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This paper presents a novel framework for Data Centric Storage (DCS) in a Wireless Sensor and Actor
Network (WSAN) that employs a randomly-selected set of data replication nodes, which also change over
the time. This enables reductions in the average network traffic and energy consumption by adapting the
number of replicas to applications’ traffic, while balancing energy burdens by varying their locations. To
that end we propose and validate a simple model to determine the optimal number of replicas, in terms
of minimizing average traffic/energy consumption, based on measurements of applications’ production and
consumption traffic. Simple mechanisms are proposed to decide when the current set of replication nodes
should be changed, to enable new applications and nodes to efficiently bootstrap into a working WSAN,
to recover from failing nodes, and to adapt to changing conditions. Extensive simulations demonstrate that
our approach can extend a WSAN’s lifetime by at least 60%, and up to a factor of 10x depending on
the lifetime criterion being considered. The feasibility of the proposed framework has been validated in a
prototype with 20 resource-constrained motes, and the results obtained via simulation for large WSANs
have been also corroborated in that prototype.

Categories and Subject Descriptors: C.2.1 [Network Architecture and Design]: Wireless communica-
tion, Distributed networks

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Wireless Sensor and Actor Network (WSAN), Data-Centric Storage
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1. INTRODUCTION

In this paper we consider a simple framework to build a distributed information delivery
service for one or more applications running over a Wireless Sensor and Actor Network
(WSAN). Each application is modeled as a (randomly) distributed set of producer and
consumer nodes, e.g., sensors or actuators that exchange information by relaying packets
across neighboring nodes. We assume that producer and consumer nodes do not have explicit
knowledge of each other, but are just aware of the name(s) of the application(s) in which
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they are participating. This makes possible to build a highly scalable distributed information
service involving large numbers of producers and consumers.

Data-Centric Storage (DCS) [Shenker et al. 2003; Ratnasamy et al. 2002; Ratnasamy et al.
2003] is an elegant solution to this problem. The key idea is to identify a node in the network,
which will serve as a rendezvous point between producers and consumers associated with
the application. This node is determined by generating a spatial location based on applying
a hash function to the application’s name, and then finding the node in the network which is
the closest to it. Thus producers and consumers, which have knowledge of the hash function
and the application’s name, are able to determine and route to a common rendezvous point
without any additional information. A producer pushes new information to the rendezvous
node, which, in turn, is responsible for storing (and possibly aging) data. Consumers are
able to subsequently pull information from the same rendezvous point.

In this paper we consider a Data-Centric Storage framework where application’s infor-
mation is pushed, stored and/or replicated across a set of rendezvous points. This permits
consumers to pull information from rendezvous points that are closer, thus reducing network
traffic, energy overheads and response times, while also improving fault-tolerance in the case
where nodes fail or run out of energy. Additionally, in order to balance energy expenditures
over time, we study an approach to vary the set of replication nodes over time. Specifically,
we consider the case where nodes can determine the current set of Nr replicas associated
with a given application by generating Nr random spatial locations with a hash function
hash(APP ⊕ epoch ⊕ i) ∀i ∈ [1, Nr], where APP is the application’s name and epoch is a
shared time identifier employed to change replicas over the time. The network nodes that
are the closest to these hashed spatial locations serve as rendezvous (or replication) nodes
for that application. In this setting any producer or consumer that is aware of the applica-
tion’s name, the current time epoch and Nr, can independently determine the location of
the ’nearest’ replication node by determining the minimum distance to the spatial locations
generated by the hash function.

As mentioned earlier, closeness between consumers and replication nodes is beneficial from
the point of view of reducing traffic to consumers, energy expenditures and delay to access
the data. However, if a large number of replication nodes is employed, the production costs,
including the cost to transport and store information across multiple rendezvous nodes
can be high. Thus a key trade-off in our framework is to decide how many rendezvous
nodes should be used. For the case where the hash function results in roughly random
spatial locations, we show precisely how this tradeoff can, and should, be optimized so as
to minimize the total network traffic, in bits·meter/second, and thus, to first order, also
minimize the overall energy consumption of a given application. The optimal number of
rendezvous nodes depends on the ratio of the production intensity to that of consumption,
i.e., is critically dependent on the traffic associated with the application.

In the case where the consumption intensity dominates production one, data is copied
across all replication nodes, whereas in the opposite case producers store data solely at the
closest rendezvous node, and so consumers query all rendezvous nodes for possible data.
The proposed model enables the selection of an optimal number of replicas to minimize the
overall network traffic in both cases.

A node that serves as a rendezvous (replication) point experiences a higher traffic load
associated with supporting consumption and production, and thus its energy reserves are
depleted at a higher rate. This is also the case for nodes that serve to transport information
among replication points. Thus, it is desirable to balance such roles among all of the net-
work’s nodes. To this end, the application’s timeline is subdivided into epochs. During each
epoch a new set of replication nodes is randomly selected. Moreover, in each epoch one can,
not only choose a new set of replication points, but also adapt the number of replicas to
match changes in an application’s production and consumption traffic. The proposed frame-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



A:3

work is thus highly flexible, yet also presents challenges in terms of optimizing adaptation
to application’s traffic.

Finally, we have implemented the proposed framework on a set of 20 motes for the case
where consumption dominates production. Our implementation validates in a real small-
scale deployment most of the expected outcomes from our theoretical work.

Related work.
Data-Centric Storage is inspired by Distributed Hash Table (DHT) mechanisms like the

well-known Chord [Stoica et al. 2001] or KAD [Maymounkov and Mazières 2002]. DHT
solutions are based on a limited ID space shared by nodes and resources. A node finds
its DHT ID by applying a hash function over a key (e.g. the node IP address). Similarly
a resource is assigned an ID following the same operation, but in this case the key is a
property of the resource (e.g. the file name). The closest node (based on its node ID) to
that resource ID is the responsible for storing either the resource itself or a pointer to the
resource. Therefore, when some node wants to find a resource it first looks for the resource’s
ID by sending a query through the DHT that reaches the node responsible for the resource,
which finally replies back to the source node with the resource or a pointer to it.

DCS proposals operate similarly to DHTs. In DCS nodes use a hash function over the
application name or event type (i.e. a resource in DHT) to obtain some coordinates (i.e. the
resource ID in DHT). The closest node to those coordinates is the responsible for storing
and serving the information related to that application (i.e. the responsible node for the
resource in DHT).

In [Cuevas et al. 2010] we presented a detailed survey discussing the main work on Data-
Centric Storage. Next we only discuss related works that are closely related to the contri-
butions of this paper.

The key ideas underlying DCS were first presented in [Shenker et al. 2003] where the
authors introduced Geographic Hash Table (GHT) as the first DCS system. This paper
considers the use of a single replication node.

Approaches using multiple rendezvous (replication) nodes were subsequently proposed
[Ratnasamy et al. 2002][Ratnasamy et al. 2003][Cuevas et al. 2010][Joung and Huang
2008][Ahn and Krishnamachari 2006], yet these studies place replicas in a structured man-
ner, e.g., on a grid, as opposed to our approach based on selecting random locations. For
instance, the authors of GHT proposed the creation of a grid-structured replication mecha-
nism (GHT with multiple replicas) [Ratnasamy et al. 2002; Ratnasamy et al. 2003], in which
the number of cells in the grid follows a geometric formula 4d, where d is the so-called net-
work depth. Thus the number of replicas grows exponentially as 1, 4, 16, 64, 256, etc., which
can lead to poor performance due to the coarse granularity of changes in d. Moreover, this
work does not discuss any solution to find the appropriate number of replicas to be used.

Tug-of-War (ToW) [Joung and Huang 2008] follows the same grid-structured replication
mechanism proposed for GHT with multiple replication nodes. However they provide two
main contributions: (i) a mathematical model to calculate the optimal network depth (d)
based on the application consumption and production traffic; (ii) and the so-called, combing
routing, that takes advantage of the grid replication structure to provide a more efficient
routing to allow replication nodes to communicate among each other.

In [Cuevas et al. 2010] we proposed the Quadratic Adaptive Replication (QAR) system
that is more adaptive than ToW and GHT with multiple replication nodes. It is also a grid-
based replication scheme, but it defines the number of replicas as, Nr = d2, which allows the
number of replicas to grow in a quadratic fashion as 1, 4, 9, 16, 25, 36, etc. We also provide
a mathematical model that leads to the optimal number of rendezvous nodes to be used
based on the consumption and production traffic. We demonstrate that QAR outperforms
ToW and by extension GHT with multiple replicas due to its greater adaptivity.

In [Ahn and Krishnamachari 2006] the authors present a theoretical framework that
defines the scaling laws for DCS in terms of energy burdens and storage. They also provide
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a mathematical model that calculates the optimal number of uniformly deployed replication
nodes to be used in the sensornet. However, they do not validate that theoretical model and
as we will demonstrate in Section 5, using the number of replicas suggested by this paper
leads to a much worse performance than ToW, QAR and Random Replication.

Most of the abovementioned works assume a square sensor field. If the sensor field is not
square, e.g. rectangular or some other irregular shape, the approaches in [Ratnasamy et al.
2002][Ratnasamy et al. 2003][Cuevas et al. 2010][Joung and Huang 2008], could become
much less efficient. By contrast, the approach proposed in this paper using Random Repli-
cation is easily adaptable to any sensor field area, as long as the shape is known a priori by
the network’s nodes. Specifically, random locations can be generated until the right number
lie inside the region of interest.

Therefore, Random Replication is not only simpler and more flexible than previously
proposed approaches, but, also, as it will be demonstrated in the sequel, enables an effective
reduction of network traffic relative to previous work.

The idea of changing the DCS rendezvous point over the time has been mentioned in
[Thang et al. 2006], [Liao et al. 2010] and [Ahn and Krishnamachari 2009]. However, these
works just focus on balancing the storage load and do not take into account energy con-
siderations. In addition, they do not analyze what are the cost and implications of such
changes and how it affects the network performance, as it is done in this paper.

Contributions
To the best of our knowledge, this paper makes several novel contributions to the study

of Data-Centric Storage for Wireless Sensor and Actuator Networks (WSANs).

— We propose STARR-DCS, a Spatio-Temporal Adaptation of Random Replication frame-
work for Data-Centric Storage, which employs sets of randomly located replicas that can
change over the time. The research contributions of the proposed solution rely on three
main axes: (i) a mathematical analysis that establishes the theoretical basis to optimize
the use of STARR-DCS. (ii) A comprehensive evaluation of STARR-DCS in large WSANs
using a simulation environment that allows us to compare STARR-DCS with previous pro-
posals in the literature. (iii) An implementation of STARR-DCS in resource-constrained
commercial motes that demonstrates the feasibility of the different algorithms and proto-
cols designed for our framework.

— Random Replication is a novel mechanism that places replication nodes randomly in
the network. It provides three advantages as compared to previous proposals that use a
deterministic placement of replication nodes (e.g. grid). It is simpler from a computational
point of view, it can be used independently of the network shape, and, more importantly, it
enables using STARR-DCS in networks without geographic information. To the best of our
knowledge all previous multi-replication DCS proposals were designed to work in scenarios
that require geographic information. Finally, our performance evaluation demonstrates
that Random Replication is the most efficient DCS replication mechanism in terms of
traffic overhead.

— We propose and validate a simple model to determine the optimum number of randomly-
placed replicas in order to minimize the overall network traffic and its associated energy
consumption, given the measured intensities for production and consumption of an appli-
cation.

— Starting from the previous model, we perform a mathematical analysis that assesses the
utilization of other resources such as storage, which allows us to evaluate whether memory
requirements are sufficient when multiple applications share network resources, or if the
amount of replication should be constrained due to a limited memory capacity in nodes.

— We propose a simple mechanism to equalize the energy burdens across the network and to
adapt the degree of replication to an application’s (possibly changing) traffic. We achieve
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this by changing replicas over the time, which introduces a number of challenging issues
that have been solved by means of new protocols and algorithms.

— We propose various protocols and algorithms to implement STARR-DCS: (i) We divide
the time into epochs that allow consumer and producer nodes to compute the replication
nodes at any particular time. (ii) We define epoch transitions based on a threshold for the
maximum traffic sent+received by a replication node while playing that role. This further
equalizes the energy consumed by nodes acting as replicas independently of whether they
play such role under a peak traffic period or not. (iii) We propose a mechanism that
allows all nodes that participate in an application to smoothly move from an epoch to
the next one. For that purpose we rely in relative time synchronization (avoiding global
synchronization that is very complex and costly for a WSAN) to establish epoch’s deadline.
(iv) We propose using of a Meta-Information Service that supports all applications running
concurrently in the WSAN. This service enables efficient bootstrapping of new nodes and
new applications, while addressing key fault-tolerance requisites for such networks.

— We simulate STARR-DCS in large WSANs and demonstrate that: (i) Random Replication
is the most efficient mechanism in terms of network traffic, (ii) STARR-DCS in a large
WSAN extends the lifetime at least by 60% as compared to previous proposals in the
literature that rely in static replication points. This enhancement can go up to 10x under
certain conditions.

— We have implemented STARR-DCS on resource-constrained commercial motes to vali-
date the practical feasibility of the proposed framework. In addition, we have performed
several experiments in a 20 motes prototype that validate the main analytical model and
simulation results presented in this paper, and show that they are also applicable in a
small-scale network.

Paper organization. The remainder of this paper is structured as follows: Section 2
presents STARR-DCS and describes its operation in detail. Section 3 describes the imple-
mentation details of STARR-DCS in commercial motes. The analytical model employed
to analyze and optimize resource utilization is described in Section 4. Section 5 compares
the performance of Random Replication versus previous proposals in the literature, and
analyzes the benefits and performance of changing replicas over the time. We describe the
evaluation of STARR-DCS in a real testbed in Section 6. Finally, Section 7 offers concluding
remarks and discusses the promise of the proposed approach.

2. STARR-DCS OPERATION

We begin summarizing the main assumptions made in this paper. The focus is on distributed
applications operating autonomously over a WSAN without external intervention or com-
munication. The name of an application is known by all consumer and producer nodes that
participate in the application. The production events and consumption interests associated
with a given application are assumed to be roughly spatially homogeneous. We consider
a static WSAN that involves a large number of homogeneously distributed nodes, which
transport information by relaying packets across neighboring nodes. Nodes are assumed to
know their spatial location as well as the network operational region, and to be able to
realize a geographic routing service (e.g. [Karp and Kung 2000]) that can unambiguously
route packets to the node that is the closest one to a given spatial location.

Below we introduce the functionality required in our proposal for the case where
consumption traffic dominates production one, see e.g., Figure 1. Suppose that the
application’s name is APP, the current epoch is e and, based on the current ratio of
consumption to production demand (λc/λp) and the network dimensions, the optimal
number of replication nodes is Nr (this will be discussed in Section 4). To simplify the
description, we start assuming that this information is known by every node participating
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Fig. 1. Example of Data-Centric Storage WSAN with 5 randomly-placed replicas.

in a given application.

Random selection of rendezvous point locations. Any node in the network that
knows APP, e and Nr is able to compute the rendezvous points’ locations at any particular
time. For that, a node just needs to compute the following hash operation: hash(APP ⊕e⊕
i), ∀i ∈ [1, Nr] that generates Nr random locations within the network. A hash function
produces as its output a random-like bitstring (e.g. 128 bits) that can be used to generate
one or more coordinates in the physical space covered by the WSAN. For instance, if we
think of a square bi-dimensional surface, we can employ the first half of the bitstring to
compute the X coordinate (by using a modulo operation to map the bits’ value to the actual
network dimension), and the second half to compute the Y coordinate. A similar procedure
could be employed to compute a radius length and an angle in a circular surface. Next,
the closest node to each one of the locations generated using the hash function becomes a
rendezvous node. Note that there are several ways of finding the closest node to a given
location like the one proposed in GHT [Ratnasamy et al. 2003], but for simplicity in this
section we will equivocate the rendezvous nodes with the associated hashed locations.

Producers and consumers functionality. Suppose a producer (consumer) node
generates an event (query) related to APP. Such node must first determine the closest
replication point by computing the Euclidean distance between their spatial location and
that of all replication points obtained from the hash operation: hash(APP ⊕ e ⊕ i), ∀i ∈
[1, Nr]. Once a producer/consumer node determines the closest rendezvous point, it forwards
a message/query to that location, i.e., to the closest replication node ri to its location. In
the consumption case, the rendezvous node just responds with the suitable data to the
corresponding query. This replication location will be used for some time, so producers and
consumers may cache the replication points’ coordinates, avoiding its recomputation for
every query/event associated with APP.
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Creating a tree to replicate data over rendezvous nodes. In case of production
events the next step is creating a radial spanning tree [Baccelli and Bordenave 2007] rooted at
the closest replication node (e.g. r1) over which data replication takes place. Each replication
node can determine the set of replication nodes (if any) to which it should forward new
data. Since all rendezvous nodes know all hashed locations, we can consider, without loss
of generality, the construction of the replication tree from the point of view of any given
rendezvous node as the root node. The root node, r1, manages three sets of replication
nodes:

— C : the set of rendezvous nodes already covered by the replication tree, where initially
C = {r1} (it only contains the root node).

—R : the set of rendezvous nodes to be reached, which initially contains all rendezvous
nodes except the root node: R = {r2, ..., rNr}.

—F : the set of rendezvous nodes to which the current rendezvous node running the algo-
rithm should forward the event, which is initially empty: F = ∅.
The algorithm proceeds as follows: The root node, r1, computes which rendezvous node

in R is the closest one to itself. Suppose it is r2, then r2 is removed from R and included
in both C and F , i.e. C = {r1, r2}, R = {r3, ..., rNr}, and F = {r2}. Next, it computes the
rendezvous node in R that is closest to any node in C. If the shortest distance is between
the root node r1 and r3, then r3 is removed from R and included in C and F . However,
if the shortest distance is the one between r2 and r3, r3 is also removed from R, but only
included in C. The process is repeated until R is empty, at which point F contains all
the forwarding rendezvous nodes of r1. Assuming that each node knows who the root is,
each node can similarly compute their associated forwarding sets F . Note that if the above
distributed mechanism is used, it is possible to obtain a distinct replication tree associated
with each rendezvous node serving as its root. The routing table of a replication node
associated with a given application would have one entry per replication node acting as
the root node for production events, with the associated forwarding nodes F obtained after
running the algorithm. Alternatively, a single tree could be chosen and shared to distribute
events among all replicas.

Alg. 1 exhibits the pseudocode to compute the forwarding nodes of a replication node
ri, assuming a scenario with Nr replication nodes.

Changing the set of rendezvous nodes. We define an epoch as the time between two
consecutive changes in the set of replication nodes. In addition, we consider two events that
could trigger epoch changes: (i) when a node serving as a replication node exceeds a certain
threshold, Eth, on the number of messages sent and received since the epoch started; and,
(ii) just before one of such nodes runs out of battery reserves. Whichever happens first
triggers a change of epoch.

At the beginning of each epoch, rendezvous nodes gather local traffic statistics (num-
ber of messages sent and received, traffic intensity in bits/sec, etc) during a predefined
time interval ∆t. After that time, each rendezvous node broadcasts over its replication
tree (using piggybacking in data packets or dedicated control messages) its local produc-
tion/consumption traffic measurements and its estimate for the residual time of the epoch,
to the remaining replicas. In turn, based on the exchanged estimates, each replication node
computes the minimum estimate for the epoch’s residual time based on a common message
threshold (Eth), along with the number of rendezvous nodes that should be used in the
next epoch, based on the overall measured traffic. It must be noted, that these messages
containing local traffic measurements must be acknowledged by the other replicas, and must
be retransmitted if necessary. In addition, before computing the current epoch deadline and
number of rendezvous nodes for the next epoch, each replica must ensure that it has re-
ceived information from all other replicas (messages containing local traffic measurements)
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Algorithm 1 Replication tree construction algorithm run by replication node ri to know
which are the replicas to whom it must forward production events being r1 the root node.

/* Initial sets from ri */
myself = ri;
root node = r1

C = {r1}
R = {r2, r3, ..., rNr}.F = ∅
/* Algorithm */
while R �= ∅ do

min distance = ∞;
for i = 1 to C.length do

initial node = C[i];
for j = 1 to R.length do

dest node = R[j];
aux distance = distance(initial node, dest node);
if aux distance < min distance then

min distance = aux distance;
initial node selected = initial node;
dest node selected = dest node;

end if
end for

end for
C.add( dest node selected);
R.remove(dest node selected);
if initial node selected == myself then
F .add(dest node selected);

end if
end while

and that its information has been received by all remaining replicas (acknowledgement).
Otherwise, errors in the estimation of the number of replication nodes to be used in the
next epoch could lead to application inconsistencies.

This mechanism to trigger epoch transitions, based on a threshold for the total number
of messages, can adapt to changing traffic characteristics. Thus, an application could suffer
peak traffic periods in which the selected replication set would use short epochs since it
would quickly reach the established message threshold, and for those low-traffic periods
where the epoch duration would be much larger since the replication nodes would take
longer to reach the message threshold. Since the application traffic is evaluated once per
epoch, the framework can adapt to dynamic applications whose spatial traffic intensities
vary over the time.

Finally, when the estimated epoch deadline arrives, current rendezvous nodes know the
locations of the current set, and can also compute the locations of the (different) set of
nodes to be used in the next epoch by using the shared epoch-dependent hash function.
Now each of the current rendezvous nodes needs only to determine which is the closest node
in the subsequent set of replicas (associated locations). Then, such nodes can transfer, in
parallel, their stored data to the new locations. Such messages would notify the recipients
their (new) role as replicas for the application during the next epoch, so they must be
acknowledged.
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Consistent notification of epoch changes to producers and consumers. Once
the current set of rendezvous nodes decides that an epoch change should be initiated,
consumers and producers need to be notified about when this change will be executed and
the number of replicas to be used in the next epoch. This can be achieved as follows. At the
beginning of an epoch, active consumers and producers set a flag in their messages. This
flag indicates to the replication node that this particular consumer or producer does not yet
know the current epoch duration nor the number of replicas for the next epoch. After ∆t,
when current replication nodes have estimated both values, they send a specific message
or piggyback this information back to producers and consumers, respectively. Consumers
and producers receiving the information can then cancel the flag until the beginning of the
next epoch. This simple and robust mechanism does not require rendezvous nodes to know
who the producers and consumers are, thus saving memory and enabling scalability. By
proactively predicting and sharing information about epoch changes, we are able to enable
replicas, consumers and producers to experience a smooth epoch transition.

Meta-Information Service. In order to become a viable solution, STARR-DCS has to
be further developed to address several practical issues:

— Providing a bootstrapping mechanism for finding the current set of replicas for a given
application.

— Providing fault tolerance.
— Providing an initialization mechanism to bring new applications online.

In order to solve the bootstrapping problem when a new node wants to participate as a
producer or consumer in an application, we propose employing a Meta-Information service
where each network application stores its current epoch value and the number of replication
nodes currently in use. Once a new node acquires this information, it can then ask for
detailed information to the current replicas about the time at which the current epoch will
expire and the number of replication nodes to be used in the next epoch, by using the flag
mechanism detailed above. This Meta-Information service is just another application that
may use the proposed replication framework itself.

The question now is how a new node is able to know the current epoch of the Meta-
Information service. A straightforward solution is just flooding the network when a Meta-
Information epoch change happens (e.g. once per hour/day). Since the number of changes
could be arbitrarily low, the energy consumption would be negligible. Then, when a node
bootstraps it can simply ask any of its neighbors what is the current Meta-Information
epoch. Another aspect that should be taken into account is determining how the Meta-
Information service knows that a given application is changing its epoch. The first replica-
tion node (i.e. that one coming from the value i = 1 in the common hash function) could
be the one to notify each epoch change to its closest Meta-Information service replication
node, which in turn replicates the new epoch to the remaining Meta-Information replica-
tion nodes. That is, application’s replicas behave as producers of the Meta-Information
service. It must be noted that messages notifying such epoch changes must be acknowl-
edged because the information is vital to enable new nodes to participate in applications.
Therefore, if the replication node selected to notify the epoch transition does not receive an
acknowledgement, it retransmits it again to the closest Meta-Information service node.

The Meta-Information service can be also employed as a fallback mechanism in case of
replication node failure or epoch de-synchronization. If a node fails accessing its closest
replication node for a pre-defined number of times, it first tries to contact the remaining
replication nodes (sorted by distance) from the current epoch, since these locations can
still be computed locally by the node. In the case the node has suffered an epoch de-
synchronization, it can still contact the Meta-Information service, which replies with the
current epoch and number of replication nodes being used for that application.
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Fig. 2. Different roles that can be performed by a STARR-DCS node.

Finally, we shall define how a new application can be initialized on a STARR-DCS WSAN.
When any of the replication nodes of the Meta-Information Service receives a query from
a new producer node requesting the epoch and number of replicas of an unknown service,
it understands that this application does not yet exist. Therefore it registers the new ap-
plication and assigns a random epoch number and a single replication node to that service.
After that, the Meta-Information node notifies the first application’s replication node that
the service needs to be started, sharing the initial epoch number with both the replica-
tion node and the first producer. From that moment on, any node can start using the new
application.

Figure 2 presents a diagram that summarizes all the functionalities described in this
section, which could be eventually performed by any network node.

Application role in STARR-DCS.
STARR-DCS has been designed to be used by applications of very different nature. Some

generic examples are: applications where consumers just need to retrieve the most recent
event (e.g real-time applications), applications where consumers operate fetching the last
N events (e.g. 1 event from each producer node in the network), or applications where
consumers need to retrieve all stored events (e.g. applications using historical information).
The nature of a particular application will also determine the transition cost between two
consecutive epochs. For instance, if consumer nodes only need to access the last N events,
replication nodes just need to store that number of events, thus the epoch transition cost
is determined by that N value.

In order to properly use STARR-DCS, each application is responsible for adequately
configuring certain parameters of the different players such as: producers’ event rate (if
applicable), consumers’ query rate, number of events retrieved from a query, and number of
events that need to be stored by a replication node. Based on the generated production and
consumption traffic STARR-DCS will establish the optimal number of replicas to be used

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



A:11

and will balance the cost of being replica among all network nodes in order to minimize the
overall traffic and maximize the network lifetime.

Note that a wrong configuration of these parameters could lead to worsen the network
performance due to an unnecessary traffic overhead. For instance, if we know that in a
particular application producer nodes roughly generate 1 event per hour, it does not make
sense to configure consumers to generate 1 query per second because this increases the
traffic load but consumers will gather new data once per hour.

Testing different application types in STARR-DCS is out of the scope of this paper and
we will just select a generic case for our evaluation.

2.1. STARR-DCS without geographic information.

Previous multi-replication DCS proposals [Ratnasamy et al. 2002][Ratnasamy et al.
2003][Cuevas et al. 2010][Joung and Huang 2008] need geographic information since they
rely on a deterministic rendezvous nodes placement that divides the network into regular sec-
tions (i.e. a grid structure). In contrast, an important novelty of the proposed STARR-DCS
framework is that it is also suitable for networks that do not use geographic coordinates.
Our algorithm basically selects random nodes to act as replicas, and this random selection
could be based on a physical location, but it could also rely on random generation of node
IDs. Then, it is straightforward to modify the hash function to compute a particular ID
instead of a geographic location in the network (i.e ID ri = hash(APP ⊕ epoch⊕ i)). The
node with the closest ID to the hash function output would be selected as replica.

Coordinates-free networks need to fulfill two requirements to be able to implement
STARR-DCS:

— The ID obtained from the hash function must be unambiguously assigned to a single
node in the network (i.e. the node with the closest ID). For instance, if the node IDs are
sequentially assigned in the network (e.g. from node 1 to node 100 in a network with 100
nodes) it is straightforward to define a hash function providing an output in that interval,
and thus the replication nodes can be unambiguously identified.

— Consumer and producer nodes should be able to find the closest replication node. That is,
they need to know or be able to compute the distance to all replication nodes. In this case,
the distance metric could be the number of hops. For instance, in a wireless mesh network
that implements a distance vector or a link state routing protocol each node knows all
other nodes IDs and the distance in hops to reach them.

The fact that STARR-DCS can operate in networks without geographic information opens
the possibility of using it in other wireless networks (i.e. wireless mesh networks) different
than WSANs.

In the rest of the paper we will study STARR-DCS under the classic DCS approach that
uses geographic information and geographic routing. This allows us to directly compare our
solution with competing solutions previously proposed in the literature.

3. STARR-DCS IMPLEMENTATION ON COMMERCIAL MOTES

We have implemented most STARR-DCS features on real motes. Our implementation sup-
ports an arbitrary number of replicas that change over the time, and also includes the
Meta-Information service for bootstrapping purposes. Furthermore, replicas are able to ex-
change traffic measurements and compute the remaining time of the current epoch, as well
as the number of replicas for the next epoch. These provide an efficient synchronization
mechanism for all the nodes involved in a particular application: consumers, producers and
replication nodes.

We have implemented STARR-DCS on 20 Jennic motes of two different models: JN-5121
(5x) and JN-5139 (15x). The JN-5139 wireless microcontroller device integrates a 32-bit
RISC processor, with a fully compliant 2.4GHz IEEE 802.15.4 transceiver, 192kB of ROM,
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Fig. 3. STARR-DCS Protocol Header.

96kB of RAM, and several analogue and digital peripherals. The JN-5121 is an older version
that only includes 64kB of ROM.

A node can initially be assigned with one of these three roles: producer, consumer or
relay (in this case it is neither a consumer nor a producer). The role of a particular node is
expected to be specified by the application using the framework.

Producers can generate events via two different mechanisms: (i) at a predefined rate,
e.g. temperature reading every minute; (ii) manually when a button is pressed. Moreover,
the number of data elements per event can be configured by the application (e.g. three
temperature samples per production event). Consumers also generate queries using the same
mechanisms utilized by the producers: at a constant query rate or triggered by pressing a
button.

We implemented a simple greedy forwarding algorithm1 on the motes as the routing layer
to be used by our framework. In order to avoid more complex routing operations (e.g. face
routing), we set up scenarios in which it was feasible to route a message from any source to
any destination node by only using greedy forwarding. In these scenarios, if a node receives
a message and it is closer to the destination coordinates than any of its neighbors, then it
just assumes that is the closest one to the destination coordinates. The mechanism used
to choose the nodes acting as replicas is to select the closest node to a randomly selected
spatial location.

We have defined a common header to be used by all the protocol messages required to
implement the STARR-DCS framework. Figure 3 shows all the different fields included in
the header. Next, we describe each of these fields:

— OPERATION CODE: defines the type of message (e.g., PUT, GET, GET REPLY,
etc).

— FLAGS: is used for special operations, i.e. consumers and producers use one bit in this
field to indicate that they do not yet know when the current epoch finishes and what is the
number of replicas in the next epoch. Another bit is used to request an acknowledgement.

— APPLICATION ID: defines the application that is using the framework.
— DATA TYPE: is used to define the data structure employed by the application,
— LENGTH: indicates how many data structures are included in the message. In the case

of a consumer query, it defines the number of events (i.e. data structures) to be retrieved.
— REPLICA INDEX: identifies (if required) the replication node that is source of the

message (i.e., that information is needed in all replication nodes in order to generate the
replication tree in a distributed fashion).

1We aim to validate the feasibility of STARR-DCS, and greedy forwarding is a simple yet valid routing
protocol to achieve our goal. We could have implemented a more complex geographic routing, but this is
out of the scope of our paper since we do not aim to test the performance of WSNs routing protocols but
the performance of STARR-DCS.
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— EPOCH ID: specifies the current epoch of the source node, which is used for synchro-
nization purposes.

Following, we present all the different message types required in our implementation that
are identified by different OPERATION CODE values:

— PUT: is the message used by producers to send the measured data to the closest repli-
cation node. In addition, it is also used for updating the epoch and number of replicas of
a given application stored in the Meta-Information service. Then, once the replicas have
agreed on the epoch expiration time and the number of replicas in the next epoch, the
first replica (i.e. i=1 in the hash operation) sends a PUT message to the closest Meta-
Information service node, indicating the next epoch ID, the number of replicas in the next
epoch and the time in seconds until the current epoch expires (similarly as it is done with
consumers and producers). Therefore, the Meta-Information service nodes set up a timer
that ends at the end of the current epoch, until that moment they still serve the informa-
tion for the current epoch, after it will start serving the information of the next epoch.
When the PUT message is used to update the Meta-Information service information a
flag is used to indicate that an acknowledgement is required.

— PUT ACK: is the message used to acknowledge a PUT operation that requires a confir-
mation.

— EPOCH ADVERTISEMENT: is used to notify producers the epoch duration and the
number of replicas to be used in the next epoch. Then, this message contains the number
of replication nodes that will be deployed in the next epoch and the time in seconds until
the end of the current epoch.

— GET: is the query message used by consumers to obtain information from the closest
replica. GET messages are also used when a new producer or consumer contacts the
Meta-Information service in order to obtain the current epoch and number of replication
nodes of the application it wants to participate in.

— GET REPLY: is the message that answers consumers’ (or producers’ when using the
Meta-Information service) GET request. It contains the suitable application information
requested by the consumer (or producer). In addition, the information about the epoch
duration and the number of replicas to be used in the next epoch is piggybacked in this
message for consumers.

— REPLICATION: is the message used to replicate the production data received by one
replica in the remaining replicas.

— REPLICATION STATISTICS: is a message used by a replica to send other ones
the consumption and production traffic accounted during the measurement period. This
message is sent through the replication tree and it is retransmitted after a pre-defined
time if some acknowledgement is not received.

— REPLICATION STATISTICS ACK: each replica receiving a REPLICATION
STATISTIC message sends an ACK back to the source node in order to notify that it
received the measurement information. This message does not use the replication tree but
it is sent using a direct path.

— REPLICA INSTANTIATION: when the epoch expires, old replicas send a REPLICA
INSTANTIATION message to the suitable new replication nodes, which become replicas
for the new epoch after receiving this message.

— REPLICA INSTANTIATION ACK: new replicas acknowledge those ones in the
previous epoch that they have been instantiated and they are performing the replica role
in the new epoch.

It must be noted that we have implemented the Meta-Information service in a single
static node and we have checked that the bootstrapping and fault tolerance services work
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fine. Therefore, nodes initialized after the application has run during several epochs are able
to synchronize and normally produce or consume data over the time.

Moreover, our implementation covers a multi-application environment. In particular, we
successfully ran 4 different applications in parallel on our testbed.

4. PERFORMANCE ANALYSIS

In this section we propose a simple stochastic geometric model for the network that permits
optimization of the large scale system’s parameters, i.e., intensity of replication nodes. The
approach follows the seminal work of [Baccelli and Zuyev 1996; Baccelli et al. 1997] and our
own work in applying this methodology to ad hoc wireless networks, e.g., [Baek et al. 2004;
Baek and de Veciana 2007].

The locations of nodes in the Wireless Sensor and Actor Network are assumed to be
fixed, and modeled by a homogeneous spatial Poisson Point Process Πn, i.e., a ‘random’
set of points on the plane, with intensity λn locations per unit area [Stoyan et al. 1995]. A
fraction of those nodes are randomly, independently sampled to serve as replication nodes.
Under these conditions the replication nodes also follow a homogeneous spatial Poisson
Point Process Πr, with intensity λr < λn. Production and consumption events, generated
by some networks nodes, are in turn modeled by independent homogeneous spatio-temporal
Poisson Point Processes Πp and Πc each with intensities λp and λc events per unit time and
unit area respectively. To avoid unnecessary complications, we shall assume that spatial
process Πr and spatial temporal point processes Πp and Πc are mutually independent. Note
this is not the case in reality, since they are connected through the locations of the nodes
Πn in the network. However if λn is high, the impact on our model is minimal– we shall
verify this via simulation and with a small prototype testbed in the sequel. Although the
model corresponds to one on an infinite plane we shall restrict attention to a fixed region
A ⊂ R

2 modeled as a convex set with area A = |A|, and optimize operation on A roughly
ignoring edge effects. On average there are Nr = λrA replication nodes in A.

4.1. Evaluating overall network traffic and energy costs.

Let us first consider the overall network traffic generated by consumption and produc-
tion events on the network. The overall metric here is the total traffic load, measured in
bits·meter/second that need to be supported by the network, i.e. in region A. Recall that in
an ad hoc wireless network traffic load cannot simply be measured in terms of bits/s, but
must also account for the distance packets must travel, since this involves relaying, and thus
resources along the path. Measuring network load in terms of bits·m/s captures the amount
of traffic and the distance that must be traveled. In turn, we assume the power expenditures
for transporting traffic to be roughly proportional to the overall network traffic.

Case 1: Consumption dominates production (λc > λp). We assume consumers retrieve data
from the closest replication node. Thus consumption events can be partitioned based on the
Voronoi tessellation [Baccelli et al. 1997] induced by the replication nodes. The average size
of such cells is 1/λr, the mean number of consumption events in such a region per unit time
is λc/λr. Meanwhile, the typical distance from a consumer to its nearest replication node
can be shown to be 1

2
√

λr
[Baccelli and Zuyev 1996]. Thus the total consumption traffic,

Tc(λr), for the region A is proportional to the number of replication nodes λrA, times
the number of consumers per replication node cell λc/λr, further multiplied by the mean
distance between consumers and replication nodes 1

2
√

λr
, i.e.,

Tc(λr) = αλrA
λc

λr

1
2
√

λr

= αA
λc

2
√

λr

bits·m/s,
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Fig. 4. Consumption, production and overall traffic generated by using different number of replication nodes
(A=1000x1000 m2, N=5000 nodes, α=200 bits, β=100 bits) for the case when consumption dominates
production

where α is a proportionality constant corresponding to the average number of bits per
consumption event that are exchanged between the consumer and its nearest replication
node.

Next, we consider the replication cost when new data is produced. Again new data is
produced on our network at a rate λpA events per unit time. We shall assume that data
associated with each new event is distributed to the replication points in the network along a
radial spanning tree [Baccelli and Bordenave 2007] which includes all the replication nodes.
The total length per unit area for radial spanning trees over a homogeneous Poisson Point
Process can be computed and is close to that of a minimum cost spanning tree. In particular
for a large disc of radius x, the total length for a radial spanning tree centered at the origin
grows as πx2√λr√

2
, so the average length of the tree per unit area is given by

√
λr/2 [Baccelli

and Bordenave 2007]. The total production traffic generated, Tp(λr), is thus given by β bits
per event, times the rate of production events λpA in the network, times the length of the
associated radial spanning tree:

Tp(λr) = βλpA

√
λr

2
A = βA2λp

√
λr

2
bits·m/s.

Note that we have assumed for simplicity that the radial spanning tree is rooted at the
location where the event is produced. Alternatively one could assume that the new event is
first transported to the nearest replication node that then employs a radial spanning tree to
reach the remaining replicas. The replication cost in this second case has a similar scaling.

The total network traffic, T (λr), is thus given by:

T (λr) = Tc(λr) + Tp(λr) = αAλc
1

2
√

λr

+ βA2λp

√
λr

2
bits·m/s.

We can optimize this to obtain an optimal spatial intensity for replicas λ∗
r given by:

λ∗
r =

αλc√
2βAλp

replicas/m2,

and the associated minimum overall network traffic is given by:

T (λ∗
r) = 21/4

√
A

√
(αλcA)(βλpA) bits·m/s.
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Fig. 5. Optimal number of replicas that minimizes the overall number of messages (A=1000x1000 m2,
N=5000 nodes, Tx=50 m)

Remark 4.1. Scaling characteristics. Roughly speaking the optimal average number
of replicas for the network covering an area A is given by:

N∗
r = [λ∗

rA] =

[
αλc√
2βλp

]
replicas, (1)

This only depends on the ratio of the intensity of consumption to production. Thus if one
were to double the intensity of consumption and production for a fixed area, the same
number of replicas would be optimal. If however one stretches the area by a factor of two,
this would decrease the intensity of production and consumption by 2, maintaining the
same ratio, yet the optimal intensity λ∗

r per unit area would also have to decrease by a
factor of 2. Furthermore we note that the overall network load, in bits·m/s scales as

√
A

times the geometric mean of the total rate of consumption, αλcA in bits/s and the rate of
production βλpA in bits/sec. This gives a sense of the growth of overall traffic with network
size. Finally, we must notice that while Eq. 1 may provide a real number for the optimal
number of replicas, in a real scenario we will need to round it to select the actual number
of replicas that will be deployed.

In order to validate this model we have first simulated random realizations of the net-
work and obtained the consumption (Tc), production (Tp) and total network cost (T ) for
different numbers of replicas. Unless otherwise stated, all results correspond to at least 50
simulations of different network realizations where N = 5000 nodes are randomly placed in
a 1000×1000 m2 region. We set β=100 bits, assuming that producers periodically send the
information to the closest replica without any acknowledgment. We set α=200 bits since we
assume that a consumer first sends a query message to its closest replica and then receives
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a reply from it. We show 90% confidence intervals on all graphs unless they are so small
that they cannot be distinguished.

Figure 4 exhibits the overall consumption, production and total traffic measured in
bits·m/s obtained by the model and by simulation for three different (λc,λp) pairs: (50·10−6,
10 · 10−6), (500 · 10−6, 100 · 10−6) and (500 · 10−6, 40 · 10−6) events

s·m2 . The number of replicas
employed varies from 1 to 40. Thus, the optimal average number of replicas for these cases
is 7.07, 7.07 and 17.67 respectively. Figures 4(a) and 4(b) illustrate the scaling properties of
the framework versus the ratio of consumer to producer intensities. Note that both scenar-
ios have exactly the same optimal number of replicas, even though the latter’s application
generates ten times more production and consumption events than the former. It is worth
noting that for applications with a high λc/λp ratio (see Figure 4(c)), there are several
values around the optimal number of replicas that could be employed instead, because they
generate a similar overall traffic.

It must be highlighted that this simple model establishes traffic metrics assuming routes
that follow straight lines. However, WSANs, which are the focus of this paper, are multi-
hop networks where routes unlikely follow straight paths. To that end we have verified that
for networks that have a sufficiently high density of nodes, the optimal number of replicas
obtained by our idealized model reflects the actual optimal number of replicas on a given
network. For this purpose we have simulated a WSAN employing greedy forwarding [Karp
and Kung 2000] and a transmission range Tx = 50 m. We have considered a setup where
the ratio λc/λp varies from 1 to 25.

Figure 5 shows the number of replicas that minimizes the overall simulated traffic based
on the actual number of hops of all messages compared to the optimal number of replicas
suggested by our model. As it can be seen, when there is a low number of replicas, the
model and the simulations are a good match. A small discrepancy occurs for high λc/λp

ratios. However, as mentioned earlier, in the case this ratio is high, the overall cost is not
very sensitive to the precise optimal value for the number of replicas.

Case 2(a): Production-dominates-Consumption (λc < λp) with Data Aggregation. If the intensity
of consumption is low relative to that of production it may be preferable not to copy
data across all replication nodes. Instead producers can store data solely at the closest
replication node. Subsequently consumers should contact all replication points to gather
the information. This could be done in several ways.

First, a symmetric model to that presented in the case of Consumption-dominates-
Production could be also proposed. However, that model would assume that both, queries
and replies, are sent through the replication tree once per branch, as it is done by ToW
[Joung and Huang 2008] and QAR [Cuevas et al. 2010]. This can only be achieved if replies
are aggregated and such aggregation has implications that are beyond the scope of this
paper. In case that such aggregation happens, we present a symmetric model to the one in
the Consumption-dominates-Production case:

Tp(λr) = βA
λp

2
√

λr

bits-m/s

Tc(λr) = αA2λc

√
λr

2
bits-m/s

The overall network traffic is modeled as:

T (λr) = αA2λc

√
λr

2
+ βAλp

1
2
√

λr

bits-m/s
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This can again be optimized to obtain the optimal spatial intensity for replicas λ∗
r given by:

λ∗
r =

βλp√
2αAλc

replicas/m2

and the associated minimum overall network traffic is similar in form to Case 1:

T (λ∗
r) = 21/4

√
A

√
(αλcA)(βλpA) bits-m/s

Case 2(b): Production-dominates-Consumption (λc < λp) without Data Aggregation. Many times
aggregation could be a really complex task since it requires additional state and processing
inside the network. In addition, many applications cannot apply aggregation because they
need all the produced data. For all those cases, we consider an alternative model where
consumers contact all the replication nodes directly.

In this case the overall production traffic is:

Tp(λr) = βA
λp

2
√

λr

bits-m/s

The consumption cost can be modeled using the average distance between any two nodes
of the network

√
A/2, as the distance from a consumer to each replica, times the number

of consumers (λcA) and replicas (λrA). Thus the overall consumption traffic is given by:

Tc(λr) = α(λcA)(λrA)
√

A

2
bits-m/s

The total network traffic is then given by:

T (λr) = αλcλrA
2

√
A

2
+ βA

λp

2
√

λr

bits-m/s

One can again find the optimal replication λ∗
r for this case, which is given by:

λ∗
r =

1
A

(
βλp

2αλc

)2/3

replicas/m2

The associated minimum overall network cost is:

T (λ∗
r) = (βλp)

2/3 (2αλc)
1/3 3A

√
A

4
bits-m/s.

Note that in this regime the optimal intensity for replicas is a more ‘complex’ function,
i.e., cubic of the ratio of production to consumption intensities, yet, in principle, still easily
computable by sensors in real time.

Both models have been validated via simulation. We have used a scenario of area
A=1000x1000 m2 where N=5000 nodes where randomly deployed. We used a factor α=200
bits/query and β=100 bits/event.

Figure 6 exhibits the overall consumption, production and total traffic measured in bits-
m/s obtained by the model and by simulation for the case when aggregation can be used.
Then, three different (Nc, Np) pairs have been evaluated: (10,200), (10, 400) and (10, 700).
They generate the next (λc,λp) pairs: (10 ∗ 10−6,200 ∗ 10−6), (10 ∗ 10−6,400 ∗ 10−6) and
(10 ∗ 10−6,700 ∗ 10−6) events

s∗m2 . The number of replicas employed varies from 1 to 40. Thus,
the optimal average number of replicas for these cases is 7.07, 14.14 and 24.64 respectively.
The model is very accurate to the results obtained via simulation as it was expected since
this model is a symmetric one to the Consumption-dominates-Production case.

In addition, we used the same (λc,λp) pairs to evaluate the Production-dominates-
Consumption model when consumers use unicast routing to access replication nodes directly.
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Fig. 6. Consumption, Production and Total traffic generated by using different number of replication nodes
for the case when Production-dominates-Consumption and the query replies are aggregated in the replication
tree (A=1000x1000 m2, N=5000 nodes, α=200 bits/query, β=100 bits/event).
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Fig. 7. Consumption, production and overall traffic generated by using different number of replication
nodes for the case when Production-dominates-Consumption and consumers directly query all replication
nodes without using a replication tree (A=1000x1000 m2, N=5000 nodes, α=200 bits, β=100 bits).

Figure, 7 shows that again the proposed model is very accurate. As it was expected, when
the replication tree cannot be used, the traffic grows since the routing without aggregation
is less efficient. Therefore, placing new replicas is more expensive, that is why the optimal
number of replicas for the three (λc,λp) pairs are now 2.92, 4,64 and 6.74 respectively. These
numbers are much lower than the optimal number of replicas when the replication tree is
employed in both directions

We can conclude that both models are very accurate and both make sense in practice,
because, depending on the application, the utilization of the replication/aggregation tree
can be feasible or not. If query replies cannot be aggregated, using the replication tree to
forward individual replies is highly inefficient, and the best option is using direct unicast
routes.

4.2. Evaluating storage limits

If multiple applications share the same network storage resources, say a storage capacity of
b bits per node, this may limit the amount of replication one can use. To better understand
this, consider a network where m homogeneous applications, i.e., with the same consumption
and production intensity and data storage requirements, say d, share a network with an
intensity of λn nodes/unit area in region A.

To model memory utilization in replication nodes, suppose a given application selects
the nodes to serve as replication nodes as follows. It generates random spatial locations
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Fig. 8. Maximum number of replicas per application to keep the probability of node saturation below a
10% (A=1000x1000, N=100, b/d=3, δ=0.1).

Πr with intensity λr on the plane, and then network nodes that are the closest ones to
these locations are chosen as replication nodes. Note that if several points in Πr are close
to the same node, then that node is used only once. Let V be a random variable denoting
the area of the Voronoi cell of a typical network node. If at least one point in Πr is in
the Voronoi cell of such node, it is selected as a replica. The probability that the region
with area V = V contains no point from the process a Πr locations, is given by its void
probability p(V) = e−λrV [Stoyan et al. 1995]. So the average probability a typical node is
chosen by an application using an intensity λr for choosing replication nodes is given by:

1 − E[p(V )] = 1 − E[e−λrV ] ≈ λrE[V ] − λ2
r

2
E[V 2] =

λr

λn
− 0.62

λ2
r

λ2
n

where we have used the fact that E[V ] = 1
λn

and also that
√

Var(V ) = E[V ](0.52) [Moller
1994].

Let Xi be a Bernoulli random variable which is 1 if application i uses the node as a
replication site, and zero otherwise, i.e.,

P (Xi = 1) = 1 − E[p(V )] and P (Xi = 0) = E[p(V )].

Suppose a given node has enough storage for b/d different application’s data, then the
probability that it is overloaded is given by:

P (
m∑

i=1

Xi > b/d).

Note that Xi are not independent, because if a cell has a larger area, they are more likely to
be 1. In other words they are only conditionally independent given the area of the cell. To
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estimate the overload probability, we shall still approximate the above sum as a Gaussian
random variable, i.e.,

∑m
i=1 Xi ∼ N(µ, σ2) where µ and σ2 correspond to the mean and

variance of the sum. In particular, as shown above:

µ = E[
m∑

i=1

Xi] ≈ m
λr

λn
− 0.62

λ2
r

λ2
n

.

To compute the variance of the sum we can condition on the size of the cell V to obtain:

σ2 = Var(
m∑

i=1

Xi) = E[Var(
m∑

i=1

Xi|V )] + Var(E[
m∑

i=1

Xi|V ])

= E[mp(V )(1 − p(V )] + Var(m(1 − p(V )))
= mE[p(V )(1 − p(V )] + m2(E[(1 − p(V ))2] − E[1 − p(V )]2).

Further expanding the terms in the previous equation, we obtain:

σ2 ≈ m

(
λr

λn
− 1.9

λ2
r

λ2
n

)
+ m2

(
0.27

λ2
r

λ2
n

+ 1.27
λ3

r

λ3
n

− 1.61
λ4

r

λ4
n

)
.

Now given these results we can roughly assure that the risk of running out of storage
space for a typical sensor is less than δ by requiring that:

P (
m∑

i=1

Xi >
b

d
) ≈ Q(

b
d − µ

σ
) ≤ δ

where Q() denotes the complementary distribution function of a standard Gaussian random
variable. This in turn gives a requirement that

b

d
≥ µ + t(δ)σ

where t(δ) is such that Q(t(δ)) = δ.
This can be interpreted as a constraint on the maximum number of homogeneous appli-

cations one can support, or the maximum replication rate per application one can allow.
In order to validate the model, we have simulated a network where the requirements

on nodes’ storage were fairly high. This is the case where the Gaussian approximation is
effective and the model can provide useful results for network designers. Specifically we have
simulated a network with N = 100 nodes, and varied the number of applications from 8 to
20, and the number of replicas per application from 1 to 20. We consider the case where
b/d = 3, i.e., a node can simultaneously support at most 3 applications. For each scenario we
have evaluated the maximum number of replicas each application could use while ensuring
that a typical node’s saturation probability is lower than δ = 0.1 both via simulation and
with our analytical model. Figure 8 shows that the storage model and the simulation results
are very close, showing a difference of just 1 replica in most cases. Moreover, it must be
noted that the model is conservative, since it provides a lower value than the simulation,
which is desirable for safe network design.

The importance of these results is as follows. When multiple applications share the net-
work infrastructure, our analysis shows that depending on the production and consumption
intensity they may choose to use a large number of replicas. However in doing so, it may
require replicas to store more data than they are in fact capable of. So in practice the
intensity of replication associated with multiple information services sharing the network
may need to be limited, to preclude this overload from happening.
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4.3. Cost of changing the set of replication nodes to balance network loads.

We have argued that it would be worthwhile to periodically change the set of nodes where
data is replicated. The cost of moving from one set of replica nodes to another should be
relatively low since this is a highly-parallel distributed process. In particular, suppose the
current intensity of replicas is λc

r and we wish to move to a new set of randomly-located
replicas with intensity λn

r . Note that the new set of replicas does not need to have the same
intensity as the current one. Also suppose each replica node currently holds an average
amount of data s.

A rough estimate of the energy cost associated with moving data from the current set of
replication nodes to the new one Tr(λc

r , λ
n
r ), can be evaluated as follows. Each old replica

would contact one of the new nodes. Given that the distance to a new randomly located
replica from one of the current nodes is 1

2
√

λn
r

the total cost in a network of area A would

be roughly:

Tr(λc
r , λ

n
r ) =

s

2
λc

rA√
λn

r

. bits·m

So if λn
r = λc

r the cost is Tr = s
2

√
λr bits-m. If the set of replication nodes changes in-

frequently, then the contribution to the overall network traffic and energy consumption of
changing the set of replicas would be fairly small. However this does depend on λr and the
frequency of such updates. We shall consider this in more detail in the next section.

4.4. Is broadcasting preferable?

Note that, if the intensity of consumers is very high, producers could be tempted to simply
broadcast new data to all nodes in the network. The overall traffic, Tb associated with
broadcasting to all nodes in the network, N = λnA, can be modeled based on the length of
the radial spanning tree reaching all nodes (some of which would be consumers):

Tb = βA2λp

√
λn

2
bits-m/sec.

Under this simple model, broadcasting would be favorable only if:

T (λ∗
r) > βA2λp

√
λn

2

which is equivalent λn < 4λ∗
r . Thus, unless the optimal number of replicas is very high (i.e.

on the order of 1/4 of the total number of nodes in the network), brute force broadcasting is
not likely to be efficient. Note that this does not account for the so called wireless ”broadcast
advantage” whereby a node can send data to multiple nodes in a single transmission, and
perhaps more efficient methods of realizing and modeling broadcasting. Still the key here
is that the optimal number of replication points would have to be very high indeed if
broadcasting were to become more efficient than STARR-DCS.

5. STARR-DCS EVALUATION: A SIMULATION STUDY IN LARGE WSANS

In this section we consider two questions: (1) how selecting rendezvous nodes’ locations at
random compares to previous grid-based and uniform-based proposals; and (2), whether it
is worthwhile to change the set of rendezvous nodes over time considering the associated
overheads. We have developed a custom simulator that provides more scalability than stan-
dard ones, since it does not simulate wireless communications (i.e. PHY and MAC) other
than transmission range. The use of this simulator allows us to easily test STARR-DCS in
large WSANs scenarios containing thousands of nodes.
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Fig. 9. Random vs. ToW, QAR, Scaling-Laws, GHT and GHT with multiple replicas for λc > λp

(A=1000x1000 m2, N=5000 nodes, Tx=50 m, α=200 bits, β=100 bits)

.

5.1. Random vs. grid-based and uniform replica allocation

5.1.1. Evaluation of network traffic costs. We have compared Random Replication that is the
replication mechanism used in the proposed STARR-DCS framework with those proposals
in the literature that are similar for Consumption-dominates-Production and Production-
dominates-Consumption cases.

Consumption-dominates-Production:
For this traffic pattern (λc > λp) STARR-DCS can be compared to: ToW [Joung and Huang
2008], QAR [Cuevas et al. 2010], Scaling Laws [Ahn and Krishnamachari 2006], the original
GHT proposal [Shenker et al. 2003], which uses a single replication node, and GHT with
multiple replication nodes [Ratnasamy et al. 2002; Ratnasamy et al. 2003]. For the last case,
since the authors do not propose any way to obtain the number of replicas to be used, we
select the same number used in ToW since both works are grid-based and use the same 4d

geometric formula for the number of rendezvous nodes.
In order to compare these approaches, we ran simulations for a large WSAN with the

following characteristics: an area A = 1000 × 1000 m2, N = 5000 nodes, transmission
range Tx = 50 m and λc/λp traffic ratio ranging from 1 to 40. For each λc/λp ratio we
have simulated 50 scenarios to estimate the mean network cost realized by the different
replication approaches and different λc/λp ratios. In order to get meaningful results, we use
the number of hops traversed by all messages as the measure of overall traffic cost.

Figure 9(a) shows the overall network cost for all the analyzed approaches. Although the
figure clearly shows that Random Replication is more efficient than GHT, Scaling-Laws and
GHT with multiple replicas, it is not easy to discern what the difference between Random,
QAR and ToW is. Towards this end, Figure 9(b) shows the network traffic improvement
achieved using Random Replication as compared to the competing approaches (i.e. the extra
traffic generated by the other proposals), and Figure 9(c) depicts the number of replicas
used by each approach for each particular λc/λp ratio.

Random Replication reduces the overall traffic by an average of 137% compared to GHT,
39% compared to Scaling Laws, 21% compared to GHT with multiple replication nodes,
4% compared to ToW and 1.5% compared to our previous QAR proposal. Moreover, this
improvement reaches peaks around 50% when compared to Scaling Laws and GHT with
multiple replicas, 15% to ToW and 7% to QAR.

Production-dominates-Consumption:
Only ToW [Joung and Huang 2008], QAR [Cuevas et al. 2010] and the original GHT pro-
posal [Shenker et al. 2003] with a single replica address scenarios where production traffic
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Fig. 10. Random vs. ToW, QAR and GHT for λp > λc (A=1000x1000 m2, N=5000 nodes, Tx=50 m,
α=200 bits, β=100 bits)

.

dominates consumption one (λp > λc). In addition, ToW and QAR assume aggregation
in the replication tree. Therefore, in order to establish a fair comparison, we also assume
aggregation in our solution. We use the same simulation parameters as in the previous case,
but now the ratio λp/λc is the one ranging between 1 and 40.

Figure 10(a) shows the overall network cost for all the analyzed approaches. Figure 10(b)
illustrates the network traffic improvement achieved by using Random Replication instead
of the other approaches (i.e. the extra traffic created by the competing solutions), and Figure
10(c) depicts the number of replicas used by each proposal for each particular λp/λc ratio.

As it has happened in the previous case, Random Replication is the most efficient mech-
anism in terms of minimizing network traffic. In particular, Random Replication reduces
the overall traffic by an average of 37%, 2% and 1% as compared to GHT, ToW and QAR,
respectively. In addition, we can find peaks that report a traffic reduction above 10% when
Random Replication replaces ToW and QAR.

The main reason why our solution achieves a better performance in both cases, is that
it allows a finer granularity because the number of replicas being used can adapt better to
application traffic load. That is, with Random Replication the optimal number of replicas
grows linearly, whereas ToW and GHT with multiple replicas employ a 4d geometric growth
and QAR a quadratic one (see Figure 9(c)). For instance, in some cases ToW must choose
between 16 or 64 replicas, where none of them is a good fit for the scenario of interest.

5.1.2. Further benefits of Random Replication. Surprisingly, our results show that Random
Replication is the approach best minimizing the overall network traffic. It improves all pre-
vious approaches in the literature that are based in deterministic placement strategies like
grid or uniform replication. Moreover, there are further reasons that make Random Repli-
cation a better option for DCS: (i) generating random locations is easier than computing
a grid division to later allocate the replicas as required by QAR and ToW. (ii) Random
Replication is flexible to be used under different network shapes (e.g. circular, irregular,
etc), whereas ToW and QAR are only applicable to shapes that can be easily divided into
regular grids (e.g. squares or rectangles). (iii) More importantly, Random Replication is
suitable to be used in scenarios where geographic coordinates are not available as described
in Section 2.1.

In a nutshell, Random Replication is simpler, more flexible to different network shapes,
adaptable to networks without geographic information and more cost-effective. Therefore,
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these benefits validate our option of proposing Random Replication as the replication algo-
rithm used in STARR-DCS.

5.2. Changing replicas over the time

Nodes selected as rendezvous nodes (and those close to them) will naturally expend more
energy than other nodes. Thus, if the responsibilities of nodes do not change, those nodes
are most likely to run out of energy reserves first. In [Shenker et al. 2003], [Ratnasamy et al.
2002], [Ratnasamy et al. 2003], [Cuevas et al. 2010] and [Joung and Huang 2008], when this
happens, an alternate node close to the previous replication point is selected as the new
rendezvous node, until its battery expires, and so on. After some time, routing (and sensing)
holes will be created around the original replication coordinates, affecting the routing of the
whole network.

If replication points change over time, the extra energy expenditures associated with
rendezvous nodes can be balanced across all nodes in the network, thus extending the
network’s lifetime, and avoiding the creation of routing holes. In addition, although moving
replication points has an associated overhead, this does not mean that network energy
expenditures become higher than keeping rendezvous nodes static. Indeed, when replication
nodes are kept static, longer paths will be required to avoid routing holes, which in turn
will consume more energy. In this section we demonstrate that routing holes can have more
impact on the overall network energy expenditures than the cost of changing the set of
rendezvous nodes over time.

In order to verify the abovementioned statements, we ran simulations comparing ToW
[Joung and Huang 2008] that uses static replicas (ToW-static) with STARR-DCS, where
the set of replication nodes changes over the time.

We use a grid-based node deployment (which makes energy maps generation easier) with
N = 900 nodes, over a square of area A = 300 × 300 m2. Each node has a transmission
range Tx = 30 m. In this case we evaluate the scenario where consumption dominates
production (λc > λp). We use the number of messages in the network as a first order proxy
for consumed energy. A sensor node’s energy is depleted once it sends and/or receives one
million messages. Finally, the threshold that determines the end of an epoch, Eth, is set to
300000 messages (30% of the battery) 2.

For these simulations we have used geographical routing based on greedy forwarding
[Karp and Kung 2000]. When greedy forwarding fails, e.g. due to routing holes, we use the
shortest path from the node where the greedy forwarding stopped to the destination node.3.

Time is measured in cycles in order to scale the simulations and be able to deploy a larger
number of nodes. A cycle is the time period in which every consumer node performs one
consumption event and every producer node generates a production event. Since energy is
measured in terms of messages, the traffic is measured in messages/cycle. We deploy 300
consumers (Nc), which means 300 queries and 300 replies per cycle, and 100 producers (Np)
that generate 100 production events per cycle. The consumption to production traffic ratio
results in an optimal number of replicas equal to 4 for both ToW and STARR-DCS.

In order to measure the cost of an epoch change, we assume that the produced data
has a mean lifetime of L cycles. Then, the average data stored at each replication node is
d = NpL messages. L is set to 10 cycles for these simulations, thus the replication change
is costly, because it means that 10 messages per producer are moved from the old replicas

2We also ran experiments for Eth = 100000, Eth = 500000 and Eth = 700000 messages, and in all of them
changing replicas clearly outperformed the static solution.
3We do not implement the face routing facility of GPSR due to its complexity. We used a shortest path
approach to overpass the routing holes instead. Both of them lead to very similar paths in our simulation.
Thus we meet our goal of comparing the effect of changing replication nodes position over the time instead
of keeping them static.
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(a) ToW-Static after
30K cycles

(b) STARR-DCS after
30K cycles

(c) ToW-Static after
50K cycles

(d) STARR-DCS after
50K cycles

Fig. 11. Energy map from the number of messages sent and received by all nodes of the network
(A=300x300 m2, N=900 nodes, Tx=30 m, Np=100 producers, Nc=300 consumers, L=10 cycles, M=1000
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30K cycles
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(c) ToW-Static after
50K cycles
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(d) STARR-DCS after
50K cycles

Fig. 12. Distribution of the number of messages per node (A=300x300 m2, N=900 nodes, Tx=30 m,

Np=100 producers, Nc=300 consumers, L=10 cycles, M=1000,
messages

epoch transition
, Battery = 106 messages,

Eth=3*105 messages).

to new ones. By having 100 producers, this means a total cost of M=1000 messages per
epoch change.

Figure 11 shows the energy distribution map after a simulation time of 30000 and 50000
cycles. Figure 12 shows the number of messages sent and received by each node at the same
cycles, as well as the mean and median values per node and the total messages sent and
received in the whole network, which roughly captures the total energy consumed by the
network.

As seen in Figures 11(a) and 11(c), keeping static replication points creates routing holes
in the network, with 93 and 247 expired nodes after 30000 and 50000 cycles respectively.
The number of battery depleted nodes are only 0 and 17, respectively, when replication
nodes are changed over the time, that is, when STARR-DCS is in place. Furthermore,
simulation results obtained later in time (70959 cycles) show that ToW-static network is
eventually disconnected, because holes become very large and coalesce. In addition, more
nodes participate in the network operation when STARR-DCS is used. As shown in Figure
12, all nodes except 18 (2%) after 30000 cycles and 15 (1.7%) after 50000 cycles, have
sent and/or received at least one message, whereas in the case of ToW-static more than
200 (22%) nodes have not sent or received any message after 30000 cycles, decreasing to
160 (17.8%) nodes after 50000 cycles. When considering the total energy consumed by the
network, STARR-DCS uses just 0.8% more energy than the static one after 30000 cycles.
However, 3.3% extra energy is required by the static approach after 50000 cycles. This
shows that the cost of using longer routing paths eventually exceeds that of changing the
rendezvous nodes over time.
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Table I. WSAN Lifetime ToW-Static vs STARR-DCS for λc > λp

Lifetime 1st 1% 10% 25% 40% 10% 25% Network
Criteria dead dead dead dead dead cons+prod cons+prod disconnection
ToW-Static (cycles) 2619 7328 29086 47830 63230 31668 47984 70952
STARR-DCS (cycles) 31199 41124 66750 87968 101523 65171 79717 170950
Improvement(%) 1091% 461.2% 129.5% 83.9% 60.6% 105.8% 66.13% 140.9%

Table II. WSAN Lifetime ToW-Static vs STARR-DCS for λp > λc

Lifetime 1st 1% 10% 25% 40% 10% 25% Network
Criteria dead dead dead dead dead cons+prod cons+prod disconnection
ToW-Static (cycles) 8341 10518 53140 84625 109070 51491 82987 105310
STARR-DCS (cycles) 78941 109034 160851 192810 231511 141823 164982 327523
Improvement(%) 846.4% 936.6% 202.7% 127.8% 112.3% 175.4% 98.8% 211.0%

In Table I, we compare the network lifetime using both approaches: ToW-static and
STARR-DCS. Since lifetime can be defined using different metrics [Dietrich and Dressler
2009] (first node running out of battery, some percentage of nodes running out of battery,
important nodes like consumers and/or producers running out of battery, some part of
the network disconnects and many messages are lost, etc), we provide a broad overview
of metrics to let the reader establish a fair comparison depending on the criterion used to
define the network’s lifetime. The table shows the number of cycles spent until each lifetime
criterion is reached. For all the criteria our solution extends the network’s lifetime by at
least 60%. We note that in many cases changing replicas over the time and using Random
Replication extends the network’s lifetime by a factor of 2x.

In order to demonstrate that the benefits exhibited by STARR-DCS when Consumption-
dominates-Production also apply to the opposite case, Production-dominates-Consumption
(λp > λc), we have repeated the same experiment using the same configuration, but now the
network has 300 producers and 30 consumers that generate 1 event/query per simulation
cycle. This makes ToW and STARR-DCS to use 4 replicas as in the previous case. Table
II shows the network lifetime for both solutions. The lifetime extension shown by STARR-
DCS is again huge as compared to the static ToW solution. It ranges between 2x and 10x
depending on the chosen criteria.

Finally, Figure 13 shows how using a message threshold to trigger epoch changes com-
pares to employing a fixed epoch duration as proposed in [Thang et al. 2006] (note that
this work actually refers to a single rendezvous node scenario and it proposes to change
motivated by storage saturation instead of energy issues). We simulate a large (N=5000
nodes, A=1000× 1000 m2, Tx=50 m) multi-application WSAN with Random Replication.
We set up m=5 heterogeneous applications with (20, 40), (60, 120), (100, 200), (140, 280)

and (180, 360), (production-events
cycle , consumption-queries

cycle ) pairs, calculating the network’s

lifetime (1% of nodes expire) for both the two dynamic approaches versus using a fixed
static set of randomly located replicas. Again the need for changing replicas over the time
versus using static ones is clear. In addition, as seen in the figure, our proposal to trigger
epoch changes based on message counts is more robust to the precise setting of the message
threshold than using a fixed epoch duration. That is, the set of values providing good values
of network lifetime represents a very small window when employing fixed epoch duration
whereas our solution shows a larger window to choose a message threshold value leading
to a good network lifetime. In addition, as it has been already mentioned in the paper,
the proposed message threshold mechanism equalizes the energy consumption of replication
nodes independently on the traffic load associated to a particular epoch. That is, epochs
during high traffic period will be much shorter than epochs happening under low traffic
patterns (e.g. night).
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Fig. 13. WSAN lifetime comparison (A=1000x1000 m2, N=5000 nodes, Tx=50 m, L=10 cycles, m=5
applications, Battery=106 messages). X axis refers to the cycles for changing the epoch in the fixed duration
approach, or the message threshold.

5.3. Epoch duration analysis

We have demonstrated that changing replication nodes over the time leads to a huge im-
provement. In addition, we have also shown that using a message threshold to trigger epoch
changes is a robust and fair mechanism (i.e. the cost of being replica does not depend on
the traffic load in a particular epoch). However, the selection of a higher or shorter message
threshold directly affects the epoch duration. For instance, if we consider an application
with a constant rate for all producer events and consumer queries, all epochs’ duration will
be the same. Therefore the selected message threshold defines the epoch duration.

Thus the next question is whether it is better to use shorter or longer epochs. At first
glance, the best solution seems to be using short periods so that the load is better spread
among the nodes. However, as we have already seen, there are some overheads associated
with epoch transitions, such as moving all stored data in the current replicas to new ones.
Considering this trade-off, using shorter epoch periods will lead to balance the energy con-
sumption among the nodes, thus reducing the energy consumption variance per node, but it
would also increase the average energy expenditures per node, which means increasing the
overall energy expenditure. By contrast, using longer epoch periods increases the variance
energy consumption since nodes will keep being replicas for longer time, but it will reduce
the overall (average) traffic on the network.

Thus the key of this trade-off is determining how much extra energy should be spent to
balance the energy among the nodes. The decision depends on each particular application.
For instance, for an application where all nodes are needed, so that all of them should kept
alive together in order to allow the application to work properly, (i.e. extend the time when
the first node runs out of battery) the right selection is to balance the energy as much as
possible, by means of using short epochs (i.e. low message thresholds). Of course the price
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Fig. 14. Epoch duration analysis (A=300x300 m2, N=900 nodes, Tx=30 m, L=10 cycles, Simulation
Time=50000 cycles).

of doing so is that a lot of extra energy is required for those frequent epoch changes. Thus, if
the application requirement is to reduce the overall energy consumption, then very frequent
changes would be a poor choice.

To evaluate this trade-off we have run simulations in a WSAN with the same simulation
parameters used in the previous section. That is, a grid deployment in an area A=300x300
m2, where Ns= 900 nodes. Nc=300 consumers and Np=100 producers are supported with
a transmission range Tx=30 m. Ten messages per producer are stored in the replicas (L=10
cycles and each producer generates 1 message per cycle). It must be noted that L, along
with the production rate, are the factors that establish how costly an epoch transition is in
terms of energy. Finally, we use the number of messages sent and received by each node as
an approximation of the energy consumed by the network.

We evaluated the network performance using different fixed epoch durations: 10, 100,
200, 500, 1000, 5000, 10000 and 50000 cycles per epoch. For each case we ran the simulation
for 50000 cycles, resulting in a range of 5000 epoch changes to none. For each epoch’s
duration we ran 50 simulations over which we averaged the performance. Note, that nodes
do not run out of energy in this experiment, so no routing holes are generated, and that is
why in terms of traffic overhead, the best option is not having changes. However, as it was
previously demonstrated the need for longer routing paths could have a larger impact on
the traffic overhead than the change of replication nodes over the time.

We use the Fairness Index (FI) [Jain et al. 1984] as a measure of how well balanced the
energy consumption is across the nodes for different epoch durations. FI goes from 0 (lowest
fairness) to 1 (highest fairness) and it is defined as:

FI(x1, ......, xn) =
(
∑n

i=1 xi)2

n
∑n

i=1 x2
i
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Fig. 15. STARR-DCS prototype using 20 motes emulating a 200x200 square meter network

.

where xi represents the number of messages sent and received by node i. In addition, we
measure the relative energy expended in the network for different epoch durations (more
or less changes during the simulation time) compared to the minimum energy case (i.e.
no changes). Figure 14 shows the FI and the relative energy consumed for different epoch
durations on a logarithmic scale.

As we expected, the lower the number of cycles per epoch (the more epoch changes) the
better the network fairness, but the greater the overall energy required. However, there
exists a region, around 500 cycles per epoch (between 2.5 and 3 in the x-axis in the figure),
where the extra energy consumed is not that big, below 5%, and the FI is good (>0.75).
This operational regime heavily depends on the value of L, which impacts the overhead
associated with epoch changes. If L is low this region moves to the left, resulting in a better
FI and a lower energy requirement. However, if the transition cost is very high, the region
with a low energy demand (compared to the best case) will move to the right, producing
worse FI values, thus a bigger variance for the energy consumed per node. Although the
abovementioned region could be a good operational regime area in general, we note that
each application will have its own optimal operational regime.

6. STARR-DCS EVALUATION: TESTBED.

Implementing WSAN solutions in real motes may be quite challenging. Usually theoretical
proposals do not consider many practical issues that need to be taken into account when
facing a real implementation. This claim is even stronger in the field of DCS where most of
the proposals rely on assumptions that can be overtaken in a simulation but not in a real
implementation. It must be noted that we could only find one previous implementation in
the area of DCS, i.e. the implementation of pathDCS [Ee et al. 2006].

We target two main goals in this section: (i) Validate the feasibility of STARR-DCS
in resource-constrained motes, and check the functionality of the protocols and algorithms
described in Section 2 (i.e. consumers and producers functionalities, replication-tree genera-
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Fig. 16. Evaluation of the optimal number of replicas

tion, change of replication nodes over the time, Meta-Information service, etc); (ii) Confirm
that the results obtained from our simulation experiments also apply real WSN deploy-
ments that usually only include tens of nodes. To achieve these goals we have performed
three different experiments on our STARR-DCS testbed.

Although STARR-DCS was designed from the very beginning taking into account prac-
tical issues, we still had to face several limitations during the implementation and testing
phase. Next, we describe the main limitations to perform the planned experiments. The
most relevant constraints were imposed by the limited operational capacity of Jennic motes
(e.g. they do not operate with floating point numbers, they do not provide functions to
perform dynamic memory allocation, etc). Moreover, the most important limitation to our
work is that Jennic motes do not allow monitoring the battery level. This prevented the
possibility of performing real measurements on battery depletion. Then, in order to vali-
date simulation outcomes we decided to use the number of messages sent and received (as
we did in the simulations) as a rough estimation of the energy consumption, i.e. the more
messages a node sends/receives the longer its radio transceiver is on (this is the element
that dominates the energy consumption in a sensor node), and the sooner its battery is
exhausted.

We consider three different aspects in our evaluation: (i) we have checked that the optimal
number of replicas provided by Eq. 1 is useful in our testbed, (ii) we have verified that
changing the optimal number of replicas over the time balances the energy consumption,
and (iii) we have checked that STARR-DCS effectively extends the WSAN lifetime.

In all cases we have used a scenario with 20 motes located in 4 rows by 5 columns grid
fashion emulating a 200x200 square meters network. Each node was programmed with its
own coordinates and its neighbors’ coordinates. We did not use full mesh connectivity, but
a more irregular one in order to create longer communications paths within the network.
Figure 15 shows the testbed used to evaluate our framework implementation.

6.1. Optimal number of replicas

In this test we always use the same number of replicas during the experiment, irrespectively
of the traffic statistics collected by the replication nodes. We tested different scenarios using
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from 1 to 6 replication nodes. We measure the total number of messages (sent and received)
to account the traffic generated in the network, which is also valid as a rough estimation
of the network’s energy expenditure. We use a single application in the test, which was run
for 3 hours.

To avoid any bias in the traffic pattern and to better exploit the limited number of motes,
we used all the nodes as producers and consumers, but we defined different consumption
and production rates. The nodes generate a production event every 45 seconds and a con-
sumption query every 15 seconds4. Following Eq. 1 the optimal number of replicas would be
4.2, thus mapping it to an integer we obtain N∗

r =4. Figure 16(a) shows the overall number
of messages in the network when forcing the framework to use 1, 2, 3, 4, 5 and 6 replicas.
The number of replicas that minimizes the overall traffic is 3.

Figure 16(b) shows the extra traffic generated when using a number of replicas different
than 3. Then if 4 replicas are selected, which is the value chosen by our model, only 0.5%
extra traffic is generated. The other close value to that obtained from the model is 5 replicas.
In this case, the overhead traffic is 1%. However, if we choose those values far from the one
provided by our model the extra traffic grows up to 5% for 2 and 6 replication nodes and
up to 20% when a single replication node is selected. This demonstrates in a real testbed
that using a single replication node as proposed in the seminal DCS work [Shenker et al.
2003] could generate a lot of extra traffic as compared to a multi-replication proposal.

This test demonstrates that even if we are far from the model assumptions (i.e. infinite
field, distance-based model instead of hop-based model, etc), the optimal number of replicas
provided by our model is leading to good results in terms of minimizing network traffic
(and reducing network energy consumption). This eliminates the uncertainty of how many
replication nodes should be used for a particular application.

6.2. Balancing energy consumption

The second test we have conducted is to verify whether changing the replication nodes over
time balances the energy consumption per node, even though it generates some overhead
associated to epoch transitions. For that purpose we compare a static scenario to two dy-
namic ones that implement STARR-DCS, and have been configured with different message
thresholds to change the epoch. We remember that the message threshold is the maximum
number of messages that a node can send and receive while playing the role of replication
node. In addition, it must be noted that in this test no node runs out of battery, and thus no
network holes appear in the network for the static scenario as it happened in the simulation
experiments (see Section 5). We remember that the appearance of routing holes in the static
scenario leads to a larger traffic overhead than the one associated to epoch transitions in
the dynamic scenario. Therefore, in the current test the dynamic solution presents a higher
overhead due to the absence of routing holes in the static scenario.

The test ran for 3 hours and all nodes were consumers and producers at the same time5.
The production rate was 1 message every 45 seconds and the consumption rate 1 query
every 15 seconds, for all the nodes. As in the previous example this leads to an optimal
number of replicas N∗

r =4. After the first epoch, the STARR-DCS framework computed the
number of replicas in the next epoch based on the traffic statistics captured by the replicas
during the measurement period that lasts 1 minute. It must be noted that usually the
selected number of replicas was 4, but sometimes a given node could take the responsibility
of two hashed locations, so in that case the actual number of replicas was 3. Finally, we have

4Producers are not synchronized when generating events. Therefore, it is very likely that each new consumer
query finds new data stored in the replication nodes.
5Under this configuration broadcasting would be a suitable solution, however we remind that the goal of
this test is to understand whether STARR-DCS balances energy consumption when it is compared to a
static solution.
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Table III. Evaluation of energy distribution. Fairness Index (FI) of messages sent
and received by network nodes and overhead generated by STARR-DCS as com-
pared to a static solution using Random Replication

Static STARR-DCS 240 STARR-DCS 360
FI 0.59 0.83 0.81

Overhead (%) 0.00 10.53 7.04

used two different values for the message threshold in order to manage shorter and longer
epochs. Those values were Eth=240 and Eth=360 messages respectively. We remember that
shorter epochs are expected to provide better fairness, but also higher overhead since more
messages are generated due to more frequent epoch transitions.

In order to compute the network fairness we use the Fairness Index (FI) [Jain et al. 1984]
over the number of messages sent and received by each node. In addition, we also account
the extra number of messages generated by the dynamic scenarios in comparison with the
static case.

Table III shows the obtained results. On one hand, changing the replication set over the
time leads to a much fairer energy distribution in the network than using static replicas. In
addition, as we expected the shorter the epoch (a lower message threshold) the better the
energy distribution. That is the reason why the scenario with Eth=240 messages presents a
better FI than the one with Eth=360 messages. On the other hand, changing the replication
nodes over the time leads to increasing traffic overheads, which in our test was 10% for the
STARR-DCS test with shorter epochs (Eth=240 messages) and 7% in case of using longer
epochs (Eth=360 messages).

Moreover, we note that we have used a low message threshold to generate quite a few
epoch changes so as to better see the distribution of the energy consumption within the
network. Then, using a 240 message threshold in a 3 hours testbed means 30 epoch tran-
sitions (i.e. 9-10 changes per hour), while a 360 message threshold leads to 20 epochs (i.e.
6-7 epochs per hour).

Therefore we have confirmed in our testbed that changing the set of replication nodes
over the time leads to a much fairer energy consumption distribution within the network.

6.3. First node dead lifetime

Due to the reduced number of nodes we were using and the fact that Jennic 5139 and 5121
motes do not allow monitoring the remaining battery in a node, we emulate the battery
lifetime as a limit for the maximum number of messages sent and received by the nodes.

For that purpose we have evaluated: a static scenario with random replicas and two sce-
narios implementing STARR-DCS with message threshold values of Eth=240 and Eth=360
messages, respectively. For each of these scenarios we have measured the time when the first
node reaches 5000, 6000, 7000, 8000, 9000 and 10000 messages in order to demonstrate that
changing the replication set over the time produces an effective lifetime extension.

Table IV. Evaluation of lifetime extension when adopting STARR-DCS solution instead of a static ap-
proach. We obtain the time when the first node reaches different thresholds

STARR-DCS STARR-DCS STARR-DCS STARR-DCS
Lifetime Static 240 360 240 360
(# msg.) (sec) (sec) (sec) improv. (%) improv. (%)

5000 3054 4199 3506 37% 15%
6000 3659 5142 4556 41% 25%
7000 4242 6268 5456 48% 29%
8000 4830 7203 6301 49% 30%
9000 5419 8362 7187 54% 33%
10000 6003 8945 7863 49% 31%
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Table IV shows the effective time extension in percentage when STARR-DCS replaces
a static solution. The first conclusion is that changing the replication set over the time
reduces the load of the most saturated node in the network. This is translated into a
longer period to reach the messages limit, which implies a longer time before running out of
battery. In particular, by analyzing the scenario implementing STARR-DCS with Eth=240
messages, we check that in all the cases evaluated the time extension is longer than 35%,
and even goes above 50% when the messages limit is established in 9000 messages. The time
extension for Eth=360 messages is reduced to values between 15% and 33% depending on
the different messages limits. This is happening because a lower message threshold implies
shorter epochs, thus a fairer distribution of energy consumed per node. This reduces the
number of messages in the most loaded node at the price of increasing the overhead in the
overall network.

Finally, we note that the trend in the results is that the higher the limit of messages
(i.e. node battery), the longer the lifetime difference between the static and the framework
solutions. That means that if we were able to run very long tests (e.g. 1000 epochs) like
the ones evaluated in the simulations (see Section 5) the lifetime extension would be much
higher, as suggested by the simulation results presented in Table I.

7. CONCLUSIONS AND FUTURE WORKS

This paper has presented STARR-DCS, a framework that advances the state of the art in
the field of Data-Centric Storage. STARR-DCS is based on two main principles: (i) a ran-
dom placement of several nodes serving as rendezvous nodes, and (ii) an equalization of the
energy burdens across the network, by means of changing the set of rendezvous nodes over
the time. On the one hand, Random Replication appears to be the most efficient replication
algorithm in terms of minimizing the network traffic (i.e. overall energy consumption). In
addition, it is computationally simpler and it is adaptable to any network shape. More-
over, Random Replication makes the proposed STARR-DCS framework suitable to work
in networks without geographic information, which means an important advance in the
field of DCS with multiple replication nodes. On the other hand, changing the replication
nodes over the time allows to effectively extend the network lifetime between 60% and 10x
as demonstrated by our simulation study in large WSANs. Moreover, STARR-DCS im-
plements a set of novel algorithms and protocols to address the complexity introduced by
a dynamic WSAN environment. In order to test the feasibility of STARR-DCS we have
successfully implemented it on resource-constrained commercial motes. Furthermore, that
prototype has been used to perform several experiments that validate the main outcomes
obtained from the large-scale simulation study in a small-scale scenario. Finally, our results
conclude that DCS proposals using a single rendezvous node are highly inefficien in most
scenarios.

As future research line, it may be interesting to look at mobile DCS networks, which
present fairly different characteristics than the one addressed in this paper for static WSANs.
If we assume a full mobile network (all nodes are mobile) probably we do not need to create
a dynamic framework since changing replicas may come with mobility alone. Given that
a replication node is the closest one to a given position, that role will naturally change
because nodes are not longer static, thus balancing the replication node role among them.
However this could introduce quite a lot overhead, since every time a new node becomes the
closest one to a particular replica location, it has to receive the information stored in the
node that was the rendezvous node until that moment. Therefore, in the case of mobile DCS
networks, the research efforts should be directed to define algorithms that efficiently and
unambiguously decide the proper rendezvous node(s) at a particular time, and to design
light protocols to access up to date information.
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