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Abstract—Supporting voice traffic in existing WLANs results
extremely inefficient, given the large overheads of the protocol
operation and the need to prioritize this traffic over, e.g., bulky
transfers. In this paper we propose a simple scheme to improve
the efficiency of WLANs when voice traffic is present. The
mechanism is based on piggybacking voice frames over the
acknowledgments, which reduces both frame overheads and time
spent in contentions. We evaluate its performance in a large-scale
testbed consisting on 33 commercial off-the-shelf devices. The
experimental results show dramatic performance improvements
in both voice-only and mixed voice-and-data scenarios.

I. INTRODUCTION

IEEE 802.11 [1] is one of the most commonly used wireless

technologies. It is being commoditized for voice commu-

nication, with the proliferation of smart phones with voice

applications, e.g., Viber and Skype. Given the short length

of voice frames, the legacy DCF operation results extremely

inefficient and the voice quality is highly vulnerable to data

traffic. On the one hand, the inefficiency issue is not solved

by introducing higher data rates, since they do not change the

protocol overhead and do not significantly reduce the fraction

of time wasted due to the 802.11 backoff mechanism. On

the other hand, voice quality vulnerability can be reduced by

means of EDCA prioritization mechanisms [2]. As a trade-off,

the performance of data frame has to be reduced to sustain a

decent level of quality for voice traffic.

The impact of protocol overhead on VoIP has been ex-

tensively researched in the literature. The authors of [3] and

[4] have investigated on the number of VoIP calls that can

be supported in a WLAN with different 802.11 versions and

different audio codecs. The degradation of voice performance

in presence of low-priority data traffic has been analytically

tackled in [5]. In that work, the authors propose an ACK

skipping policy that optimizes the performance of voice

frames. Other papers also discuss the importance of the MAC

parameter settings on the voice performance, e.g., [6] and [7].

The literature also provides simulation results and exper-

imental studies based on commercial off-the-shelf (COTS)

devices to measure the capacity of WLANs when voice

traffic is present. For instance, the authors of [6] show that

appropriate MAC tuning can improve capacity by 20% to

40%. Experiments reported in [8] confirm that commercial

devices need non-trivial prioritization mechanisms in order to

guarantee the quality of voice. Experiments in [4] show how

voice conversations dramatically impair the performance of

UDP data traffic since they reduce the available bandwidth.

Motivated by the limited efficiency of the standard operation

of 802.11 with voice traffic, we propose a simple mechanism to

dramatically reduce the overhead of the MAC operation, which

also results in a reduction of contention. Our proposal, named

VoIPiggy, consists in piggybacking voice frames over MAC

acknowledgments (ACKs). Our approach allows VoIP traffic

to be served with lower delay and jitter, and, by embedding a

significant part of voice frames into MAC ACKs, it reduces the

average number of nodes contending for the channel, which

eventually improves overall system performance. We imple-

ment VoIPiggy on COTS devices, and validate its operation

against the legacy 802.11 operation.

The main contributions of this paper can be summarized as

follows: (i) We propose a mechanism, VoIPiggy, to improve

the general performance of WLANs when voice traffic is

present; (ii) We describe the implementation of VoIPiggy

using COTS devices; and (iii) we present an extensive per-

formance evaluation in a large testbed of 33 nodes. These ex-

periments show that VoIPiggy practically doubles the capacity

of a WLAN in terms of voice calls.

The rest of the paper is organized as follows. Section II

presents the rationale behind our proposal. In Section III

we introduce the design of VoIPiggy and compare it to the

legacy MAC. Section IV describes the implementation details

of VoIPiggy over a COTS-based platform. In Section V we

present an extensive performance evaluation. Finally, Sec-

tion VI summarizes our main results and exposes the directions

of our future work.

II. MOTIVATION

The standard operation of 802.11 introduces a large over-

head for the case of voice traffic, given its small frame size.

To quantify it, let us consider the exchange of two voice

frames between the Access Point (AP) and one station (STA).

Neglecting the impact of the backoff operation for simplicity,
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Fig. 1: Simplified frame exchange (top) and VoIPiggy proposal

(bottom).

TABLE I: Total lengths of the frame exchanges of Fig. 1

Mode R Rc 2L/R Ts Tv

802.11b
1 1 1408 2968 2236
11 2 128 785 415

802.11g
6 6 235 503 377
54 24 26 200 111

the frame exchange will follow the one illustrated in upper part

of Fig.1. According to the figure, the total time Ts required

to perform this simplified two-frame exchange using DCF is

given by:

Ts = 2

(

DIFS + 2Tplcp +
H + L

R
+ SIFS +

ACK

Rc

)

,

(1)

where Tplcp represents the duration of the preamble, L is the

payload length, H is the layer-2 header, ACK is the length of

the acknowledgment and R and Rc are the transmission rates

for data and control traffic, respectively.

In Table I we compute the value of Ts for different

configurations of the physical layer, for a voice frame of

60 bytes transported over UDP. The results show that the

total exchange Ts is significantly larger than the time actually

devoted for payload transmissions 2L/R, and it worsens as

the transmission rate R increases. In particular, for 2 Mbps,

Ts is more than twice the value of 2L/R, while for 54 Mbps

is almost 8 times larger.

This extremely simple analysis serves to illustrate that the

basic access mechanism of the 802.11 standard, namely DCF

(Distributed Coordination Function), is not well-suited to sup-

port voice applications. Given the short length of voice frames,

DCF incurs a huge overhead, both in terms of backoff delay

and MAC layers. In order to circumvent these limitations, we

propose a simple modification to the MAC operation, named

VoIPiggy, which piggybacks the voice frames over the MAC

acknowledgments.

III. THE VOIPIGGY MECHANISM

In this section we detail the operation of our proposal. First,

we note that there are two sources of inefficiencies, inherent to

the bi-directional nature of voice conversations: (i) A station

(STA) sends an ACK frame immediately before its voice

frame. Even neglecting the impact of the backoff, this basically

doubles the introduced overhead (header and preamble) if a

voice frame is immediately transmitted afterwards. Therefore,

“merging” the upcoming voice frame with the precedent ACK

Algorithm 1 STA operation

1: while true do

2: while (Pck.out == null & !Rx) do
3: Listen

4: end while

5: if queue.out! = empty then

6: i = 1, T = 0
7: if Pck.out == V oIP then

8: while (T ≤ 25ms) do

9: Listen

10: if Rx(packet) == V oIP then

11: Send VoIP+ACK after SIFS

12: Remove packet from queue

13: else

14: Legacy Tx

15: end if

16: end while

17: else

18: Legacy Tx

19: end if

20: else

21: Legacy Rx

22: end if

23: end while

Algorithm 2 AP operation

1: while true do

2: i = 1
3: while i ≤ MaxAttempts do

4: Wait backoff and listen

5: Send packet

6: Wait for ACK or timeout

7: if ACKreceived then

8: Remove packet from queue

9: if length(ACK)) > length(legacyACK) then

10: Extract VoIP frame from the ACK

11: Send VoIP frame to the upper layer

12: end if

13: Reset CW & Restart

14: end if

15: i + +, CW∗ = 2
16: end while

17: end while

frame seems an obvious choice to improve the efficiency;

(ii) Furthermore, if a voice frame is sent in reply to a received

voice frame a SIFS time after the reception, it will not need

to contend for channel access, thus preventing collisions.

These two observations motivate the design of our mech-

anism, whose operation is illustrated in the bottom part of

Fig.1. As the figure shows, a SIFS interval after the reception

of the first voice frame, the STA sends in the same frame

both the ACK and its voice frame towards the AP, which no

further acknowledges its reception. As a result, the VoIPiggy

mechanism saves airtime, and thus allocating a higher number

of voice calls in the network.

In this way, we address the two sources of inefficiency

identified above. Indeed, in this case the total time required

for the two-frame exchange can be computed as:

Tv = DIFS + SIFS + 2Tplcp +
H +ACK ′ + 2L

R
, (2)

where ACK ′ is the length of the modified acknowledgment

header. As compared to the Ts values provided in Table I, Tv

provides time savings between 55% and 75%.

As we have enlightened the voice frame from the STA to the

AP is not acknowledged. We argue that this is not very critical,

given that the main source for frame losses are collisions, and
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this frame is protected from them as it is sent a SIFS time

after the medium was busy.

The use of VoIPiggy requires introducing changes in both

the AP and the STA. For the case of the AP, although the first

transmission follows the standard exchange, the node should

be able to decode the subsequent frame from the STA, which

includes both the acknowledgment for the frame (that triggers

its removal from the transmission queue) and a new frame to

be delivered to the upper layer. Furthermore, this frame shall

not be acknowledged. Then, in this case we just modify the

standard operation for the reception. We also prioritize voice

traffic, thus we will set the minimum contention window of

the AP to CWmin = 2, which is the minimum allowed by the

standard.

At the STA side, when a new frame from the AP is received

the standard acknowledgment should be sent only if there

are no pending voice packets towards the AP. Furthermore,

to maximize the probability of piggybacking, incoming voice

frames from the application layer will be queued until a

timeout expires.

The operation of VoIPiggy is summarized in Algorithms 1

and 2, while its implementation is detailed next.

IV. IMPLEMENTATION DETAILS

In this section we detail the implementation of the most rele-

vant features of VoIPiggy. We describe the overall architecture,

the development platform used for our implementation and the

modifications to the Linux kernel and the device firmware to

implement the VoIPiggy mechanism.

A. Linux 802.11 stack

The 802.11 network stack in Linux spans over three layers:

(i) The mac80211 framework that takes care of the operations

related to 802.11 traffic; (ii) The device driver, which is a

wrapper between the Linux internal 802.11 packet buffers

and the physical device; (iii) The device internal logic,

namely firmware, which controls time critical operations such

as the ACK sending or the packet retransmission. These

operations are offloaded within the hardware and hidden to

both mac80211 and device drivers, due to the unpredictable

latency and jitter that affect HW interfaces.

Since this is a proof-of-concept implementation, we opt to

work at both the device driver and device internal logic levels

leaving the mac80211 framework unchanged.

B. The Broadcom chipset

We use the Broadcom chipset, which is based on a MAC

processor (MP) that coordinates the data exchange among the

different device blocks by running a binary firmware (FW)

code. This code drives the transitions of the protocol state

machine by reacting to external conditions, such as the arrival

of a new frame or the expiration of programmable timers.

A representative set of blocks that compose the chipset are

presented as follows:

• Tx FIFO queues: driven by the DMA controller and

deliver outgoing packets composed by the host kernel.

• Tx Engine (TXE): The TXE prepares a frame for trans-

mission adding the PLCP header and the CRC coefficient

and waits for a transmission opportunity.

• Rx Engine (RXE) and FIFO queue: The RXE decodes

the signal received from the air, checks the validity of the

CRC coefficient and reports the received packet length.

The Broadcom chipset is supported in the Linux kernel

by the open source driver, b43. The b43 driver passes each

outgoing packet to the device together with a long block of

data to setup the hardware on a per packet transmission basis,

according to mac80211 decisions. New private data can be

passed to the device logic by extending this data structure.

The b43 driver loads the firmware at startup, therefore

a different firmware can replace the original one. We use

OpenFWWF, an “Open source FirmWare for WiFi networks”

[9], enabling a very flexible customization of time critical

operations. This platform has been used before to evaluate

some Block Based Recovery (BBR) algorithms in [10] and

[11], and more recently a TCP ACK-piggybacking MAC has

been introduced by means of OpenFWWF [12].

C. Implementation

The VoIPiggy exchange described in Section III involves

a legacy data frame from the Access Point followed by a

Data+ACK frame sent by the corresponding station after a

SIFS. For simplicity, we decide to implement our VoIPiggy

reply by extending a legacy ACK. To accomplish this, we

append the VoIP payload together with the IP and UDP

headers skipping part of the data-type MAC header, as we are

just interested in sending the payload, and the MAC header is

already provided by the acknowledgment. Furthermore, the

MAC address of the sending station is added between the

legacy ACK frame and the appended IP packet, so that the

AP can recognize it.

The legacy MAC operation is performed by the AP for every

packet it transmits. Meanwhile, VoIPiggy mode is used by the

station whenever it receives a VoIP packet incoming from the

AP and the Head-of-Line (HOL) packet in its Tx FIFO queue

is VoIP-data. In case the queue is empty or the HOL packet

is not VoIP-type, the station will use the legacy operation.

1) Driver modifications: In order to develop our mech-

anism we modify the b43 driver so that outgoing UDP

traffic toward or from a specific port are marked as

PIGGYBACK_ENABLED (PE).

We adjust the b43 driver to optionally force the transmission

of the VoIP traffic at a given modulation coding scheme config-

ured by the user, which makes possible a better assessment of

the VoIPiggy efficiency. Finally, we add a hook in the receiver

code to intercept long ACK frames from the device. The driver

must transform them back into full featured data packets by

moving the IP section, inserting the missing MAC parts and

finally sending them to the mac80211 module.

2) Firmware modifications: At the firmware level, the code

to be run in the AP is modified so that it can recognize

long acknowledgments (i.e., VoIPiggy replies) by checking

the received packet length reported by the RXE. When such

2933



(a) Testbed scenario (b) Detailed view of a node

Fig. 2: Deployed testbed with 33 wireless nodes.

packets are received they are pushed directly to the host kernel.

In addition, the AP is prevented from acknowledging VoIP

packets if they were piggybacked.

At the station side, the firmware required the following

changes: (i) Prevent STA from waiting for an ACK for the

piggybacked voice frame and remove the HOL packet in the

queue immediately after its transmission under VoIPiggy oper-

ation; (ii) Tuning the ACK transmission. Before transmitting

the packet the firmware overwrites the first ten bytes to mimic

a legacy ACK frame header. Then, our modification properly

sets up the TXE when the PE flag is set, by using the values

precomputed by the kernel, i.e., bytes to skip, packet length

and timing to use to build the PLCP; (iii) Delay outgoing

packets when PE flag is set, until a voice frame is received

or a maximum threshold T is reached. In this way it is more

likely that a voice frame from the AP will arrive and therefore

the HOL frame can be piggybacked.

V. EXPERIMENTAL EVALUATION

In this section we experimentally validate our VoIPiggy

implementation in a real testbed deployment and compare the

results with the legacy operation.

A. Testbed Description

Our testbed is composed of 33 Alix 2d2 devices from PC

Engine,1 as depicted in Fig. 2. These embedded devices are

popular low-cost computers, equipped with a Geode LX800

AMD 500 MHz CPU, 256 MB DDR DRAM, 2 Mini-PCI

sockets and a Compact Flash socket, to which we attached a

4 GB card with a Linux distribution. As a wireless interface

we installed a Broadcom BCM94318MPG 802.11b/g MiniPCI

card, while as software platform we installed Ubuntu 9.10

Linux (kernel 2.6.29), using the modified b43 WLAN driver

described in Section IV.

One of the devices acts as AP, while the rest are stations

associated to the AP, distributed as Fig. 2a shows. All nodes

are equipped with a 5-dBi omnidirectional antenna and use

a transmission power of 27 dBm. Stations are spaced a few

meters from each other (squares in Fig. 2a represent 60 cm×

1PC Engines: http://www.pcengines.ch/

60 cm floor units), and the resulting link quality is excellent

for all nodes to communicate with each other.

The deployment is set up under a raised floor (Fig. 2b),

which protects devices from physical harm and provides radio

shielding to some extent [13]. Configuration and control of the

experiments are centralized in a single terminal, not shown in

the figure.

For traffic generation we use mgen,2 which supports the

computation of relevant voice traffic metrics, such as delay,

jitter and loss rate. In particular, latencies can be evaluated

at the receiver side, by means of the timestamps inserted by

mgen in all packets, provided that all nodes are synchronized.

We run the PTP daemon 3 over the wired interfaces of the

nodes, achieving synchronization with µs accuracy.
We emulate the voice behavior by running independent

instances of the mgen traffic generation tool, each transmitting

a 60-byte voice frame every Tf = 20 ms, following the

behavior of the G.726 codec. In the case of data emulation, we

use an instance of mgen run on a single station under saturation

conditions with a packet length of 1472 bytes. After a calibra-

tion process, the timeout threshold during which stations wait

for a voice packet from the AP is set to T = 25 msec.

B. Voice-only scenario

We start our performance evaluation with a scenario in

which only voice traffic is present. In all considered cases, we

will assume that a voice call is active between a station in the

WLAN and a node outside the WLAN, which is translated into

a “downlink” (DL) flow from the AP to the wireless station,

and a corresponding “uplink” (UL) flow in the other direction.

We analyze the maximum number of flows that can be

admitted in the WLAN. To this aim, we compute the obtained

mgen throughput in each direction as a function of the number

of voice flows n in the WLAN. The obtained results for the

worst performing flows are depicted in Fig. 3 for the DL (top

of the figure) and UL (bottom part of the figure) directions, for

the standard DCF (denoted as Legacy) and for our VoIPiggy

mechanisms, for two 802.11b modulation coding schemes, i.e.,

R = 1 Mbps and R = 2 Mbps.

The results show that the use of VoIPiggy is able to signifi-

cantly increase the number of voice conversations supported in

the WLAN. Indeed, while for the legacy case the maximum

n values before losses become unacceptable are n = 5 for

R = 1, and n = 8 for R = 2, for the case of VoIPiggy

these values grow to n = 8 and n = 13, respectively. Results
show that VoIPiggy almost doubles the capacity in a voice-

only scenario.

C. Mixed voice-and-data scenario

Here we evaluate the maximum number of conversations in

presence of a data flow and the data throughput performance.

Fig. 4 considers the legacy 802.11 MAC and the VoIPiggy,

and depicts the data throughput achieved by the data flow

for an increased number of voice conversations. For the

2The Multi-Generator Toolset: http://cs.itd.nrl.navy.mil/work/mgen/
3Precision Time Protocol: http://ptpd.sourceforge.net/
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Fig. 3: Throughput delay for downlink and uplink cases (voice

only).
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Fig. 4: Data throughput for data plus voice scenario.

legacy case, the system cannot support 2 voice flows with

R = 1 Mbps, and no more than 3 flows with R = 2 Mbps.

Therefore, legacy MAC turns out to be highly inefficient also

in this scenario.

In the case of VoIPiggy, we conclude that: (i) The through-
put of data decreases linearly with the number of voice flows;

(ii) The maximum number of possible conversations with

VoIPiggy is equal to 8 and 13, respectively with R = 1 Mbps

and R = 2 Mbps; (iii) The data throughput, for a given value

of n, is higher when using VoIPiggy as compared to DCF.

This result shows that VoIPiggy increments the voice capacity

of the WLAN and leaves more resources for data flows.

VI. SUMMARY & FUTURE WORK

In this paper we have designed, implemented and evaluated

VoIPiggy, a mechanism to dramatically improve the efficiency

of MAC operation when voice traffic is present in 802.11

WLANs. In contrast to legacy operation, which spends large

amounts of time in contention and overhead transmissions,

VoIPiggy extends the control frames sent from the stations

to the AP with user data, thus practically halving the time

required to transmit voice frames.

We have described the modifications required by VoIPiggy,

which are supported by existing COTS devices. To validate

VoIPiggy and assess its effectiveness, we have deployed a

large-scale testbed consisting of 33 devices. Through extensive

performance evaluation we have demonstrated the perfor-

mance improvements yielded by our mechanism, which pro-

vides a strong empirical support for the adoption of VoIPiggy.

As future work we envision the following tasks: (i) As-

sessing the performance when using real VoIP clients, i.e.:

Skype, Ekiga or Viber. We have already carried out some

preliminary tests with Ekiga, obtaining promising results; (ii)
Implementing additional MAC enhancement mechanisms, e.g.,

enabling piggybacking at the AP; (iii) Testing VoIPiggy with

higher modulation coding schemes.
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