
Security Patterns for Untraceable Secret Handshakes with optional Revocation

Annett Laube∗, Alessandro Sorniotti†‡, Paul El Khoury§‡, Laurent Gomez‡ and Angel Cuevas¶
∗ Bern University of Applied Science, Switzerland,

Email: annett.laube@bfh.ch
† Institut Eurecom Sophia-Antipolis, France
‡ SAP Research Sophia-Antipolis, France

Email: alessandro.sorniotti@sap.com, laurent.gomez@sap.com
§ LIRIS University of Claude Bernard Lyon 1, France

Email: paul.el-khoury@liris.cnrs.fr
¶ University Carlos III of Madrid, Spain

Email: acrumin@it.uc3m.es

Abstract—A security pattern describes a particular recurring
security problem that arises in specific contexts and presents
a well-proven generic solution for it. This paper describes
Untraceable Secret Handshakes, cryptographic protocols that
allow two users to mutually verify another’s properties without
revealing their identity or other sensitive information. The
complex security solution is split into smaller parts, which
are described in an abstract way. The identified security
problems and their solutions are captured as SERENITY
security patterns. The structured description together with
motivating scenarios from three different domains makes the
security solution better understandable for non-security experts
and helps to disseminate the security knowledge to application
developers.

Keywords-security patterns; secret handshake; cryptographic
protocols; mutual authentication;

I. INTRODUCTION

Today’s pioneer organizations recognize that performance
accelerates when information security is driven into the very
framework of business [2]. In the past, security experts
developed secure systems and standardized sufficient secu-
rity solutions to satisfy security requirements for various
contexts. Most of these standards provide comprehensive
methodologies for specifying, implementing and evaluating
security of IT products. Rarely non-specialists are capable
of correctly understanding and realizing such standards. The
description of these standards in natural language limits
their ability in passing knowledge to novice security users.
The fundamental added value of adopting the security pat-
terns approach is providing security for non-security experts
[3][4].

Application developers transform clients’ requirements
into business applications. Business solutions and security
solutions are often designed and developed at different
coordinates of space and time. Considering the lack of
expertise application developers are often incapable of being
compliant to security regulations protecting the clients’
business.

Security patterns capture security expertise abstract and
concrete at the same time. This approach fits well as candi-
date link between security experts and application developers
to encompass business applications with a security shield.

This paper focuses on capturing the security solution
for secret handshakes described in [5] and [6] as security
patterns, following the SERENITY methodology [4][7].
Parties cooperating in hostile networked environments often
need to establish an initial trust. Trust establishment can
be very delicate when it involves the exchange of sensitive
information, such as affiliation to a secret society or to an
intelligence agency.

Secret handshakes are first introduced in 2003 by Balfanz
et al. [5] as mechanisms designed to prove group mem-
bership and share a secret key between two fellow group
members. The purpose of these protocols is – as pointed out
in [8] – to model in a cryptographic protocol the folklore of
real handshakes between members of exclusive societies or
guilds.

With a secret handshake, two users can simultaneously
prove to each other possession of a property, for instance
membership to a certain group. The ability to prove and to
verify is controlled by a certification authority that issues
credentials and matching values respectively. Users are not
able to perform a successful handshake without the appro-
priate credentials and matching values; in addition protocol
exchanges should be untraceable and anonymous.

Even though there are several ways for implementing
the secret handshake protocol. Our purpose is to capture
the properties and functionalities that are common to all
implementations. Therefore, any particular solution could
be derived from the defined security patterns. Furthermore,
capturing expertise as a pattern makes security solutions for
a given problem more general. It is easier for non-security
experts to find a suitable solution for a particular problem
by searching into the patterns’ library through properties and
features.

With the capturing of Untraceable Secret Handshakes



as security patterns, we increase the number of standard
security solutions available to application developers. In this
paper, we describe not only the secret handshake protocol
as in [1], we also discuss variants of the security solution
adapted to specific contexts and use cases. The security
patterns and their relationships are described in detail. The
SERENITY pattern template is extended and complemented
by standard UML models. The three scenarios from different
domains illustrate the broadness of possible use cases for
secret handshakes.

The paper is organized as follows. Work related to secret
handshakes is discussed in Section II. In Section III, we
overview security patterns and introduce the SERENITY
security pattern template. Section IV proposes three scena-
rios to illustrate the use of secret handshakes in real-world
applications. We describe the proposed security solution in
detail in Section V and define an abstract model used to
capture this security solution as a combination of patterns.
Next, Section VI describes the security patterns and integra-
tion scheme of the proposed solution. Section VII highlights
advantages of the SERENITY pattern approach and points
out weaknesses. In Section VIII, we conclude the paper.

II. RELATED WORK

After the introduction of secret handshakes in 2003 by
Balfanz et al. [5] many papers have further investigated
the subject. New schemes have been introduced, achieving
for instance reusable credentials (the possibility to generate
multiple protocol exchanges out of a single credential with
no loss in untraceability) and dynamic matchings (the ability
to verify membership for groups different from one’s own).

Castelluccia et al. in [9] introduce the concept of CA-
Oblivious encryption and show how to build a secret hand-
shake scheme from such a primitive. Users are equipped with
credentials and matching references (in this particular case
embodied by a public key and a trapdoor) that allow them
to pass off as a group member and to detect one. In [10],
Meadows introduces a scheme that is similar to secret
handshakes, despite the fact that the security requirements
are slightly different – for instance, untraceability is not
considered. In [11], Hoepman presents a protocol, based on
a modified Diffie-Hellman key exchange [12], to test for
shared group membership, allowing users to be a member
of multiple groups. In [8], Vergnaud presents a secret
handshake scheme based on RSA [13]. In [14], Xu and
Yung present the first secret handshake scheme that achieves
unlinkability with reusable credentials: previous schemes
had to rely upon multiple one-time credentials being issued
by the certification authority. However, the presented scheme
only offers a weaker anonymity. In [15], Jarecki et al.
introduce the concept of affiliation-hiding authenticated key
exchange, very similar to group-membership secret hand-
shakes; the authors study the security of their scheme under
an interesting perspective, allowing the attacker to schedule

protocol instances in an arbitrary way, thus including MITM
attacks and the like.

In [16], Ateniese et al. present the first secret handshake
protocol that allows for matching of properties different
from the user’s own. Property credentials are issued by a
certificate authority.

Already the Balfanz’ original scheme [5] supports re-
vocation, but has a number of drawbacks, for instance
the fact that it relies on one-time credentials to achieve
untraceability. After this seminal work, many papers have
further investigated the subject of secret handshake, con-
siderably advancing the state of the art. The work by
Castelluccia et al. [9] has shown how, under some specific
requirements (namely CA-obliviousness), secret handshakes
can be obtained from PKI-enabled encryption schemes.
Other schemes have followed this approach [8][17] offering
similar results, albeit with different nuances of unlinkability.
Almost all the schemes in this family support revocation of
credentials; however the functionalities offered are limited
to proving and verifying membership to a common group.
In [6], the authors present the first secret handshake with
dynamic matching of properties under stringent security
requirements. In [18], the revocation support for this kind
of secret handshakes is presented.

All the mentioned publications about secret handshakes
focus on the cryptographic details of the secret handshake
protocols and their formal proofs. Our goal is to cap-
ture the common properties and functionalities of secret
handshake as general security solution and to make them
available for non-security experts. The abstraction from the
implementation details allows us to provide a functional
view of the needed operations of all involved parties. Our
conceptual model and the UML sequence diagrams together
with different application scenarios make secret handshakes
easier understandable for solution architects and application
developers and allow the easy integration of secret hand-
shake in existing or emerging applications.

III. SECURITY PATTERNS OVERVIEW

Research techniques for security patterns are interestingly
different from other kinds of research. In software engineer-
ing and security engineering innovative results are measured
by new solutions brought to market, whereas differently,
innovative research in techniques for (security) patterns
is measured by the successful provision of existing best
practices, standards or well proven solutions from experts to
lay users. The added value of these techniques for patterns
is devoted to the format, validation techniques and means
used to promote experts’ knowledge to novice security
users. Populating a collection of patterns is indeed time-
consuming, but once realized the invested effort pays off. To
accomplish the security patterns’ ‘mission’, a list of objec-
tives is summarized in four fundamental steps [3]. First, most
of the novice security users should understand how experts



approach key security problems. Second, security experts
should be able to identify, name, discuss and teach both
problems and solutions efficiently. Third, problems should
be solved in a structured way. Fourth, dependencies and side-
effects should be identified and considered appropriately.
The connotation of these objectives emerged as appealing
for research studies.

In [19], the authors summarize the pattern engineering
life cycle, from creation until deployment. In a nutshell this
process is presented hereafter as several steps for the creation
process, i.e., numbered by ‘E’, and the deployment one, i.e.,
numbered by ‘A’:

E1 Finding a pair of recurring problem and its correspond-
ing solution from knowledge and/or experiences of
software development.

E2 Writing the found pair with forces in a specific pattern
format.

E3 Reviewing and revising the written pattern.
E4 Publishing the revised pattern via some public or private

resource (WWW, book or paper, . . .).
A1 Recognizing context and security problems in software

development.
A2 Selecting software patterns that are thought to be useful

for solving the recognized problems.
A3 Applying the selected patterns to the target problem.
A4 Evaluating the application result.

The usual natural language description for security pat-
terns opens room for different interpretation of solutions
provided and problems described by these patterns. Hence,
none of the previously four objectives of the patterns’
mission can be achieved. First known contribution to se-
curity patterns, is the work from J. Yoder and J. Barcalow
proposing to adapt the object-oriented solutions to recurring
problems of information security [20]. Seven patterns were
presented to be used when dealing with application security.
A natural evolution of this work is the proposal presented by
Romanosky in [21]. It takes into consideration new questions
that arise when securing a networked application. Following
this particular path, Schumacher et al. [22] presented a set
of security patterns for the development process. Fernan-
dez and Pan [23] describe patterns for the most common
security models such as Authorization, Role-Based Access
Control and Multilevel Security. Recently in [24], the same
authors highlighted the need to develop additional security
patterns for database systems in order to integrate it into
secure software development methodology. These security
patterns were rarely adopted in the security field. Indeed
their description in natural language limits their applicability
and forbid any reasoning mechanism.

The SERENITY EU project through a list of narrow yet
complex studies [4][7][25][26] tackles the security patterns
objectives. The SERENITY partners presented in [4] the
SERENITY model of secure and dependable applications.

Moreover, using security patterns they showed how to ad-
dress, along with the tools provided, the challenge of de-
veloping, integrating and dynamically maintaining security
mechanisms in open, dynamic, distributed and heteroge-
neous computing systems.

Figure 1. SERENITY Security Artefacts

One of the essential proposals from SERENITY is to
provide novice users the SERENITY Security & Depend-
ability pattern package. This package comprises expert-
proofed security solutions and tested plug-and-play de-
ployable implementations. The research interest in security
patterns focuses in particular on capturing solutions for
recurring security problems that arise in different contexts.
The granularity of security problems analyzed and captured
in a pattern, can be quite different. Usually a complex
security solution is not captured in a single pattern. Solutions
consisting of several patterns cover better the generality
aspect of the abstract solution. To have an intuitive descrip-
tion for the solution proposed in this paper, we adopt the
SERENITY approach using four artefacts. The description
of these artefacts enables selection, adaptation, usage and
monitoring at runtime by automated means. The hierarchy
is composed of four artefacts (depicted in Figure 1): Security
Classes, Security Patterns, Security Implementations and
Executable Components. Although this paper emphasized
the use of the Security Pattern artefact, in different studies
[27][28][29][30] an intuitive and extensive description of all
artefacts is presented.

In SERENITY, security patterns are detailed descriptions
of abstract security solutions that contain all the information
necessary for the selection, instantiation and adaptation
performed on them. Such descriptions provide a precise
foundation for the informed use of the solution and enhance
the trust in the model.

This paper relies on the SERENITY representation of
security patterns [4][26] to transfer the first three objectives
of security patterns for the Untraceable Secret Handshakes to
non-security experts. The most important parts of a security



pattern description are the following:
Problem and context: The problem is the vulnerable part
in an asset that can also be described as requirements, which
need to be solved. The context defines the recurring situation
where the problem/requirement can be found.
Solution: The solution is defined as a mechanism that is
used to resolve the corresponding requirement/problem. It
defines the sequential flow of operations in solving the
security problem.
Role: The entity applying the pattern is described together
with its interactions with other entities from the pattern
context.
Pre-Conditions: They indicate assumptions and restrictions
related to the deployment of the pattern. Before applying a
pattern, users or applications in some cases should check
the satisfiability of these pre-conditions. Obviously, pre-
conditions are elements used during the selection of suitable
patterns for a particular problem.
Properties: They describe which security elements the pat-
tern provides. This is the basic element used to discriminate
whether a pattern is useful for a security problem or not.
Features: They are additional characteristics to the patterns’
properties used to select suitable patterns.
Consequences: They are the effects (benefits and draw-
backs) of the compromise resulting from the application of
the pattern’s solution. In general, using security solutions
implies an increase in cost (economic, more complex mech-
anisms, etc.).
Variants: This describes variants and possible extensions of
the pattern.
Related patterns: They name related patterns, integration
schemes and the kind of the relationship (e.g., similarity,
dependency, extension).

Often security solutions are too complex to be captured
in a single security pattern. Therefore an additional artefact,
the integration scheme (IS), was introduced. An IS defines
the combination of security patterns and their relationships.

IV. SCENARIOS

In this section, we want to show how untraceable secret
handshakes are used in real-world applications. Our first
example is a use case from the EU Project R4eGov [31]
for Mutual Legal Assistance in international crimes.

Several EU justice forces led by Europol [32] cooperate in
order to solve cross-boundary criminal cases (in Figure 2, a
workflow example is shown). EU regulations define official
processes that must imperatively be followed by operating
officers: in particular, these processes mandate which insti-
tutions must cooperate upon each particular case. During
such collaboration, for instance, a member of France’s Min-
istère de la Défense must cooperate with a member of the
Bundesnachrichtendienst, Germany’s intelligence service, to
investigate on an alleged internal scandal. The two officers
may need to meet secretly and to authenticate themselves

on-the-fly. Both are definitely reluctant to disclose their
affiliation and purpose to anybody but the intended recipient.

Figure 2. Mutual legal assistance scenario

A scenario from another business domain is the Incom-
patible chemicals in proximity use case from the CoBIs
EU project [33]. Let us assume that drums are stored in
a warehouse (see Figure 3); each drum contains a liquid
chemical and is equipped with a wireless sensor that is
able to perform a secret handshake with other sensors in
proximity. Drums can contain some reactive chemicals: the
proximity of these drums must be considered dangerous.
The goal is to generate safety-critical alerts based on an
untraceable secret handshake. The drums get credentials
related to their containing chemicals and a list of references
to match the reactive liquids. After a successful matching,
an alert is generated and sent to the storage manager. The
security features of the secret handshakes described in [6]
allow to exchange information of the containing chemicals
without revealing them on a wireless channel. Drums with
dangerous contents cannot be identified or traced by unau-
thorized persons.

In the third scenario, we regard Online Social Networks
(OSNs), like Facebook. A problem, which is particularly felt
among social network users, is identity theft and identity
spoofing [34]. The root of the problem is that in many
OSNs there is little or no verification that a person that
joins the social network is really who he or she claims to be.
Additionally is the social network users’ decision on whether
to accept a friendship request based on name, pictures and
fragments of text, information that is often easily retrievable
elsewhere on the Internet. A viable solution consists on users
creating ad-hoc, trusted groups outside of the social network,
issuing group membership credentials and presenting such
credentials upon friendship invitations within the social
network. A natural evolution of the aforementioned trusted
friend groups are Secret Interest Groups (SIGs) [35],
user-created groups with particular attention to confidential
or simply privacy-sensitive topics. Indeed users of online



Figure 3. Incompatible chemicals in proximity scenario

social networks are often also exchanging personal and
sensitive material; moreover, OSNs are more and more the
theater of political, religious debate, often used as means
to exchange confidential material that cannot go through
official channels. Secret handshakes [5] are the main pillar to
fulfill the operational and security requirements of a generic
SIG framework.

Often it is desirable to support revocation for secret
handshakes. In the SIG use case, revocation is required
when either a SIG member got his membership token
stolen or when he no longer qualifies for membership.
Since SIG membership credentials can be used directly to
authenticate to another SIG member a reactive revocation
approach is required, that singles out revoked credentials
based on a revocation list. In the scenario of assistance in
international crimes, the credentials of the operating officers
to authenticate should be automatically revoked when the
criminal case was closed. Proactive revocation techniques
are based on time-bound credentials, which have to be
updated periodically, can be used in this case.

V. SOLUTION DESCRIPTION

A Secret Handshake, first introduced in [5], is a mecha-
nism devised for two users to simultaneously prove to each
other possession of a property, for instance membership
to a certain group. The ability to prove and to verify is
strictly controlled by a certification authority that issues
property credentials and matching values. Users are not able
to perform a successful handshake without the appropriate
credentials and matching values; in addition protocol ex-
changes have to be untraceable and anonymous.

We present a pattern for Untraceable Secret Handshakes
with proof of group membership as described in [5] or [6]:
users are required to possess credentials and matching values
issued by a trusted certification authority in order to be

able to prove and to verify possession of a given property.
Therefore the certification authority retains the control over
who can prove what and who can disclose which credentials.
However verification is dynamic, in that it is not restricted
to own properties.

The secret handshake requires an initialization phase
followed by a matching phase, which can be repeated several
times.

A. Initialization phase
A secret handshake is performed between two parties,

in the following also called users. To carry out a secret
handshake each user needs a property credential and match-
ing values. A property credential is a certification of the
user’s property by a trusted entity. The entity responsible for
the certification of properties is the Certification Authority
(CA). The CA is a trusted entity that after a successful
verification of a property grants the user a credential. To
verify a certain property the identity of the user and the
related context are examined. This operation is described in
the pattern Property certification and can be an offline step.

The CA can be a single person or organization, like
Europol, the European Law Enforcement Organisation, in
the Mutual Legal Assistance scenario. Europol assists the
authorities in the EU Member States in preventing and
combating terrorism, and other serious forms of international
organized crime. Europol can certify the involvement of
a justice force in a specific criminal case. In the third
scenario, a non-empty group of so called SIG managers is
responsible to verify the group membership in an offline
process and to manage the property credentials, in this case
called membership credentials.

The matching value allows a user to verify that the
other user has a particular certified property. The user can
get one or more matching values from the CA. The CA,
according to a set of policies, delivers the matching values to
a requesting user after verifying his identity and the context.
The process of obtaining the matching values is described in
the security pattern Property Certification. The policy with
the relationships between property credentials and matching
values has to be defined beforehand.

Figure 4 depicts an abstract model highlighting input,
output and entities specific for this phase. The data flow bet-
ween the CA and the user helps to understand the proposed
solution. The security pattern is shown as rounded rectangle
including the operations the applying entity has to perform.
The exchanged data and documents (e.g., credentials and
policies) are depicted together with the flow to and from the
manipulating operation.

Like described in Section IV, revocation support can
be required for a secret handshake scenario. Depending
on the desired revocation technique (reactive or proactive)
the properties credentials have to be generated differently.
The cryptographic details for generating credentials with



Figure 4. Conceptual Model - Initialization phase

identification handles for reactive revocation are described in
[18]. The proposed scheme there, offers a solution that on the
one hand assures that the protocol messages are untraceable,
and on the other offers a credential tagging to single out the
revoked ones.

B. Matching phase

The secret handshake itself is carried out between two
users and can be repeated infinitely. It consists of two
mandatory parts: the secure match of properties and the
proof that both parties possess the same key after the match-
ing. The revocation support can be added optionally when
needed. The relationships between the security patterns and
the data flow between the entities are pictured in Figure 5.

The secure match is initiated by one of the users, e.g.,
user A. User A sends an internal state (state A), e.g., a
nonce, to user B. User B replies with another state (state
B) and his hidden credential, computed from the received
state and his property credential. When user A receives
the hidden credential from user B, he is able to match it
with his matching values (see e.g., [6] for details about the
used cryptographic algorithms). To complete the matching
protocol, user A computes his hidden credential and sends it
to user B. This behaviour is described by the security pattern
Secure Match and has to be applied to both parties.

When reactive revocation is supported by the property
credentials (i.e., they contain an identification handle) and
the CA maintains a list of revoked credentials (represented
by so called revocation handles) the secure match can be
extended. Before user A matches the received hidden creden-
tial from user B, user A checks if the received credential B is
invalid. Invalid means that the revocation handle computed
from the received credential matches one of the revocation
handles from the publicly available revocation list. This
behaviour is caught by the pattern Credential Revocation.

After a successful matching both parties, user A and B,
own a secret, for instance a key (see key A and key B in
Figure 5), that can be used to secure the further communica-
tion between the two. In order to prove that both parties have
the knowledge of the same key the security pattern Mutual
Key Proof of Knowledge (Mutual Key PoK, PoK) can be
used. The parties exchange encrypted information to prove

their knowledge without disclosing the key directly.1 User
A sends a challenge to user B. The challenge 1 contains
an internal state, e.g., a random number, encrypted with
the key obtained from the secure match (key A). User B
replies with challenge 2: he uses his key B from the secure
match to decrypt the challenge 1, modifies the result (e.g., he
increments the number by 1) and sends this encrypted with
his key B. User A can now verify that user B has obtained
the same key while decrypting challenge 2 with his key
and inversing the operation from user B (e.g., decrementing
the result by 1). If the result is identical to the state used
in challenge 1, user A has proved that B has an identical
symmetric key. To complete the protocol, user A has to reply
challenge 2. User A decrypts challenge 2, modifies the result
in the agreed way and sends back the encrypted result. User
B can now perform the verification on his side.

VI. SECURITY PATTERNS AND INTEGRATION SCHEME

We identified the following four security patterns: Prop-
erty Certification, Secure Match, Credential Revocation and
Mutual Key Proof of Knowledge. The integration scheme
that describes our security solution entirely is named Un-
traceable Secret Matching. In this section, each of them is
defined in detail.

A. Property Certification Pattern
Problem and context: The secret handshake is based on
the mutual verification of user’s properties. In a first step,
the possession of a given property has to be verified by a
Trusted Third Party (TTP). This TTP certifies the property
for an identified user by issuing a credential. In a second
step, each user needs matching values. The matching values
are given by a TTP according to a policy.

Figure 6. UML diagram - Property Certification

Solution: The pattern defines the following operations.
In Figure 6, the interaction between the entities is shown.

• certifyProperty: The input of this operation is the ap-
plication context of the handshake. The context contains

1Depending on the real setup, also other protocols could be used to prove
the knowledge of an identical key. For example, both users could send their
keys to a TTP that verifies the keys and returns the verification result.



Figure 5. Conceptual Model - Matching phase

all information needed to decide about the possession
of a predefined property, e.g., the user’s identity and
the process where he is involved in. The possession
of the user’s property is verified in the given context
and if this was successful, a credential (resp. property
credential) representing the property is returned.

• provideMatchingValues: The input of this operation
is the application context (including user’s identity) of
the handshake. According to the policy, the operation
returns a set of Matching Values.

Roles: The pattern is applied by a Certification Authority,
which grants property credentials to users and provides them
with matching values.
Pre-Conditions:

• The entity applying this pattern is a trusted party.
• A list of properties that can be certified and a policy

how to match the different properties have been defined.
• Communication channels are secured.

Properties: Certification, Policy Enforcement
Features: Revocation Support (optional)
Consequences: The issued property credentials and match-
ing values have been kept secret by the users and stored in
a safe place.

Variants: According to requirements of revocation support,
the created credentials have to carry an identification handle
to support reactive revocation (see pattern Credential Revo-
cation in Section VI-C) or to be time-bound for proactive
revocation.
Relationships: The pattern realizes the initialization phase
of a secret handshake (IS Untraceable Secret Matching). The
second phase - the matching phase - of the secret handshake
is described by the patterns Secure Match and Mutual Key
PoK (see Section VI-B and VI-D).

B. Secure Match Pattern
Problem and context: A user wants to exchange secretly
credentials with another user in order to verify that the other
party possesses a matching property.
Solution: The pattern defines the following operations. In
Figure 7, the protocol between the two parties is shown.

• initiate: An internal state, e.g., a nonce value, is sent
to the other party to initiate the handshake.

• hideCredential: A hidden credential is generated from
the received state and the property credential of the user
and randomized. The result is sent to the other party.

• match: Input of the operation is the received hidden
credential from the other party, the owned property cre-



Figure 7. UML diagram - Secure Match

dential and the matching values. The operation checks,
if the received credentials matches one of the matching
values. The result of the match is a key.

Roles: The pattern is applied by 2 parties (users) who want
to authenticate secretly.
Pre-Conditions:

• The entity applying this pattern possesses a property
credential and a non-empty set of matching values.

• Both parties involved in the match must apply the same
pattern implementation to ensure interoperability.

Properties: Authentication, Property Validation
Features: Untraceability, Key establishment, Fairness, Re-
vocation Support (optional)
Consequences: None
Variants: The pattern Credential Revocation can be inte-
grated to support reactive revocation.
Related patterns: The pattern realizes the matching phase
of a secret handshake (IS Untraceable Secret Matching). The
first phase - the initialization phase - is described by the
pattern Property Certification. The pattern can be extended
by pattern Credential Revocation.

C. Credential Revocation Pattern
Problem and context: It is possible that a (property)
credential becomes invalid (e.g., the credential was com-
promised or a user has to leave a certain group). The user
performing a secret handshake has to know, if the credential
of the other party is valid in order to refuse any interactions
with the concerned users.
Solution: The pattern defines the following operations.

• getRevocationList: Retrieves the list of revocation han-
dles from the CA.

• isValid: The function computes first the revocation
handle from the received hidden credential from the

other party (details of the computation are in [18]). In
a second step, it is verified that this handle is not part
of the revocation list.

Roles: The pattern is applied by a user who wants to verify
if a credential is valid and not revoked.
Pre-Conditions:

• The chosen secret handshake protocol supports revoca-
tion, that means the property credentials granted by the
CA contain identification handles.

• The CA maintains a publicly available list of revocation
handles.

• Compromised property credentials have to be an-
nounced to the CA.

• Dependent on the application context, the CA has
to verify regularly that all group members are still
qualified for group membership and otherwise to add
the non-qualified members to the revocation list.

Properties: Revocation support for secret handshakes
Features: Anonymity and untraceability for valid creden-
tials, traceability for revoked credentials
Consequences: Additional communication effort for the
user to retrieve the revocation list from the CA before per-
forming a secret handshake. Additional computation effort
for the user to perform the operation isValid (computational
cost O(n2 ) in average, worst case O(n)).
Variants: None
Related patterns: The pattern is an optional part of the
Secure Match pattern. The pattern is functional similar to
the security pattern Certificate revocation described in [36].
The difference lays in the revoked objects (certificates vs.
property credentials).

D. Mutual Key Proof of Knowledge Pattern
Problem and context: A user possesses a secret key.
He wants to verify if another user possesses the same key
without disclosing his own key.

Figure 8. UML diagram - Mutual Key PoK

Solution: The pattern defines the following operations. In
Figure 8, the protocol between the two parties is shown.



• createChallenge: A challenge is sent to the other
party, containing e.g., an internal state (random number)
encrypted with the owned key.

• replyChallenge: A received challenge is decrypted
with the own key. An agreed operation (e.g., increment
by 1) is applied to the decrypted value. The result is
encrypted and sent back to the other party.

• verify: The answer to the challenge and the internal
state for the current instance of the pattern are pro-
cessed; this operation returns true in case the two users
indeed share the same key.

Roles: The pattern is applied by 2 parties (users) who want
to verify mutually if they possess an identical key.
Pre-Conditions:

• The entity applying this pattern possesses a key.
• A protocol that specifies how to reply to a challenge is

agreed on both sides.
Properties: Key verification
Features: Non-disclosure of own key
Consequences: The mutual protocol is unfair since one user
knows first if the other party possesses the same key and can
therefore exploit his advantage by not replying his side of
the challenge.
Variants: None
Related patterns: Can be used in the matching phase of a
secret handshake (IS Untraceable Secret Matching).

E. Integration Scheme: Untraceable Secret Matching
This integration scheme describes the full solution made

of a combination of the defined security patterns. It synchro-
nizes the operations among the patterns in order to provide
the desired security solution.

The sequence of the IS operations for the proposed
solution are provided in Table I. We used the keyword roles

of the SERENITY security patterns’ language [4] in order
to separate between the two users of the protocol using the
same security pattern.

The IS contains the security property Mutual Authen-
tication. That means that the complex security solution
provides a mechanism that allows two parties authenticating
each other based on property credentials and corresponding
matching references controlled by a certification authority.

Additional security features of the IS are:
• Untraceability: Consider an adversary with valid prop-

erty credentials and matching references and able to
perform a secret handshake with legitimate users. His
goal is – given any two disguised credentials - to trace
them to having been generated from the same creden-
tial, so as to prove possession of the same property and
at the same time to the same group. The attacker cannot
decide whether there is a property that both credentials
can be matched to.

• Impersonation Resistance: It is computationally in-
feasible for an attacker with valid credentials and

Table I
IS OPERATIONS

Property Certification Pattern ← CA
Secure Match Pattern ← SMP
Credential Revocation Pattern ← CRP
Mutual Key PoK Pattern ← MKPP
SMP ← roles: User1 and User2
CRP ← roles: User1 and User2
MKPP ← roles: User1 and User2
—— Initialization phase ——
CA.certifyProperty(in:Identity1, in:Context1, out:PropCredential1);
CA.certifyProperty(in:Identity2, in:Context2, out:PropCredential2);
CA.provideMatchingValues(in:Identity1, in:Context1, out:MatchValue1[]);
CA.provideMatchingValues(in:Identity2, in:Context2, out:MatchValue2[]);

—— Matching phase ——
User1.SMP.initiate(out:State1);
User2.SMP.hideCredential(in:PropCredential2, in:State1,

out:HiddenCredential2, out:State2);
User1.SMP.hideCredential(in:PropCredential1, in:State2,

out:HiddenCredential1, out:State3);
User1.CRP.getRevocationList(out:RevocationList);
User1.CRP.isValid(in:HiddenCredential2, in:RevocationList,

out:BooleanResult1);
if (BooleanResult1 == true) {

User1.SMP.match(in:PropCredential1, in:HiddenCredential2,
in:MatchValue1[], out:Key1);

}
User2.CRP.getRevocationList(out:RevocationList);
User2.CRP.isValid(in:HiddenCredential1, in:RevocationList,

out:BooleanResult2);
if (BooleanResult2 == true) {

User2.SMP.match(in:PropCredential2, in:HiddenCredential1,
in:MatchValue2[], out:Key2);

}
if (BooleanResult1 == true && BooleanResult2 == true) {

User1.MKPP.challenge(in:Key1, in:State1, out:Challenge1)
User2.MKPP.challenge(in:Key2, in:Challenge1, out:Challenge2)
User1.MKPP.verify(in:Key1, in:Challenge2, out:ProveResult1)
User1.MKPP.challenge(in:Key1, in:Challenge2, out:Challenge3)
User2.MKPP.verify(in:Key2, in:Challenge3, out:ProveResult2)

}

matching references, to impersonate a user owning a
given property credential, which the attacker does not
dispose of and did not steal.

• Detector Resistance: An adversary cannot verify the
presence of a property of his choice without owning the
corresponding matching references. That means that an
adversary with valid credentials cannot find out while
performing a secret handshake if the other party belongs
to a group where he is not a member of.

• Anonymity: The identity of the users applying the
secret handshake is not disclosed until the protocol
was finished and both parties could match the received
credentials with their matching references. The parties
performing the secret handshake stay anonymous until
the protocol was finished with a successful match
on both sides. In cases of unfinished protocols or
unsuccessful matches on one or both sides, both parties
have no knowledge about the other parties’ identity or
properties.



• Resistance to replay attacks: An adversary cannot
successfully perform a secret handshake by repeating
parts of the protocol that was eavesdropped from a
successful handshake between two parties. Nor he can
learn something about the identity or properties of the
other party.

• Revocation support (optional): Property credentials
can be reactively revoked when needed by adding
them to a public available revocation list. Proactive
revocation is possible with the help of time-bound
credentials.

All listed features can be proved formally under the assump-
tion that the Bilinear Decisional Diffie-Hellman (BDDH)
problem is hard (details in [6]).

To provide the complex solution all pre-conditions defined
in the embedded security patterns have to be considered
before the IS can be applied.

VII. ANALYSIS OF SERENITY SECURITY PATTERNS

While applying the SERENITY methodology to the new
area of cryptographic protocols, some advantages but also
some weaknesses of the pattern approach became evident.

The template used for the SERENITY security patterns
allows to describe the security solution in an structured
way, identifying the applying entities, their relationships and
interactions. This goes far beyond the usual used natural
language description, applied e.g., in [36] or [37]. Especially
the description of the pattern solution as sequential flow
of operations is more explicit and closer to a possible
implementation. Therefore it is easier understandable for
application developers used to read and interpret design
patterns. The operations are the link to the other artefacts of
the SERENITY methodology, like Security Pattern Imple-
mentation and Executable Components, which describe the
detailed technical solution and provide the executable code.

In our security patterns, an operation consists often of two
types of activities:

• computation activities like cryptographic computa-
tions or policy evaluations that are executed by the
entity applying the pattern,

• communication activities where input (like parame-
ters) is received from a partner entity or where the result
of the computation is sent out.

A good example is the operation certifyProperty in the
pattern Property certification. The CA applying the pattern
receives the application context and identity from the user
who wants to get a property certified. After successful
validation of the user’s context, the CA sends the property
credential back to this user.

This shows an improvement possibility of the SEREN-
ITY pattern approach. In the pattern description, only the
applying actor is described. This is not sufficient, when
protocols, simple interactions or data exchanges are part of

the security solution. In this paper, we decided to use UML
sequence diagrams to correlate the pattern operations with
the interactions of the different entities.

We could identify a related issue in the integration
scheme, describing the security solution as composition
of several security patterns. The IS operational flow (see
Table I) is not descriptive enough to clearly describe the
information exchange between the involved entity and needs
more details than a simple sequence of operations. The
operations define a number of input and output parameters,
but there is no means to differentiate between a simple
in-/output that is internal to the applying entities or an
information exchange with another entity.

Standard modeling languages, like UML or UMLSec, can
be used to describe the complex data flow and interactions
in the protocols. This has also the advantage that these
languages are well-known by application developers and the
diagrams, e.g., sequence diagrams, are easy to understand.
Information about activities that can be done in parallel,
repeated, omitted or those relying on secure channels can
be easily added.

We propose a conceptional model (see Figures 4 and
5) to visualize the data flow in the security solution. It is
similar to an UML activity diagram and shows the involved
entities applying the different security patterns and pattern
operations as well as the exchanged information.

Another weakness of the security pattern approach is the
pattern selection process. Can an application developer or
architect responsible to implement one of the scenarios from
Section IV identify the right security properties from the
use case description or a specification? Security properties
like ’Mutual Authentication’ with ’Untraceability’ have a
meaning only for security experts. Here, we see the need
to express the security requirements, security properties and
features in a way non-security experts understand.

The problem of the definition of security properties and
features is two-edged. The increasing number of security
solutions as patterns demands a detailed classification of the
security properties and features in order to be able to select
the right pattern for a given problem. On the other hand,
we have the non-security expert confronted with a huge set
of terms related to security. In order to enable these people
to use the security properties to select the right pattern, we
need a clear, unique and understandable definition of each
of them. There should be a catalogue of security properties,
which allows with the help of a taxonomy to navigate in the
property space.

VIII. CONCLUSION

In this paper, we described the Untraceable Secret Hand-
shake protocol as SERENITY security pattern. To our know-
ledge, was this one of the first attempts to describe crypto-
graphic schemes and protocols as formal security patterns



([1] provided the first definition of the Secret Handshake
pattern).

In spite of the discovered weakness of the security pattern
approach in general, the abstract description of the secret
handshake protocols independent of the real algorithms helps
to spread the knowledge in the security community and
also among application developers and architects. Secret
handshakes and secure matching are in general difficult
to understand for non-cryptographic experts. The security
pattern approach makes them available for people without
deep cryptographic knowledge.

Following the SERENITY methodology, each security
pattern has one or more possible implementations (Secu-
rity Pattern Implementations and Executable Components),
which give concrete examples of the security solution in
different environments and show their feasibility.

In our case, we implemented two of the scenarios de-
scribed in Section IV. A first solution is based on the
simulation framework Ptolemy II [38] and implements
the Incompatible chemicals scenario. The simulated sensor
nodes are initialized with the properties credentials for the
liquid in the attached drum and the matching value for all
reactive liquids. When a sensor intersects the wireless range
of a second sensor, the sensors perform the secret handshake
and create an alert when necessary.

The second solution is a Java implementation of the Secret
Interest Groups in the framework for Facebook motivated by
its extreme popularity. The intended use is the following:
a SIG member runs the java http proxy, which intercepts
only requests toward Facebook servers. The proxy modifies
requests and responses, running the secret handshake proto-
col upon membership invitation and chat events; notification
of the success or failure of the protocol is provided to the
user through modifications of the html that is displayed in
the browser. Further details about the implementation are in
[35].

Additionally, we developed in the context of the WASP
project [39] a solution based on web services to mutually
authenticate mobile Wireless Sensor Network gateways with
different backend applications.

The three different implementations proved the feasibility
of the developed security pattern for secret handshakes.
Despite the different development environments, it was pos-
sible to follow the SERENITY approach. In each prototype,
we could identify the described security patterns and their
interactions.

The different developed solutions show also that mutual
authentication with untraceability and attacker resistance is
a recurring security problem that arises in different contexts.
The security patterns captured in this paper represent a
well-proven solution based on the cryptographic schemes
of secret handshakes.

REFERENCES

[1] A. Cuevas, P. El Khoury, L. Gomez, A. Laube, and
A. Sorniotti, “A Security Pattern for Untraceable Secret Hand-
shakes,” in Third International Conference on Emerging Se-
curity Information, Systems and Technologies, SECURWARE
’09, Mar. 2009.

[2] P. El Khoury, M.-S. Hacid, S. S. Kumar, and E. Coquery,
A Study on Recent Trends on Integration of Security Mecha-
nisms, Mar. 2009, ch. Advances in Data Management, special
volume of Studies in Computational Intelligence.

[3] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson,
F. Buschmann, and P. Sommerlad, Security Patterns : In-
tegrating Security and Systems Engineering (Wiley Software
Patterns Series). John Wiley & Sons, March 2006.

[4] G. Spanoudakis, A. Mana Gomez, and K. Spyros, Eds.,
Security and Dependability for Ambient Intelligence. Series:
Advances in Information Security , Vol. 55, Springer, April
2009.

[5] D. Balfanz, G. Durfee, N. Shankar, D. K. Smetters, J. Stad-
don, and H.-C. Wong, “Secret handshakes from pairing-
based key agreements.” in IEEE Symposium on Security and
Privacy, 2003, pp. 180–196.

[6] A. Sorniotti and R. Molva, “A Provably Secure Secret Hand-
shake with Dynamic Controlled Matching,” Proc. of 24th
International Information Security Conference (IFIP SEC),
2009.

[7] A. Mana, C. Rodolph, G. Spanoudakis, V. Lotz, F. Massacci,
M. Molideo, and J. S. Lopez-Cobo, Security Engineering for
Ambient Intelligence: A Manifesto. IGI Publishing, 2007.

[8] D. Vergnaud, “RSA-Based Secret Handshakes,” in WCC,
2005, pp. 252–274.

[9] C. Castelluccia, S. Jarecki, and G. Tsudik, “Secret handshakes
from ca-oblivious encryption,” in ASIACRYPT, 2004, pp.
293–307.

[10] C. Meadows, “A more efficient cryptographic matchmaking
protocol for use in the absence of a continuously available
third party,” Security and Privacy, IEEE Symposium on, p.
134, 1986.

[11] J.-H. Hoepman, “Private handshakes.” in ESAS, ser. Lecture
Notes in Computer Science, F. Stajano, C. Meadows, S. Cap-
kun, and T. Moore, Eds., vol. 4572. Springer, 2007, pp.
31–42.

[12] W. Diffie and M. Helman, “New directions in cryptography,”
IEEE Transactions on Information Society, vol. 22, no. 6, pp.
644–654, november 1976.

[13] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Commun. ACM, vol. 21, no. 2, pp. 120–126, 1978.

[14] S. Xu and M. Yung, “k-anonymous secret handshakes with
reusable credentials,” in CCS ’04: Proceedings of the 11th
ACM conference on Computer and communications security.
New York, NY, USA: ACM, 2004, pp. 158–167.



[15] S. Jarecki, J. Kim, and G. Tsudik, “Beyond secret handshakes:
Affiliation-hiding authenticated key exchange,” in CT-RSA,
2008, pp. 352–369.

[16] G. Ateniese, M. Blanton, and J. Kirsch, “Secret handshakes
with dynamic and fuzzy matching,” in Network and Dis-
tributed System Security Symposuim. The Internet Society,
02 2007, pp. 159–177, cERIAS TR 2007-24.

[17] S. Jarecki and X. Liu, “Unlinkable secret handshakes and key-
private group key management schemes,” in ACNS’07, 2007,
pp. 270–287.

[18] A. Sorniotti and R. Molva, “Secret handshakes with revoca-
tion support,” in ICISC 2009, 12th International Conference
on Information Security and Cryptology, Seoul, Korea, 12
2009.

[19] N. Yoshioka, H. Washizaki, and K. Maruyama, “A survey on
security patterns,” Progress in Informatics, vol. No. 5, pp.
35–47, 2008.

[20] J. Yoder and J. Barcalow, “Architectural Patterns for Enabling
Application Security,” in In Proc. of PLoP’97, 1997.

[21] S. Romanosky, Ed., Security Design Patterns, 2001.

[22] M. Schumacher, Security Engineering with Patterns: Origins,
Theoretical Models, and New Applications. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2003.

[23] E. Fernandez and R. Pan, “A Pattern Language for Security
Models,” in In Proc. of PLoP’01, 2001.

[24] E. B. Fernández, J. Jürjens, N. Yoshioka, and H. Washizaki,
“Incorporating database systems into a secure software de-
velopment methodology,” 19th International Workshop on
Database and Expert Systems Applications, pp. 310–314, 1-5
September 2008, Turin, Italy.

[25] L. Compagna, P. El Khoury, F. Massacci, R. Thomas, and
N. Zannone, “How to capture, model, and verify the know-
ledge of legal, security, and privacy experts: a pattern-based
approach,” in ICAIL, 2007, pp. 149–153.

[26] F. Sanchez-Cid, A. Munoz, P. El Khoury, and L. Compagna,
“XACML as a Security and Dependability (S&D) pattern for
Access Control in AmI environments,” in Ambient Intelli-
gence Developments - AmI.d, Sep. 2007.

[27] F. Sanchez-Cid and A. Mana, “Patterns for automated man-
agement of security and dependability solutions.” 1st Inter-
national Workshop on Secure systems methodologies using
patterns (SPattern’07), 2007.

[28] A. Benameur, P. El Khoury, M. Seguran, and S. K. Sinha,
“Serenity in e-business and smart items scenarios,” Security
and Dependability for Ambient Intelligence, Series: Advances
in Information Security, vol. Vol. 55, 2009.

[29] A. Cuevas, P. El Khoury, L. Gomez, and A. Laube, “Security
patterns for capturing encryption-based access control to sen-
sor data,” The Second International Conference on Emerging
Security, 2008.

[30] P. Busnel, P. El Khoury, S. Giroux, and K. Li, “Achieving
socio-technical confidentiality using security pattern in smart
homes,” The Third International Symposium on Smart Home,
2008.

[31] Europol, Eurojust, T. Van Cangh, and A. Boujraf,
“Wp3-cs2: The Eurojust-Europol case study,” at
http://www.r4egov.eu/resources, 2007.

[32] [Online]. Available: http://www.europol.europa.eu/

[33] COBIS Consortium, “COBIS. FP STREP Project IST
004270,” 2005. [Online]. Available: www.cobis-online.de

[34] [Online]. Available: http://chris.pirillo.com/pownce-social-
networks-arent-identity-networks/

[35] A. Sorniotti and R. Molva, “Secret interest groups (SIGs) in
social networks with an implementation on Facebook,” in SAC
2010, 25th ACM Symposium On Applied Computing, March
22-26, 2010, Sierre, Switzerland, 2010.

[36] S. Lehtonen and J. Pärssinen, “A pattern language for cryp-
tographic key management,” in EuroPLoP, 2002.

[37] C. Steel, N. Ramesh, and L. Ray, Core Security Patterns:
Practices and Strategies for J2EE, Web Services, and Identity
Management. Upper Saddle River: Prentice Hall PTR, 2005.

[38] C. Brooks, E. Lee, X. Liu, S. Neuendorffer, H. Zheng,
and Y. Zhao, “Introduction to Ptolemy II,” in UCB/ERL
M05/21 Heterogeneous concurrent modeling and design in
Java. University of California at Berkeley, 2004, vol. 1.

[39] WASP, “WASP (Wirelessly Accessible Sensor Populations),
IST 034963,” 2006. [Online]. Available: www.wasp-
project.org


