S chosen randomly, for each N value.

finding that the decoupling assumption, which is commonly
adopted for the analysis of MAC protocols such as IEEE
802.11 and IEEE 1901, might not hold for 1901. This is due
to the coupling that this protocol introduces to the stations
contending for the medium. Building on this finding, we have
proposed a new model that does not rely on the decoupling
assumption and thus substantially improves the accuracy of
previous studies, in particular for networks with a small number
of stations, the most frequent configuration in practice. Our
model reveals that, as a result of the coupling between stations,
1901 suffers from short-term unfairness. To address this issue,
we have explored the tradeoff between short-term fairness and
throughput that exists in 1901. In this context, we devised
a method that computes efficient configurations in terms of
fairness/jitter, under arbitrary throughput constraints.

APPENDIX

We provide the sketch of the proof of some necessary lemmas
for Theorem 1. The detailed proofs can be found in [16].

Lemma 1. τi is a decreasing function of pi for any i.

Proof: The probability τi given by (4) can be recast as

τi =
1

Bi + 1
(11)

where Bi is the expected number of backoff slots between two
transmission attempts of a station that always stays at backoff
stage i. Bi can be computed recursively and is given by

Bi =
di(di + 1)

2CWi
(12)

+

CWi−1∑
j=di+1

j(1− xij) +
∑j
k=di+1 (k +Bi)(x

i
k − xik−1)

CWi
.

To prove the lemma, we need to show that Bi is an increasing
function of pi. To do this, we proceed as follows. (i) First, we
compute the derivative of Bi with respect to pi. (ii) Second,
we show that this derivative is positive at pi = 1. (iii) Third,
we further show that if the derivative is negative for some
0 < p∗i < 1, it will also be negative at any value pi > p∗i .
The proof then follows by contradiction: If the derivative was
negative at some p∗i , it would also be negative at pi = 1, which
would contradict our previous result (ii).

(i) After simple manipulations, (12) can be recast as

Bi =
CWi − 1

2
+

1

CWi

CWi−1∑
j=di+1

(
Bix

i
j −

j−1∑
k=di+1

xik

)
. (13)

The derivative of Bi can be computed as

dBi
dpi

=

CWi−1∑
k=di+1

∂Bi
∂xik

∂xik
∂pi

. (14)

The partial derivative ∂Bi/∂xik can be computed from (13) as

∂Bi
∂xik

=
Bi − (CWi − 1− k)

CWi
+
∂Bi
∂xik

CWi−1∑
j=di+1

xij
CWi

, (15)

which yields

∂Bi
∂pi

=

∑CWi−1
k=di+1 (Bi − (CWi − 1− k))

∂xi
k

∂pi

CWi −
∑CWi−1
j=di+1 x

i
j

. (16)

To compute ∂xik/∂pi, we observe that xik is the complemen-
tary cumulative function of a binomial distribution. By taking
its partial derivative, we obtain

∂xik
∂pi

=
k!

(k − di − 1)!di!
pdii (1− pi)k−di−1, (17)

which ends the computation of dBi/dpi.
(ii) Next, we show that dBi/dpi > 0 at pi = 1. We have

Bi =
di(di + 1)

2CWi
+
CWi − di − 1

CWi
(di + 1 +Bi). (18)

Solving (18) over Bi yields Bi = CWi−di/2−1 at pi = 1.
Substituting in (16), it follows that dBi/dpi = di/2 + 1 > 0
at pi = 1, which completes step (ii).



(iii) Finally, we show that if dBi/dpi was negative at some
value p∗i , then it would also be negative for any larger value of
pi. Observe that in (16) some terms are negative for k < CWi−
1 − Bi. Let us assume that the derivative is negative at p∗i .
Then, at some pi = p∗i + ε, ε > 0, we have Bi(pi) < Bi(p

∗
i ).

This implies that in (16) some of the terms that were positive
with pi = p∗i become negative for pi > p∗i . Furthermore, from
(17) we have that

∂xik/∂pi
∂xik−1/∂pi

=
k

k − di − 1
(1− pi), (19)

which implies that in (16) the relative weight of the negative
terms increases and that of the positive terms decreases.

From the above, it follows that if dBi/dpi was negative at
any p∗i , it would also be negative for all pi > p∗i . Since this
contradicts the above result that dBi/dpi is positive at pi = 1,
we conclude that dBi/dpi ≥ 0 for pi ∈ [0, 1].

Corollary 1. τi is a strictly decreasing sequence of i, and pi
is a strictly increasing sequence of i if CWi+1 ≥ 2CWi −
di − 1, 0 ≤ i < m− 1.

Proof: The minimum value of Bi+1 is Bmini+1 :=
(CWi+1 − 1)/2 at pi+1 = 0, and the maximum value
of Bi is Bmaxi := CWi − di/2 − 1 at pi = 1. Setting
CWi+1 ≥ 2CWi − di − 1, yields Bmini+1 ≥ Bmaxi , hence
Bi+1 > Bi and τi+1 < τi. Now, pi is strictly increasing with
i because pi = 1− pe/(1− τi).

Corollary 2. βi is an increasing function of pi.

Proof: From (4) and (5) we have βi = 1/bci−τi. (3) can
be recast as bci = (CWi+1)/2−

∑CWi−1
k=di+1

∑k
j=di+1 x

i
j/CWi.

By (17) we have dxik/dpi > 0, hence bci is decreasing with
pi. Using Lemma 1, βi = 1/bci − τi is increasing with pi.

Lemma 2. Let us consider the expression of τi as a function
of pe resulting from combining (4) with (1). According to this
expression, τi is an increasing function of pe, if CWi ≥ 6 and
di ≤ bCWi/2− 1c.

Proof: The details on how τi can be expressed as a function
of pe can be found in [16]. Since τi = 1/(Bi + 1), we need
to show that ∂Bi/∂pe < 0. Note that

∂Bi
∂pe

=
∂Bi
∂pi

∂pi
∂pe

. (20)

Because pi = 1− pe/(1− τi) = 1− pe(Bi + 1)/Bi, we have

∂pi
∂pe

= −Bi + 1

Bi
+
pe
B2
i

∂Bi
∂pe

. (21)

Combining (20) and (21) yields

∂Bi
∂pe

= −∂Bi
∂pi

Bi + 1

Bi

1

1− pe
B2

i

∂Bi

∂pi

. (22)

Because of Lemma 1, ∂Bi/∂pi > 0, and therefore
∂Bi/∂pe < 0 as long as

∂Bi
∂pi

<
B2
i

pe
=
Bi(Bi + 1)

1− pi
. (23)

From (16) we have

∂Bi
∂pi

<
Bi

CWi −
∑CWi−1
k=di+1 x

i
k

CWi−1∑
k=di+1

∂xik
∂pi

. (24)

First, let us study (24) with di = 0. We have ∂xik/∂pi =
k(1− pi)k−1 and xik = 1− (1− pi)k. Thus, (24) yields

∂Bi
∂pi

<
Bi

1− pi

∑CWi−1
k=0 k(1− pi)k∑CWi−1
k=0 (1− pi)k

≤ B2
i

1− pi
. (25)

Define h(pi) :=
∑CWi−1
k=0 k(1− pi)k/

∑CWi−1
k=0 (1− pi)k.

The last inequality in (25) holds because first, h is strictly
decreasing with pi in [0, 1] using Lemma 5.1 in [10], hence
h(pi) ≤ h(0) = (CWi−1)/2. Second, Bi(pi) ≥ (CWi−1)/2
using the proof of Lemma 1.

We now move to the case di 6= 0. We show that ∂Bi/∂pi <
B2
i , which is sufficient for (23) to hold. From (17) and (2), we

have ∂xik/∂pi = k(xik − xik−1)/pi. Thus, (24) yields

∂Bi
∂pi

<
Bi
pi

CWix
i
CWi−1 −

∑CWi−1
k=di+1 x

i
k

CWi −
∑CWi−1
k=di+1 x

i
k

≤ Bi
pi
xiCWi−1.

Let g(pi) = Bipi− xiCWi−1. Now, it is sufficient to show that
∂g/∂pi > 0 for pi ∈ (0, 1], because g(0) = 0. Let X be a
random variable following the binomial distribution Bin(CWi−
2, pi). Then, observe that

∂g

∂pi
= Bi +

∂Bi
∂pi

pi − (CWi − 1)P(X = di). (26)

Since Bi ≥ (CWi − 1)/2, ∂g/∂pi > 0 if P(X = di) < 1/2.
The maximum of P(X = di) is at pi = di/(CWi − 2). We
show that P(Y = di) < 1/2, where Y now is a random
variable following the distribution Bin(CWi−2, di/(CWi−2)).
Theorem 2.1 in [21] states that, for n ≥ 4 and 2 ≤ k ≤ bn/2c,(

n

k

)
<

(
1− 5(k − 1)

6n2

)
n(n− 1)n−1

kk(n− k)n−k
.

With n = CWi − 2 and k = di, this yields

P(Y = di) <

(
1− 5(di − 1)

6(CWi − 2)2

)(
1− 1

CWi − 2

)CWi−3

.

The above is smaller than 0.42 because CWi ≥ 6.
Let Φ(pe) :=

∏m−1
k=0 (1− τk(pe))

n̄k(pe). The following
lemmas examine the function Φ(pe) where each n̄k(pe) is a
function of all βi(pe), pi(pe), τi(pe), 0 ≤ i ≤ m− 1 by (EQ).

Lemma 3. Let Φ(pe) =
∏m−1
k=0 (1− τk(pe))

n̄k(pe), where
each n̄k(pe) is a function of all βi(pe), pi(pe), τi(pe), 0 ≤
i ≤ m− 1. Then, ∂Φ/∂βj > 0, for any 0 ≤ j < m− 1, and
∂Φ/∂βm−1 = 0, if CWi+1 ≥ 2CWi−di−1, 0 ≤ i < m−1.

Proof: We consider the expression
∏m−1
k=0 (1− τk)n̄k as a

function of τi, pi and βi, where n̄i is computed as a function
of τi, βi and pi from (EQ). We show that if we increase βj for
a given j, and leave the remaining τi, pi and βi values fixed,
then

∏m−1
k=0 (1− τk)n̄k increases. From (7), it can be seen that

the new Ki values, denoted by K∗i , satisfy the following.



If j = 0, then K∗1 > K1 and K∗i = Ki, i > 1 by (7). Thus,
n̄∗0 < n̄0 and n̄∗i > n̄i, 0 < i ≤ m − 1. If j = m − 1, then
K∗i = Ki and n̄∗i = n̄i, 0 ≤ i ≤ m− 1.

Now, for 1 ≤ j ≤ m − 2, we have
∏i
n=1K

∗
n =∏i

n=1Kn, i < j and
∏j
n=1K

∗
n <

∏j
n=1Kn.

We also have
∏i
n=1K

∗
n >

∏i
n=1Kn, i > j, because∏i

n=1K
∗
n∏i

n=1Kn

=

τjpj+β∗
j

τj+β∗
j

τjpj+βj

τj+βj

,
∂

∂βj

(
τjpj + βj
τj + βj

)
=
τj(1− pj)
(τj + βj)2

> 0.

Let σ :=
∑m−1
i=1

∏i
n=1Kn. We now show that σ∗ > σ. We

need to show that ∂σ/∂βj > 0. For j = m− 2, ∂σ/∂βj > 0
if and only if τm−2(1−pm−2)− τm−1(1−pm−1) > 0, which
holds by Corollary 1. For j < m − 2, we prove σ∗ > σ by
induction. We first show that σ∗ > σ for j = m− 3, and then
prove that if it holds for j = k, then it holds for j = k − 1.
Taking ∂σ/∂βj we find that we need to show that:

τj(1− pj)

1 +

m−1∑
i=j+2

i∏
n=j+2

Kn

− τi+1 − βi+1 > 0. (27)

For j = m− 3, (27) holds because of Corollary 1.
Now assume that σ∗ > σ for j = k. We show that σ∗ > σ

holds also for j = k − 1. Let us study (27) for j = k − 1 :

τk−1(1− pk−1)

(
1 +

m−1∑
i=k+1

i∏
n=k+1

Kn

)
− τk − βk

> τk−1(1− pk−1)

(
1 +Kk+1

τk+1 + βk+1

τk(1− pk)

)
− τk − βk > 0

using (27) for j = k, (7), and Corollary 1.
Finally, given σ∗ > σ we have shown that n̄∗i < n̄i, i ≤ j.

Clearly, since n̄∗i < n̄i, i ≤ j and
∑
k n̄
∗
k =

∑
k n̄k = N,

there must be an l > j such that n̄∗l > n̄l. Since for i ≥ l+ 1,
n̄i = Kin̄i−1 with K∗i = Ki, it holds n̄∗i > n̄i, i > l. Thus,∏m−1

k=0 (1− τk)n̄
∗
k∏m−1

k=0 (1− τk)n̄k

=
∏
k<l

(1− τk)n̄
∗
k−n̄k

∏
k≥l

(1− τk)n̄
∗
k−n̄k

> (1− τl−1)
∑

k<l n̄
∗
k−n̄k(1− τl)

∑
k≥l n̄

∗
k−n̄k .

Since
∑
k n̄
∗
k =

∑
k n̄k = N and τl < τl−1, the above is

larger than 1, which proves the lemma for 0 ≤ j ≤ m− 2.

Lemma 4. Let Φ(pe) =
∏m−1
k=0 (1− τk(pe))

n̄k(pe), defined as
in Lemma 3. Then, ∂Φ/∂τj < 0, for any 0 ≤ j ≤ m − 1, if
CWi+1 ≥ 2CWi − di − 1, 0 ≤ i < m− 1.

Proof: When τj increases to τ∗j ,
∏i
n=1K

∗
n =

∏i
n=1Kn

for i < j, and
∏i
n=1K

∗
n <

∏i
n=1Kn for i ≥ j. Hence,

it follows that
∏
k 6=j (1− τk)n̄k decreases. If we show that

(1− τj)n̄j also decreases, the lemma will be proven. Note that

∂(1− τj)n̄j

∂τj
= −n̄j(1− τj)n̄j−1 + ln(1− τj)

∂n̄j
∂τj

(1− τj)n̄j .

Performing the partial derivative of n̄j we have

∂n̄j
∂τj

= − n̄j
τj + βj

+
∂n̄j−1

∂τj
Kj ≥ −

n̄j
τj + βj

≥ − n̄j
τj
.

Combining the two equations above yields

∂(1− τj)n̄j

∂τj
≤ n̄j(1− τj)n̄j

τj

(
− τj

1− τj
− ln(1− τj)

)
.

Since −x/(1 − x) < ln(1 − x), it follows that the above is
smaller than 0, which proves the lemma.

Lemma 5. Let Φ(pe) =
∏m−1
k=0 (1− τk(pe))

n̄k(pe), defined as
in Lemma 3. Then, ∂Φ/∂pj > 0, for any 0 ≤ j ≤ m − 1, if
CWi+1 ≥ 2CWi − di − 1, 0 ≤ i < m− 1.

Proof: Similar to Lemma 3.
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