
LWESP:Light-Weight Exterior Sensornet Protocol
∗

Ángel Cuevas, Manuel Urueña
University Carlos III of Madrid
Avenida de la Universidad, 30

28911. Leganés -Madrid- (Spain)
{acrumin,muruenya}@it.uc3m.es

Annett Laube, Laurent Gomez
SAP Labs France, Sophia Antipolis

805, Avenue du Docteur Maurice Donat
BP 1216 - 06254 Mougins (France)

{annett.laube,laurent.gomez}@sap.com

Abstract

Access to Wireless Sensor Networks (WSNs) from exter-
nal applications will become a key aspect in order to suc-
cessfully deploy this technology. This paper presents the
Light-Weight Exterior Sensornet Protocol (LWESP), to en-
able the communication between applications and WSNs.
This protocol is a combination of the Sensor Communica-
tion Language (SENCOMLNG) and the eXtensible Binary
Enconding (XBE32). SENCOMLNG is an XML-based lan-
guage. XBE32 provides an efficient encoding of the SEN-
COMLNG in order to reduce the bandwidth utilization and
the processing cost in the WSN gateways, that in many sce-
narios could also be resource-restricted devices. Finally,
we present a test-bed based on JAVA as well as a compari-
son between our proposal and other solutions showing that
LWESP outperforms all the previous proposals in terms of
bandwidth utilization.

1. Introduction

Wireless Sensor Networks (WSNs) have been told to be-
come one of the key technologies for the near future. They
have focused the interest of both the academia and the in-
dustry due to the wide set of novel applications that can be
developed using this technology. Some of the most inter-
esting fields where WSN can be used are: remote health
control, military, inter-vehicle communication, building au-
tomation, herd control, etc.
In the last five years much research work has explored the
communication stack, from the physical to the application
layer, as well as cross-layer approaches in order to provide
more efficient solutions [5].
It is time to check whether WSN will be the successful com-
mercial technology that has been promised. A key feature

∗This work was supported by the Spanish government through the
Project T2C2 TIN2008-06739-C04-01.

to achieve this goal is to enable external applications to eas-
ily access sensor data. In the literature different approaches
are presented to allow external applications to access sensor
data [1, 3, 4, 6, 8, 9]. In particular, WSNs will become a real
success when business applications (BAs) do massively use
sensor data to streamline business processes.
In this paper we propose a simple XML-based lan-
guage called SENsor COMmunication LaNGuage (SEN-
COMLNG) to communicate applications and WSN Gate-
ways (WSN GWs). This language defines 4 basic opera-
tions for the applications to access sensors data: getData,
setData, monitoring and trap. The first and second ones are
used to retrieve or set a single value from/to a sensor/actor.
The monitor operation is used for obtaining periodical mea-
surements from a particular sensor. Finally, the trap opera-
tion establishes a threshold value on a sensor, which propa-
gates a notification to the application when the threshold is
surpassed. With the combination of these four basic oper-
ations, an application is able to generate semantic informa-
tion out of the raw sensor data retrieved.
Since there are many different WSN platforms, the WSN-
GW is the responsible for translating the SENCOMLNG
messages into the particular WSN platform messages.
Other solutions presented in the literature (using UPnP,
WebServices, XML, etc.) follow a similar approach. How-
ever, they do not take into account the big amount of band-
width and processing resources required for these technolo-
gies, and in many scenarios the WSN-GW will be a resource
constrained device. For instance a PDA acting as a WSN-
GW for a Body Sensor Network that monitors elder people
health.
Having this in mind, we propose a further step in our so-
lution in order to reduce bandwidth consumption and pro-
cessing complexity. By codifying the SENCOMLNG mes-
sages using the eXtensible Binary Encoding (XBE32) [10]
we are able to reduce the bandwidth utilization from a 30%
up to 80% comparing to other solutions, while keeping its
great flexibility, so that any modification in SENCOMLNG
would imply little or no modifications to the XBE32 imple-

978-1-4244-4671-1/09/$25.00 ©2009 IEEE 913

mentation. Therefore, using XBE32 does not reduce XML
flexibility and, at the same time, yields a dramatic reduc-
tion in the bandwidth utilization. Moreover, it is well suited
for processing tasks in limited devices, since XBE32 carries
binary data (short, int, long, etc.) to process the messages
while XML requires a lot of text parsing.
The protocol obtained when SENCOMLNG messages are
encoded using XBE32 is the main contribution of this pa-
per. This protocol is called Light-Weight Exterior Sensornet
Protocol (LWESP).
This paper is organized as follows: Section 2 describes
SENCOMLNG in detail. XBE32 is introduced in Section 3.
In Section 4, LWESP is defined as the combination of SEN-
COMLNG and XBE32. Next, related works are described
in Section 5. The evaluation and comparison of LWESP in
front of other approaches are presented in Section 6. Fi-
nally, Section 7 concludes the paper and indicates future
works.

2. Sensor Communication Language (SEN-

COMLNG)

This XML language has been designed to define the ba-
sic set of operations that can be performed by a sensor, in-
cluding the format for the request, reply and data messages.
By combining some of these basic operations, an applica-
tion can build more complex ones and then extract semantic
information. There are 4 main operations that can be issued
a sensor:

• getData: This operation is used to request a measure-
ment to a sensor (e.g. get a temperature).

• setData: This operation is used to set a register to ac-
tivate some device which could be located in a sensor
or actor (e.g. turn on a led).

• monitoring: This operation is useful when an appli-
cation wants to obtain periodical measurements of the
environment (e.g. obtain the temperature measured by
a sensor every second).

• trap: This operation is related to the notification of
events (similar to the SNMP [7] trap functionality),
for example report an event when the temperature sur-
passes 40 degrees Celsius.

Following, a SENCOMLNG header element, a query
message and a reply operation1 are shown for a better un-
derstanding of the protocol.

1The header element is not included in the reply operation due to space
limitation.

<LWESPv1>
<header>
<msgID> 0x12340000 </msgID>
<srcID> 0xEEEEEEEEEEEEEEEE </srcID>
<dstID> 0x1111111111111111 </dstID>
<tstamp> 7-Jan-2009 12:52:45 (1231329159) </tstamp>

</header>
<monitorStart>
<sensor32ID> 0x11111111 </sensor32ID>
<data>
<dataCat> temp_anyunit (0x00000100)</dataCat>

</data>
<measurePeriod> 1000 </measurePeriod>
<reportPeriod> 8000 </reportPeriod>

</monitorStart>
<LWESPv1>

<getDataReply>
<sensorID> 0x22222222 </sensorID>
<data>
<timeDelta> -10 </timeDelta>
<dataCat> temp_farenheit (0x00000102) </dataCat>
<int32Values> 1352 </int32Values>
<dataScale> -2 </dataScale>

</data>
</getDataReply>

The root of every SENCOMLNG message is the
<LWESPv1> element that specifies the protocol ver-
sion and contains the whole structure. Following, all SEN-
COMLNG messages contain a header structure which is de-
fined with <header>. This element always has 4 different
fields represented with the labels: <msgID>, <srcID>,
<dstID> and <tstamp>.

After the header structure, three different types of oper-
ations can be found: (i) Requests, which are messages sent
from the applications to the WSN-GWs; (ii) Replies are the
answer to the requests, and are sent from the WSN-GWs
to the application and (iii) Data messages that are used in
monitor and trap operations when the WSN-GW sends the
monitor data or the event to the application. Request and re-
ply are synchronous operations, so each request has a reply.
On the other hand data messages are asynchronous and can
be generated at any time.

A request could be composed of more than one opera-
tion. Thus, some overhead is saved because only one header
is used for multiple operations.

The labels that identify each request operation are:
<getData>, <setData>, <monitorStart> and
<setTrap>. All of them are XML elements that contain
different fields depending on the particular operation.

The first field that is found inside any SENCOMLNG op-
eration is the sensor identifier. The label used for this pur-
pose is <sensorXID>, where the X indicates the number
of bits used for the sensor address, being X = 16, 32 or 64.

Following, in all SENCOMLNG message requests, a
data element appears using the label <data> (except in the
trap operations where it is labeled as <thresholdData>
but it contains the same fields). Although this element
has different fields depending on the particular request, all
of them include, the data category field which uses the
<dataCat> label and defines the sensor data measurement

978-1-4244-4671-1/09/$25.00 ©2009 IEEE 914

type that is solicited: temperature, humidity, noise level, etc.
The value inside this field is a number of 32 bits. The first
24 bits identify the data category itself, whereas the last 8
bits indicate the unit used in that category. For instance, in
a get operation requesting a temperature value, the lower 8
bits would specify whether the requested value is in Celsius,
Kelvin or Farenheit degrees (0x01, 0x02 and 0x03 respec-
tively). However, if an application can manage any of the
available units then these 8 bits could be left to 0x00 and
the sensor can provide the value in any unit.

In the getData and monitorStart requests only the data
category field is required within the data element. How-
ever, in a setData operation one value must also be pro-
vided in order to ask the sensor to perform the action re-
quested by the application. The values in SENCOMLNG
can be defined using all the data types provided by XBE32,
which are listed in Section 3. In our testbed, we have used
mainly numerical data using the labels <opaqueXvalues>
where X indicates the number of bytes of the data, and
<intXvalues> where X is the number of bits.
In addition, when an <intXV alues> field appears, the la-
bel <dataScale> could also be used. Then, if in the dataS-
cale field appears a -1 and the provided value in the previous
attribute is 35, the value understood is 3.5. With this sim-
ple label, we avoid the necessity of managing floating point
numbers which could be not available in low-power WSN-
GWs and most sensors.

After the sensorID, in the trap operations, a threshold
type for the event is established. For that we use the label
< op >, that contains a numerical value which is linked to
one of the following operations: >, <, >=, <=, == or
! =. Then, using the field <op> together with the element
<thresholdData> the solution provides enough flexibil-
ity to define a big amount of trap operations. In addition,
if several <thresholdData> are included, complex traps
could be generated.

The monitoring operation needs two more elements:
<measurePeriod> and <reportPeriod>. The first one
indicates the interval when the sensor has to get the mea-
surements and is specified in milliseconds. The latter rep-
resents the interval when the collected measurements must
be forwarded to the application and it is also defined in mil-
liseconds.

Finally any of the requests defined so far can use an op-
tional field labeled as <lifetime> which defines the mil-
liseconds while the request is still valid.

The four main request operations have been already de-
fined, however some other are required for providing a full
functionality. Due to the dynamism of the monitor and trap
operations, a refresh and stop operations are also needed.
The first operation is periodically issued by the application
to let the WSN know that the established monitor or trap
operation still is needed, while the stop operation finalizes a

given trap or monitoring operation. The labels for these two
operations are: <monitorRefresh>, <trapRefresh>,
<monitorStop> and <trapStop>.

There is one reply operation for each of the four
main request operations, labeled as <getDataReply>,
<setDataAck>, <monitorStartAck> and
<trapAck>. Every reply includes the same fields
than its respective request. This provides some negotiation
capability in the interaction between the WSN and the
external application. For instance, an application could
request a sensor to report an event when the temperature
goes over 30.5 degrees Celsius. However, maybe the sensor
resolution is just 1 degree. Therefore, SENCOMLNG
allows the possibility of including the value 30 degrees
in the trapAck, which indicates to the application that the
sensor is going to report events when the temperature goes
over 30. In the case that the reply does not satisfy the
application requirements, the application can just stop the
process.
In addition, to what was explained for the trap and monitor
replies, they include a field labeled as <processID> that
together with the <sensorID> represents a particular
process. This field eases the syntax of the refresh and
stop operations because they only need these two fields,
<sensorID> and <processID>, apart from the header.
Also, an error message for all SENCOMLNG operations is
defined. This error message includes the operation that has
failed and the reason why it failed.
Finally, the last kind of SENCOMLNG messages are
the asynchronous data messages periodically gener-
ated due to a monitor operation, or forwarded when
an event related to a trap operation happens. The la-
bel for the last one is <eventData>, and it includes:
<sensorID>, <processID>, <data> structure includ-
ing <timeDelta>, <dataCat>, XBE32 data type labels
and <dataScale>. All fields have been already described
except the timeDelta label that indicates the difference of
time between the <tstamp> value of the header and when
the sensed data was obtained. This design decision is to
replace the 64-bit long timestamps by 32-bit delta field.
The label for the data from a monitor operation is
<monitorData> and it includes <sensorID>,
<processID> and a set of <data> elements, as many
as measurements are reported. All these data structures
contains a <timeDelta> related to the header’s timestamp
and a value field. The first one, in addition to these two
fields, includes <dataCat> and <dataScale>, that are
also applied to the rest of <data> elements.
In a nutshell, SENCOMLNG allows the applications to
obtain any kind of raw data from a WSN. However, it
is a task of the application, that is supposed to run on a
powerful device, to fuse, combine, etc., the sensor data in
order to obtain the desired information.

978-1-4244-4671-1/09/$25.00 ©2009 IEEE 915

Figure 1. XBE32 TLV FORMAT

3 XBE32 Overview

We defined a binary encoding of the SENCOMLNG with
two main goals in mind:

• We shall codify SENCOMLNG messages being aware
of the bandwidth consumption due to the potential big
amount of data that can be transmitted from WSNs
to the applications. Furthermore, a given WSN could
be connected to many applications and an application
could be connected to many WSN-GWs. Therefore,
bandwidth could be an important limitation of the sys-
tem.

• SENCOMLNG is a very flexible tool that allows to ex-
tend the communication with new sensors in an easy
and quick way. Therefore, the codification used must
allow extending SENCOMLNG in an easy way as
well.

The chosen codification is the eXtensible Binary Encod-
ing (XBE32) [10] which allows implementing a binary pro-
tocol based on SENCOMLNG, being at the same time much
more efficient in terms of bandwidth and processing, and
fully extensible for including future SENCOMLNG exten-
sions.
XBE32 is a simple binary encoding that carries hierarchi-
cal data, thus it is similar to XML. XBE32 elements are
serialized inside TLV structures (Figure 1) which are 32-bit
aligned to ease the parsing process. As data is clearly delim-
ited by length, XBE32 does not require to escape characters
as XML does, thus it also eases message creation.
XBE32 defines two kinds of XBE32 Elements: Attribute
Elements which carry primitive data values, and Complex
Elements which do not carry data by themselves but contain
other XBE32 Attributes and/or other Complex Elements
themselves.
In order to be employed by modern programming lan-
guages, XBE32 uses common primitive data types for its
Attribute Elements, such as Strings, Booleans, Integers,
Floats, as well as Arrays. Other data types can be encoded
using the different binary Opaque value types defined by
XBE32.

The Type field is 16 bits long and describes the process-
ing rules, TLV structure and what kind of data is carried in-
side the Values field. Following, we describe the subfields
inside Type field.

C and E bits: Specify what to do if the type is not
known: continue processing and/or send an error message.

Meta (6 bits): This subfield describes the internal struc-
ture of the TLV’s Values field, as well as the type of the
primitive data it contains. Following the list of Meta Types
is shown:

Type.Meta TLV Values structure
--------- ------------------------------------
0x00-0x1F Multiple variable-length TLVs
0x20 Single variable-length opaque Value
0x21 Single variable-length string Value
0x24 Multiple opaque1 Values
0x25 Multiple int8 Values
0x26 Multiple boolean Values
0x28 Multiple opaque2 Values
0x29 Multiple int16 Values
0x2C Multiple opaque4 Values
0x2D Multiple int32 Values
0x2E Multiple float32 Values
0x30 Multiple opaque8 Values
0x31 Multiple int64 Values
0x32 Multiple float64 Values
0x34 Multiple opaque12 Values
0x38 Multiple opaque16 Values

All Meta types have a self-defined structure except of
those of opaque type. An opaque X value contains any kind
of data having a length of X bytes. This provides high flex-
ibility for protocols or applications that has to use XBE32,
because the opaqueX Meta type offers a container for any-
thing.

Subtype (8 bits): This subfield, together with the Meta
field, identifies the semantic meaning of this TLV and/or
the data carried inside its Values field. Therefore, Subtype
values should be defined by the upper application/protocol
that is employing a XBE32 encoding.

The Length (16 bits) field specifies the size in bytes of
the whole TLV structure, excluding padding.
Finally, the Values field may contain a single variable-
length value, multiple fixed-length values, or other TLVs,
as defined by the Type and Length fields. To properly align
a non-empty Values field to 4-octet words, up to 3 octets of
padding space could be added and filled with zeros.

4 Light-Weight Exterior Sensornet Protocol

(LWESP).

LWESP is a protocol that enables the communication
between a Wireless Sensor Network Gateway (WSN-GW)
and an external application.
After the description of both, SENCOMLNG and XBE32,
it is easy to understand that XBE32 is a suitable codifica-
tion schema for reducing the bandwidth in the communica-
tions that are based on SENCOMLNG. It is only necessary

978-1-4244-4671-1/09/$25.00 ©2009 IEEE 916

a dictionary to map the SENCOMLNG elements to XBE32
types and vice versa. The dictionary has one entry per SEN-
COMLNG label, and follows the notation SENCOMLNG
label = XBE32 Type.
All SENCOMLNG labels that define complex elements
containing other labels will be defined as XBE32 Complex
Types, whereas the rest of the labels that only contain a
value but and not other labels are mapped into Attribute
TLVs. These labels have a type depending on the length
and value type of the contained information. Later, the sub-
type defines the meaning of a given TLV in the context of
LWESP.

5 Related Work

In [9], Vassileios Tsetsos et al, discuss how a Sensor-
Based Services (SBS) model, which combines mobile
telecommunications technologies and WSN, can be real-
ized. In this work the authors defines the Unified Sensor
Language (USL), an XML-based language similar to the
SENCOMLNG. Both languages present similarities since
both highlight the monitor and event operations as crucial
when an application wants to communicate with a WSN.
However, the USL is more complex than SENCOMLNG.
In USL, sensors have to understand requests that include
filter compositions and they claim that in a future the USL
might support complex time-based events like ”if the tem-
perature change rate in a computer room is +3 oC/h, inform
the building caretaker so as to check the air conditioner”.
We believe that this complexity is not feasible nowadays
and not even in a near future, specially because vendors
would need to develop specific sensors for supporting this
complex language. Furthermore, USL does not pay atten-
tion to the possibility of interact with actors, that can be
requested to perform some actions. SENCOMLNG has de-
fined the <setData> operation having this in mind. In
addition, USL does not consider the data category concept,
where it is included or how it is defined, so they assume
that applications and sensors have some previous common
knowledge. Finally, USL does not encode the XML mes-
sages.
On the other hand, the WASP project [3] propose employ-
ing Web Services for communicating business applications
with WSNs via a middleware. Web Services are quite pop-
ular, therefore it facilitates the implementation task. How-
ever, they are costly in terms of processing and bandwidth
consumption, and they can only be considered in the case
when a WSN-GW is a powerful device. Moreover, depend-
ing on the scenario, even with a powerful WSN-GW, the use
of Web Services could create at bottleneck in the communi-
cations due to its high bandwidth requirements.
In the CoBiS project [1], UPnP [2] is proposed to intercon-
nect applications and WSN. It must be highlighted that the

UPnP protocol uses SOAP (Service Oriented Architecture
Protocol) and XML over HTTP. Therefore, the same draw-
backs introduced for the solutions based on Web Services
appear in UPnP solutions.
Finally, there are other solutions [4, 6, 8] that propose dif-
ferent approaches to interconnect applications and WSN.
However a direct comparison between them and our pro-
posal cannot be established since they define an architecture
with intermediate active nodes involved in the path between
applications and WSNs.

6 Performance Evaluation

An XBE32 parser has been implemented in JAVA 2. This
implementation offers an API that includes functions to
convert XML documents to XBE32 using a dictionary, and
the opposite operation, transforming XBE32 messages to
XML documents.
Using this XBE32 implementation, we have deployed a
test-bed to validate and evaluate the LWESP protocol. With
this goal in mind we have implemented the WSN-GW func-
tionality as well as emulated sensor behavior using JAVA.
First of all, we have validated that the implementation of a
new defined protocol as LWESP does not need much devel-
opment time since it is based on XML and codified using the
XBE32 library. But what is even more important, the time
required for updating the protocol to add new label defini-
tions is really short. Any new label only requires appending
a dictionary entry and a small piece of code to process it.

In this section LWESP is compared with other solutions
in order to demonstrate that our proposal has a dramatic im-
pact in the reduction of the bandwidth requirements.
First of all, we want to show the bandwidth saving when
XBE32 is used instead of using directly XML SEN-
COMLNG messages in the communication between the ap-
plication and the WSN-GW. For that we evaluate the num-
ber of bytes needed for requesting a temperature value and
the number of bytes in the reply assuming that a single tem-
perature measurement is digitalized to 32 bits. We used our
JAVA test-bed for evaluating it. The number of bytes of the
SENCOMLNG query is 329 bytes and the SENCOMLNG
reply size is 445 bytes, whereas the same results using
LWESP were 76 and 100 bytes respectively. This leads to a
saving of 77%.
It must be noted that the longer the XML labels are, the
higher the bandwidth consumption using XML is. There-
fore, in order to demonstrate the power of the XBE32 cod-
ification, the size of the SENCOMLNG request/reply was
evaluated using labels as short as possible, that is just 1
character per label name in the best case. In addition, we
evaluate a single request message including a getData, and

2The source code is available at url
http://www.it.uc3m.es/muruenya/xsdf/

978-1-4244-4671-1/09/$25.00 ©2009 IEEE 917

Solution 1 Req. 1 Reply 8 Req. 8 Replies
SENCOMLNG 329 445 1521 2195

1 char label 149 177 565 680
LWESP 76 100 312 440

Table 1. Number of Bytes required for a single getData Re-
quest/Reply and a multiple (8 getData) Request/Reply

when 8 getData operations are included in the same mes-
sage. Table 1 summarizes the results.

Table 1 shows that the use of XBE32 outperforms the
use of XML, even if we assume the case when the SEN-
COMLNG avoids all the blank spaces and uses a single
character per label (which is not a very realistic approach).
Even in this case, the 49% of bytes are saved in the single
request and 44% in the single reply.
In the results related to a multiple request, the first conclu-
sion is that even in large messages, reducing the label size
to the minimum (1 byte) does not surpass the XBE32 en-
coding, that saves a 45% of bandwidth in the request and
more than a 35% in the reply.

Following, we evaluate the LWESP in front of different
approaches. In particular we compare the two possible solu-
tions introduced in this paper, SENCOMLNG and LWESP,
in front of two other approaches: USL [9] and the proto-
col defined in the WASP project [3] based on Web Services
(SOAP over HTTP) already presented in the related works.
To obtain a clear overview of the bandwidth consumption,
the maximum number of messages per second that can be
sent/received using the different approaches has been com-
pared. Moreover, different access technologies have been
used in order to obtain more valuable results. The technolo-
gies utilized and their respective downlink/uplink rates are:
GSM 9.6/9.6 Kbps, GPRS 80/20 Kbps and DSL 1/1 Mbps.
Finally, it must be noted that it has been considered that all
the communications runs over TCP/IP since the Web Ser-
vices approach is using HTTP. Therefore, 40 extra bytes of
the TCP/IPv4 header are added to each message in order to
get more real values.
In order to be fair in the comparison we have used the real
message format for all the solutions. Basically, it was com-
pared the maximum number of request messages per second
that can be received by the WSN-GW when an application
request a temperature to a sensor, as well as the number of
reply messages per second including the sensed temperature
that the WSN-GW can send back to the application. Fur-
thermore, we applied compression to XML and WS mes-
sages using gzip and bzip2, to see if even in such condi-
tions our solution outperforms the other approaches. Fig-
ures 2(a), 2(b) and 2(c) shows the results for GSM, GPRS
and DSL respectively.

Looking at the graphs, LWESP clearly outperforms any
other solution, even if compression is applied to the other
approaches.
In the GSM case, the most restrictive WSN-GW access
technology, LWESP is able to send more than 8.5 reply
messages/second, the double than the following best ap-
proaches, USL and SENCOMLNG compressed with gzip
that send around 4.3 messages/second at the most. The
same result is obtained when looking to the maximum num-
ber of request messages received (downlink), the best re-
sult is over 10 messages/second when LWESP is used, fol-
lowed by the gzip SENCOMLNG solution that is able to
receive 5.27 messages/second. In addition, it must be noted
that compression algorithms have an important processing
cost, specially when the WSN-GW is a low resource de-
vice. Then, if we compare all the approaches without com-
pression, the use of LWESP has a dramatic impact on the
bandwidth utilization, since our solution sends/receives bet-
ween 3 and 5 times more messages/second than any other
approach.

Following, Figure 2(b) shows some similar results when
comparing the different solutions over GPRS. Our proto-
col sends, at least, the double of messages/second, than the
best of the other solutions applying compression, in both
the uplink and the downlink, but this value could reach up
to 5 times more number of messages/second in the downlink
when our solution is compared with the WS approach. In
addition, what is interesting in the GPRS results is to appre-
ciate the difference between the results for the uplink and
downlink. Many deployed access technologies are asym-
metric (GPRS, ADSL, etc.) and generally offer to the users
higher downlink than uplink rate. In our scenarios this im-
plies that a WSN-GW will be able to receive more requests
than replies and data messages it is able to send. There-
fore, when a WSN-GW is using these asymmetric access
technologies, it is clearly limited by the uplink capacity in
sending data to the applications.

Finally, a high rate and symmetric access technology is
shown in Figure 2(c). Again, the comparison among the dif-
ferent approaches clearly presents the LWESP like the best
solution in terms of bandwidth utilization. However, us-
ing an 1 Mbps access link in the worst case, WS approach
without compression, rates over 200 messages/second are
achieved in both the uplink and the downlink. Then in many
scenarios with few numbers of sensors any of the solutions
could be adopted and the bandwidth utilization does not
seem an important issue.
However, nowadays the interest about large WSNs is grow-
ing more and more. Therefore, we can expect in the near
future WSNs with hundreds or even thousands of sensors
deployed in the field. Talking about such number of sen-
sors, the values shown in the Figure, from 200 to 1000 mes-
sages/second could not be even enough, thus the bandwidth

978-1-4244-4671-1/09/$25.00 ©2009 IEEE 918

(a) GSM (b) GPRS (c) DSL

Figure 2. Performance Evaluation with GSM, GPRS and DSL

consumption of the WSN-GW must be taken into account.
Furthermore, if we think in a popular WSN providing a hot-
topic information, not only one but many applications could
request data to that network. Then if there are hundreds of
sensors and hundreds of external users requesting the data,
again LWESP should be the chosen solution.

7. Conclusion and future works

This paper has presented a solution to access sensor data
from external applications in a standard manner without de-
pending on the particular WSN platform. A novel commu-
nication protocol, LWESP, between applications and WSN-
GWs is introduced. This protocol is based on an XML lan-
guage, SENCOMLNG, codified using XBE32. The combi-
nation provides a light-weight protocol retaining the advan-
tages of XML regarding flexibility, extensibility and easy
development. In addition, it reduces the processing com-
plexity and leads to a dramatic reduction of the bandwidth
utilization in the communications.
A test-bed has been deployed in JAVA in order to evaluate
our proposal, and it must be highlighted that updating the
protocol and adding new fields has required little effort.
Furthermore, our proposal outperforms any other proposal
in the literature based on XML, Web Services and UPnP
in terms of bandwidth utilization. LWESP is able to trans-
mit/receive at least two times more messages/second than
any of the other solutions, even if these ones are using com-
pression. In addition, it has been also shown that reducing
the size of the XML labels as much as possible (1 character
per label) still offers worse performance than LWESP since
it saves at least 35% of bandwidth for large messages and
around a 45% for short ones.
On the other hand, SENCOMLNG, the base of this pro-
tocol, has been shown to be an easy and flexible language
for defining WSN-GW messages. The SENCOMLNG mes-
sages define 4 different operations: getData, setData, mon-

itor and trap, that should be easily mapped to most of the
available WSN in the market.

For the future work, we are working on the sensor net-
work side defining an application protocol that can be di-
rectly mapped from LWESP, so that the translation bet-
ween LWESP messages and WSN messages requires low
processing cost. Furthermore, we want to evaluate how
LWESP itself would behave as the application layer pro-
tocol inside the WSN, because if a WSN works properly
with the defined protocol, we could think in an end to end
communication between applications and sensors without
the necessity of translation in the WSN-GW, apart from the
necessary MAC and routing layers adaptations.

References

[1] Cobis project. CoBIs: Collaborative Business Items,
http://www.cobis-online.de/.

[2] Upnp forum. UPnP: Universal Plug and Play,
http://www.upnp.org/.

[3] Wasp project. WASP: Wirelessly Accessible Sensor Popula-
tions, http://www.wasp-project.org/.

[4] K. Aberer et al. Global Sensor Networks. EPFL LSIR-
REPORT-2006-001, 2006.

[5] I. F. Akyildiz et al. Wireless sensor networks: a survey.
Computer Networks, 2002, 38 (4) pages: 393-422.

[6] P. B. Gibbons et al. IrisNet: An Architecture for a World-
Wide Sensor Web. IEEE Pervasive Computing, Oct-Dec
2003.

[7] J. Case et al. A Simple Network Management Protocol
(SNMP). IETF, RFC 1157, May 1990.

[8] J. Shneidman et al. Hourglass: An Infrastructure for Con-
nectiong Sensor Networks and Applications. Harvard Tech-
nical Report TR-21-04, 2004.

[9] V. Tsetos et al. Towards Commercial Wireless Sensor Net-
works: Business and Technology Architecture. Ad Hoc &
Sensor Wireless Networks, 2006.

[10] M. Urueña and D. Larrabeiti. eXtensible Binary Encod-
ing (XBE32). IETF <draft-uruena-xbe32-02.txt> (Work in
progress), September 2007.

978-1-4244-4671-1/09/$25.00 ©2009 IEEE 919

