FDTsfoundations, methods and tools in the educational context:
a DIT-UPM experience

T. Robles, J. Quemada, J. Salvachta, A. Azcorra, D. Larrabeiti,
J. A. Mafias, T. De Miguel, S. Pavon, G. Huecas

DIT-UPM
Technical University of Madrid
Ciudad Universitaria s/n, 28040 Madrid SPAIN
trobles@dit.upm.es

Abstract

DIT-UPM has been involved from the beginning in the definition, development and application of
Formal Description technigues (mainly LOTOS and ESTELLE). In an industrial and academically
context that demands formation in such areas, DIT-UPM has been teaching conrses about these items
during the last years. This paper described the context, organization of the courses, examples and case
studies used for illustrating concepts, tools and resulls of this exiperience.

1 Introduction

The definition of the ISO - OSI reference Model created the need of rigorous specification
techniques to support an effective, sound and unambiguous definition of a complete architectural
model, including many layers, protocols and services. Two competing Formal Description Techniques
(FDTs), which later were called Estelle and LOTOS, started to be developed. The first one was based
on an EFSM (Extended Finite State Machine) and the second one was based on a process algebra
approach.

The definition of the whole architecture implied a big challenge which needed a technique providing
a rigorous support to most (desirably all) tasks of a complex system design cycle. Protocol and service
specifications were the first tasks undertaken, but these were not the only places were FDTs should
play a role and provide a competitive advantage. Other important design activities were needed,
validation and verification of the correctness of the protocol, performance analysis, conformance
testing and implementation dertvation.

All this process needs an accompanying educational effort to create the skills and expertise needed
in a large industrial development. DIT-UPM made a large effort to support the development of
LOTOS, which included contributions to the definition of the language, specification of protocols and
services, tool development and large case studies. All this was complemented with the educational and
training activities that led to successtul application of LOTOS in an industrial environment.

Many results and conclusions were obtained in this process which are of general validity, despite the
sttuation in which ISO promoted FDTs were left when the market chose the internet protocols for
product development due to the existence of more mature implementations. This papers tries to
summarize all what was learned during this process, as well as the main results and conclusions
obtained.

The rest of the paper is organized as follows: Section 2 described the context where LOTOS courses
where created and granted (industrial, research and academically considerations are taken into account;



Section 3 goes into the problem of generating didactic material for supporting the courses; Section 4
describes the structure and organization of a full course that combines theory and practices; Section 5
described theoretical part of the course and section 6 the practical session; and finally section 7 outlines
the conclusions and learned lessons after some years of teaching courses on FDTs.

2 Promoting FDTsin context

Teaching something can not be considered in void, the context surroundings are really important.
You must take into account the demand of the knowledge you want to teach by your environment.

In the framework of a technical school the driven force always is the demands of the companies
around it. In the case of Technical University of Madrid, and specifically the Department of Telematic
Systems engineering there 1s several focus that demands training in the FDT area.

The first one is the internal necessity of the University of Tramned Research Personnel that will
participate in the research activities of the University. We include into this group the courses that we
have organized for another Spanish Universities as well the courses for research departments of
companties. But this internal demand 1s not enough for justifying the development of a completely new
set of material and courses. External demand is needed. In our case this demand comes from two
different points: local industries wants to promote the skill of their personnel in those areas, with the
intention of using those FDTs in the development and production of new products. That 1s the case of
companies such Ericson, Alcatel, Telefonica or Indra.

A second group of companies especially actives in the use of these technologies are the companies
involved in the development of product and technologies for critical applications. In our case this work
was mainly centered on European Spatial Agency (ESA) and companies that supplies products to ESA:
INSA, GMV, or CRISA.

Taken into account this industrial and technological context, three main categories of courses have
been detined: graduate courses, doctorate courses and postgraduate courses.

Graduate courses focus on the preparation of professionals to be delivered to the society with sound
enough knowledge to be productive in real work. In the context of our technical school
(Telecommunications) and in particular in our specific area of interest (Telematic) the objective is to
provide students with information about the existence and capabilities of current FDTs. This objective
1s covered by a last year course, that in the framework of signaling systems, management and planning
of networks and integrated networks provides a briet presentation of the FDTs and focus on SDL and
LOTOS.

Doctorate courses intend to provide deeper formation to students in specific field of new, relevant
and state of the art technologies. Within this framework the variation in the contents of the courses,
and the courses themselves change rapidly form one year to the next. During the first years of the
FDTs definition and industrial diffusion, they became a “hot” technology in the field of protocols
definition, design and implementations. Several groups of our university were forming research
personnel in this field, so the number of courses related with FDTs were relatively high. During this
period (1985-1990) several doctorates courses where granted: LOTOS language and Software
engineering with LOTOS among others.

Today, a doctorate course uses FDTs as a tool for supporting Software Validation and Verification,
Software Design, Object Oriented Software development, etc.

Finally, postgraduate courses (master course) cover the training of engineers that are actually
working in companies, and that demand actualization on the last technologies. The rest of this paper 1s
dedicated to describe a typical course granted during several years as a master course at DIT-UPM.



3 Didactic Material

It 1s usual that when you atford the problem of teaching a really new technology you do not have
enough didactic material to complete a full course. But, only a few times in your life, you must prepare
all the material from the scratch.

At the beginning, the material available was limited to: ISO8807 [7], CCS [10] book, and some
material about ACTONE data Types [4]. Meanwhile this material may be suftficient for postgraduate
course dedicated to doctoral students; it was clearly non-well suited for supporting courses for others
students.

Atfter the first experiences of teaching LOTOS courses with those basic didactic elements, the next
material was clearly identified as mandatory for a correct course development:

- A reference book that provides a complete coverage of the language and its applications.

- Tutorals about LOTOS Behaviour and Data Types, that covers the gap between the basic

mathematical bibliography and students background, mainly on Protocol and Computer Science.

- Syntactic and semantics analysis tools for supporting practices on basic language properties.

- Animation, simulation and compilation tools that allows to exercise, and the industrial

application, of the high level language's capabilities.

- Ilustrative application examples, which shows typical language structures and offers a collection

of solutions to typical protocols and systems structured.

In order to support the development of the language itself, and with the purpose of facilitate the
diffusion of the language, the next elements where development by different universities and research
institutes of Europe.

3.1.1 Written material

The main support of any course is the wrtten material. For supporting a complete course about
LOTOS and their applications, it 1s required a reference book complemented with specific tutorials,
and of course a good set of technical papers, for people that want to learn more about some specitic
tield.

This kind of material was produced mainly between 87 and 90. In our case draft versions of our own
material were used during the first courses:

¢ Using Formal Description Techniques --- An Introduction to Estelle, LOTOS and

SDL [24].- Editor Kenneth J. Turner (1993). The basic reference book developed as a join effort
of several European Universities and research institutions.
¢ Introduction to the 1 SO Specification Language LOTOS [1].- Tommaso Bolognesi and Ed
Brinksma (1988). That provides a basic language introduction.

¢ A Tutorial on LOTOS[3].- Ed Brinksma (1985). Also a basic language tutorial.

¢ A Tutorial on ADT Semantics for LOTOS Users; Part |: Fundamental Concepts [13].-
José A. Mafias (1988). This 17 part presents, using a understandable language, the basic concepts
of LOTOS ADTs.

¢ A Tutorial on ADT Semantics for LOTOS Users; Part I1: Operations on Typeq14].-

José A. Manas (1988). This second part covers the usage of ADTs, describing these ADTs from
the point of view of a Programming language, as much it 1s possible, taken into account the
specific characteristics of such ADT.

Complementary documentation about other FDDT's may be found in many documents as:

¢ An Introduction to Estelle A Specification Language for Distributed Systems [2] .-

Stephan Budkowski and P. Dembinski (1987)
¢ SDL -- CCITT Specification and Description Language [23].- A. Rockfrom and R. Saracco
(1988)



3.1.2 Tools

When teaching a language, in our case a formal language, the existence of tools 1s crucial to allow the
realization of practices in order to permit the students work with the concepts described during the
theory sessions.
In the case of formal language the possibilities are not restricted to compile and to execute a
"program". So the next tools where developed, partially supported by international project, to provide a
complete tools set for the language: syntactic and semantic analyzers and compiler tools (TOPO [15]),
simulators (HIPPO [5]), transformation tools (LOLA[21]), which documentation is:
¢ LOLA: Design and Verification of Protocols Using LOTOS [21].- Juan Quemada, Angel
Fernandez and José A. Mafias (1988)

¢ Transforming LOTOS Specifications with LOLA [22].- The Parameterized Expansion.- Juan
Quemada and Santiago Pavon and Angel Fernandez (1988)

¢ From LOTOSto C [17] .- José A. Mafias and Tomés de Miguel (1988).

¢ TOPO: Quick Reference-- C Code Generator [15].- José A. Mafias, Tomas de Miguel, Tomas
Robles, Joaquin Salvachta and Gabriel Huecas and (1993)

¢ Design of the LotoSphere Symbolic LOTOS Simulator [5] .- Peter van FEijk and Henk
Eertink (1990).

3.1.3 Application examplesand guidelines

Language and tools where created at the same time, but at the beginning nobody knows exactly how
to use the language and the coming tools in order to get the best results. The development of case
studies in parallel with the language and the tools provided a good feedback and a bunch of example to
illustrate the use of the most relevant characteristics of the language. Among others, we must refer to:
¢ Abracadabra Protocol: Formal Description in LOTOS[12].- José A. Mafias and Fernando
Fournén (1993)

¢ The Case of a Producer and a Consumer: An Example of Using the Sedos Compiler
[11].- José A. Mafias (1987)

¢ Working Draft for the Guidelines for Application of Estelle, LOTOS and SDL [8].- the
abracadabra example (1988).

¢ The Two-key system [20].- Juan Quemada and Arturo Azcorra [1993]. It offers a complete

example of the product life cycle.

¢ The SRTSExperience: Using TOPO for LOTOS Design and Realization [18].- Tomas de

Miguel and Tomas Robles and Joaquin Salvachua and Arturo Azcorra (1990)
¢ Manual versus Hand Coded Implementation of LOTOS Data Types[16].- José A. Mafias,
Tomas de Miguel, Tomas Robles and Joaquin Salvachuia (1988)

4 Formal Methods cour se design

Many courses about LOTOS have been granted at DIT-UPM in the last decade. After some trials
and the corresponding course modifications, we reached a structure that satisties both protessor and
students.

The course combines theory and practice. Theory 1s divided into two blocks. The first one i1s
devoted to the language elements. The second part described how the language and the different
associated tools might support the life cycle development of a system.

The practices are divided in three blocks. The first one is for working with the basic language
elements, to write simple and correct specifications. These practices use the front-end of TOPO. The
second block of practices 1s dedicated to illustrate the symbolic execution, exploration of the states of a
system, test of a specification, and in general to explore all the possibilities provided by the existence of



a formal description of the System under development. The last block is for working with the compiler
tool (TOPO[15]), in order to produce prototypes, implementations and testing specifications and
product.

5 Theoretical part

The approach to the LOTOS course 1s based on two main teaching blocks. The educational
objective of the first block (language block) is the comprehension of the language itself. After
completing this block a student should be capable of understanding and producing complex system
specifications in LOTOS, selecting the most appropriate specitication style. The educational objective
of the second block (design methodology block) 1s the comprehension of how the language and the
different associated tools can be used along the lifecycle of a system, mainly oriented to software
implementations.

The existence of two formal components in LOTOS guided the organization of the language block
in four sequential phases:

e Introductory Concepts: presents some fundamental concepts that are used in LOTOS
e Basic LOTOS: presents the control part (without data) of LOTOS and its supporting formal
model.

e ACT-ONE: presents the abstract data type part of LOTOS.
e Full LOTOS: indicates how the behavioral and data components are combined to produce a
complete system specitication.
The students should acquire a level of LOTOS language comprehension before proceeding to the
design methodology block. This block is itself structured in the tollowing sequential phases:
e Uses of the Methodology: provides a briet introduction of the design process and a description of
its fundamental design operation, which is the design step.
e The Design Process: provides an introduction to the three different design tasks, which must be
tulfilled to perform a design step.
e Production of the Design: describes the design production task in detail. Implementation or
Prototyping: describes the implementation task in detail.
e Assessment of the Design: describes the design assessment task in detail.

e The Two-Key System: provides a small example to illustrate the usage of the design methodology.
The following subsections provide a more detailed view of the contents of each of the educational
phases belonging to the two blocks.

5.1 Introductory Concepts

Design languages were developed to allow designers to build models of (parts of) systems, for the
purpose of analysis and design. LOTOS uses the concepts of process, event and behavior expression as
basic architectural concepts for modeling distributed and concurrent systems. These concepts are
introduced to the student to set the foundation of the turther description of the language.

The student should finish this phase with a good comprehension of the meaning of observable
behavior. The observable behavior of a system 1s described in LOTOS by means of a language element,
in which the sequences of allowed events are represented. This language element is called bebavior
expression, which 1s a mathematical expression that receives a precise meaning in terms of the LOTOS
semantic model.

Behavior expressions can be represented graphically as bebavior frees. This representation is
introduced to help wvisualizing the sequence of events and their dependencies, but its practical use 1s
limited to simple cases of behavior. In behavior trees, branches are labeled with event names, and
nodes represent states. The behavior is supposed to start from the top node. The occurrence of an



event selects a specific branch, and the behavior proceeds top-down, until a node that does not contain
turther outgoing branches is reached.

5.2 BasicLOTOS

LOTOS without ActOne 1s called Basic LOTOS. Experience shows that Basic LOTOS is easier to
understand than Full LOTOS; furthermore Basic LOTOS can be generalized to Full LOTOS in a quite
straightforward way. This phase begins by introducing the basic operators of LOTOS. These are the
ones, which allow the representation of a finite and deterministic behavior: naction, action prefix and
choice.

Then, the internal event is introduced, analyzing its usage to describe non-deterministic behaviors.
Finally, the remaining operators and constructions are introduced in order to cope with structuring,
readability, and repetitive behavior representations. These operators and constructions are process
definition and Instantiation, together with their usage to specity recursive behaviors, successful termination,
parallel composition, gate hiding, sequential composition and Disabling.

5.3 ACT ONE

This phase begins by reminding the definition of an algebra, to continue with the different types of
algebras with positive and negative constructs. Unicity of algebras 1s addressed introducing the concept
of initial and final algebras.

Based on the mathematical description of initial algebras, the different ACT ONE constructs and
operators are introduced. Emphasts is made on static semantics, because due to the overloading of
identifiers this 1s an area that has been identified as particularly confusing to students.

54 Full LOTOS

In Full LOTOS an event is represented by a gate identifier and a list of interaction parameters,
which are called experiment offers. There are two kinds of experiment ofters: (1) zalue offer and variable offer.
An event can only take place if there 1s a matching on the list of interaction parameters w.r.t. the sort of
the parameters (considering their order) or with the values (if that is the case) in all behavior
expressions participating in the event. Taking the possible combinations of value and variable ofters for
an event with a single experiment ofter, it 1s possible to specity three different interaction types.

Very often we need to represent that the system will behave differently depending on certain
conditions. These conditions may be either generated by past events or derived from some information
available in the system or both. These conditions can be represented in LOTOS as operations of
Boolean result involving process variables or interaction parameters. Conditional behavior can be
represented in two ways: (1) restriction imposed before an event or (i) restriction imposed at the
occurrence of an event. The former is represented in LOTOS by guards, the latter by selection predicate.

Processes can be parameterized in LOTOS with data parameters. Process parameters are declared in
process definitions as formal parameters; in process instantiations these parameters must be assigned to
target values, t.e. value expressions that can be evaluated. As one could expect, it is required that the
sorts of the target values in the process instantiations match those of the corresponding formal
parameters in the process definition.

In Full LOTOS the concept of successful termination of behavior expressions is enriched with
values that can be conveyed in the pseudo event 0. Therefore the exit operators may contain an exit
parameter list, which can be filled in by value expressions. A special syntax construct any is introduced
to indicate that any value of a certain sort 1s allowed in the exit. Notice that the parameterless exit of
Basic LOTOS 1s the special case of an empty exit parameter list.

Each wvalid LOTOS behavior expression has assigned to it a static property, which is called
Sunctionality. The tunctionality of a behavior expression 1s an ordered list of sorts, which indicates the
exit parameter list associated with this behavior expression. In Full LOTOS we can extend sequential



composition by also allowing values to be passed between sequentially composed behavior expressions
by using parameterized sequential composition.

Another important language construct 1s Local Value Definition. It provides a way to associate

values to free variables in behavior expressions. This operator was introduced to allow more
conciseness and better readability in specifications, by supporting the substitution of (eventually large)
value expressions by a single identitier.
Choice of gates and choice of value constructs are basically shorthand notations to compact the
specification text, and can in most of the cases be interpreted in terms of the choice and action prefix
operators. The generalized parallel operator is also a shorthand notation defined to compact
specifications and it i3 possible to interpret the generalized parallel operator in terms of parallel
compositions of behavior expressions.

5.5 Design Methodology

This educational block provides an application oriented description of the methodology, together
with the guidelines to be followed for its practical usage. The design methodology is a formally based
stepwise refinement design approach. The methodology takes advantage of the design facilities
provided by LOTOS. LOTOS 1s the tformal description technique upon which the methodology 1s
based and plays therefore a central role. Some previous knowledge of LOTOS and of its underlying
theories 1s needed for the proper understanding of these guidelines.

The guidelines given and the activities considered are mainly of technical nature. They focus
principally on the aspects related to the formalization of the design process. Links are provided such
that this structure can be effectively connected into standard management, diagnostics or project
control procedures. The basts for providing such links is the separation between design and assessment
(or control) activities. The real application of the methodology should complement the guidelines given
here with the particular management techniques of each user. Management techniques are different in
most application environments.

The guidelines have been also conceived with enough flexibility, to allow its use with other existing
design models, 1.e. they are compatible with different models of software life cycles such as the watertall
model, rapid prototyping, or the spiral model. The methodology can be considered complementary to
such life-cycle models. It gives guidance on how to formalize the design process in any of the models
mentioned before.

The design methodology has been conceived to give formal support to an industrial design process,
in order to achieve high quality designs. The usage of the formal description technique LOTOS as the
basis of the design allows the use of this methodology with ditferent design goals. Three main uses
have been identified:

e Production of a formal standard: There exist applications ---open systems interconnection,
portable O.S. interfaces,...--- in which a given standard must be generated betore the product is
really implemented on a large variety of different systems. A tormal language like LOTOS is most
suitable for expressing such a standard, eliminating the ambiguity and lack of conciseness of non-
formal standards. One important feature of such a standard s its implementation independence.

e Production of a product based on a standard: Once a formal standard has been issued, the
standard must be effectively implemented in many different systems.

e Production of a product from scratch: there are applications which have to produce a single
type of product in which there is no need to produce or to adhere to an intermediate standard.

Although the three applications have many things in common, each one has to consider particular
guidelines and design constraints. When necessary, particular guidelines will be given for each of the
three cases.

The design process can be divided in four phases according to the goals existing in each part of it.

The design process starts with a reguirements capturing phase which will produce the requirements. The



requirements will constitute the central reference on which the design must be based. The requirements
can be partially formalized with the help of LOTOS. The abstract nature of LOTOS allows the
specification of implementation independent specifications.

Once the mitial requirements are settled the design of the system starts by defining its architecture.
This phase is called the architectural phase. An implementation 1s then produced with the architecture
defined. This phase is called the implemmentation phase. The implementation s a representation of the
system 1n a technology specific representation, which will be usually derived from the last LOTOS
description of the system being detined. LOTOS provides formal support during these two phases,
therefore this document provides only guidelines for performing the architectural and implementation
phases.

A real system will be derived then from the implementation by transforming the technology specific
description of the system into its physical realization. This phase is called the reakization phase. The
implementation and realization phases are treated as a unique phase in other methodologies.

The architectural and implementation phases consist of a sequence or a tree of design steps. The
design step 1s the fundamental design operation, which produces a description of the system at a given
level of abstraction.

The first design step produces the most abstract description of the system. Fach of the following
design steps derives a more complete or retined description of the system, which must be consistent
with all the descriptions of the system produced in the previous refinements. The new description s
said to be at a new leve/ of abstraction. 1t 1s usually a representation of the system, which is a more
complete model of the system being designed. The last design step should produce a complete model
of the system, which must have a direct mapping into the implementation technology being used.

6 Laboratory and Practices

Three blocks of practices are interleaved with the theoretical sessions. The first one is for exercising
the elements of the language. The second one for using symbolic tools and exploring the formal
properties of the LOTOS specitfications (using LOLA), and the third one for producing executable
implementations (using TOPO).

The first block of practices uses the front-end of the TOPO compiler and is similar to the basic
exercises we may do in any programming course, with the intention to familiarize students with the
basic elements of the language. Blocks two and three are described in this section.

6.1 Learning LOTOSwith LOLA

Practice 1s a fundamental basis to actually acquire real knowledge of any programming language. In
the case of a specification language practice gets even more important as the abstraction level 1s higher,
the concepts introduced in the theory classes are too many and too complex for the newcomer, and
making effective usage of formal languages requires learning how to use tools that are complex and
difficult to use etfectively themselves.

The purpose of these practices 1s to show whom the tformal support of the language help in the
analysis of LOTOS specitications during the Design process.

One of the tools that help to understand better most concepts related to LOTOS behaviour
semantics 1s LOLA. In outline, LOLA (LOtos LAboratory) is a tool that performs the following
tunctionality set: symbolic execution, EFSM generation and testing [19]. This is the way we have
carried out our work of teaching LOTOS with this application.

In the first place, it 1s paramount to devote a "blackboard session" to explain the concepts necessary
to understand the tools for LOTOS. The students are given an introduction to the available toolset for
LOTOS, from requirement capture to implementation.  Functional decomposition, process
architecture diagramming, step-by-step symbolic execution, debugging, EFSM computation, testing,



simulation with a time-extended model, implementation by annotation, conformance testing, are some
of concepts reviewed to locate the tools to be used in the development cycle context. In our case, we
tried to map the TOPO functionality set with the functionality set ideally desired in the perfect
development environment model.

All LOTOS tools deal with specitications flattened. The students are warned about the gap between
their original specification and the specification they will see in the development environment after
tlattening (a ftlat type definition, no process nesting, no identifier overload, etc). Second warning:
equations are treated as rewrite rules. Therefore, students must be aware of termination and confluency
by simple examples like x+y=y+x; and £(0)=1 and £(x)=x; tx(x); respectively. Similar considerations are
made about non-guarded behaviours and states otfering infinite actions.

Once these considerations have been made, there is a preliminary introduction to invoking LOLA
from the TOPO toolset front-end and the list of commands available in LOLA. After this, a series of
practical exercises are carried out in four sessions and organized as follows.

6.1.1 Sessionl1

1. Contact. Introduction to basic commands: help, print, stat, move, quit, tried on a simple butfer
specification, as a first contact with the tool.

2. Checking syntax and semantics. Use a text editor to add recursion to a specification of a
telephone set. The student gets in touch with the environment: editor and command structure of
the TOPO toolset. LOTOS syntax, is faced for the first time and the student learns to
understand the meaning of the lexical, syntax and static semantics error messages.

3. Step-by-step symbolic execution. The student acts as environment to choose among the
different events offered by a specification. Undeterminism, environment, concurrency, event
synchronization, expansion are concepts visited here. The user can see the way the system
evolves through one-level expansions into a tree of actions.

4. Specification and debugging. The students are given an uninformal description of a system
(usually a vendor machine) and they have to specify it from scratch. Action prefix, enabling,
disabling operators and process instantiation arise naturally.

6.1.2 Session 2

5. Analysis. Case study of a system composed of a set of clients accessing to a transaction server by
means of a bus. Practice of navigation and step-by-step execution to check that everything runs
as expected. In this first version, the server is sequential: client processes have to wait for the
server to complete any undergoing transaction before being served. Students are prompted to
use advanced debugging features like watching the synchronization of actions that yield a global
event and all its relevant information: the stacks of process instantiations involved in each
execution thread, actions line numbers and value offers. The client-server specification has
intentionally a deadlocking error that students have to detect and fix using functionality that
displays the synchronization failed due to value offering mismatch.

6. Increasing concurrency. Students are requested to modify the client-server specification in order
to allow for a given amount of concurrent transactions. Dynamic instantiation of concurrent
processes and guarded behaviors.

6.1.3 Session 3

7. EFSM computation. After the students have learned about the Expansion Theorem, they have
to practice with existing tools over several specifications. The example chosen to make them
distinguish normal expansion and parameterized expansion|[22] (actual process parameters are
processed symbolically yielding a more compressed EFSM) are the Triangle of Pascal-



Tartaglia[9] and the Alternating Bit Protocol[22]. The state explosion problem arises quite
naturally.

8. Testing. Students learn the testing concepts applied to LOTOS[19]: test types (accept and reject),
response types (must, may pass) and tools available to implement this concept ranging from
exhaustive analysis of specification-test composition (introducing the concept of verification) to
random execution of traces (introducing validation). The students learn the different approaches
to reduce the complexity of the test response computation, e.g. testing equivalent removal of
internal actions, in the case of verification; and ditferent resources to improve the quality of
heuristic validation, e.g. bit state hashing][6].

The example used 1s the specification of a resource-oriented bufter. The student is requested to
try out several tests like input/output of messages in FIFO and LIFO fashion, and to print and
analyze the tree of unsuccesstul executions.

6.1.4 Session 4

9. Test suite design. Coming back to the client-server specitications (the concurrent and the serial

server ones), the student will "hide" to the environment the access to the remote server and
design a test suite to prove several properties: single access, three consecutive transactions, 3
clients served FIFO, LIFO and in any order, server [non-|concurrency, messages are delivered
to the right client, etc. These tests must be processed in batch using the testing functionality of
LOLA.
Design of a protocol. The purpose of this practice 1s to show specific aspects involved in the
specification of a protocol, basically the sort of problems that justify the existence of formal
specification and validation and that are the gist of protocol engineering. The student is
presented the Lynch protocol, a classical example that shows message duplication in a non-
reliable channel illustrating the need for message numbering. Students are requested to specify a
reliable semiduplex channel and test the protocol on it. After that, they have to specify a non-
reliable channel and let them find out and enunciate why 1t fails, design three acceptance and
rejection tests, and fix the protocol in order to get a reliable service. Finally, the students must
convert protocol and line to full-duplex. This example serves as a hint of the complexity of
designing a computer protocol.

6.2 Protocol implementation using TOPO

The student won't be able to get a full view of the whole life cycle of a formal specification with out
experimenting the last parts of this cycle. This implies get a real working implementation and related it
with the previous work done to get a sound specitication of the system we are describing,.

This skills are different from the previous acquired in the rest of the course. One previous
knowledge that is supposed from the students is to be fluent in a system implementation programming
language. This requirement was, sometimes, not meet by the students and implies that extra time has to
be devoted to the explanation of this languages. This implies that some students missed most of the
work done here.

One key point is to be able to go from the specification to the implementation and back to the
specification. This implies the use of a tool instead of making a translation by hand, since this implies
that ones the first implementation is done we must make parallel evolution the implementation, what
sometimes 1s Not easy.

The system programming language chosen was C. This 1s a very efficient language that allows the
programmer to obtain most from the underlying facilities that the operating system can oftered. This 1s
very important in the case of protocol implementation since the performance extra gain for been more
"close to the bone" is usually needed. Also is the most widely used language for protocol
implementation in the industry so it's knowledge is good for the students.



The main objectives for this course are:

¢ The students will know the difference from a specification and an implementation of a protocol.

¢ The students will be able to take the decisions needed to get an implementation running,

¢ The students will be able to use a system implementation language in order to get the protocol

running.

In order to reach these objectives we will have some blackboard classes where the students will
receive some lessons about what and implementation means. That is:

¢ To close the open issues that may be present in the protocol.

¢ Mapping the abstract actions to concrete real ones (like really sending and receiving data) by
means of side effects over LOTOS actions.

¢ Added real timing information.

¢ Avoiding non-determinism.

This can be done using the implementation facilities that are present inside the TOPO toolset. For
this 1s critical the annotation facilities that are use for this purpouse.

The students are previously familiarized with the TOPO tools since the have use it for syntactic and
semantic analysis, but in this course the more advanced facilities are presented in an incremental way.

6.2.1 Session1

The goal for this session 1s that the students gets familiarized with the TOPO toolset and its
tacilities for getting an implementation from a specification; also the role of getting the specification
annotated with implementation details that can no be expressed into the LOTOS specitication
language.

In order to have an incremental complexity approach for this session some pre-annotated
specification 1s provided. The case of study chosen was the dinning philosophers.

This well-known specification 1s annotated to get some timing and some animation is provided on a
screen for some of the actions that the run-time support performs.

The students get an implementation and see how the actions performed are related with the ones
the see 1n the specification.

Also the are encouraged to change the annotation to see how the implementation stops working
right. This way the know more about how the annotations works.

6.2.2 Session 2

The students are given a specification of a protocol not too complex like the abracadabra protocol
[12]. The first goal 1s to use the annotations to give some timing and having the non-determinism that
may be present in the specification removed. Also some implementation decisions are to be made.

We just give the students the specifications and some guidelines about how to annotate in the
classes. Also some of the key points, like how to implement a timeout, was studied in this classes.

Ones the students know the specification the just annotated the specification for getting some traces
of the events that are been performed and they know more about this protocol.

6.2.3 Session 3

Here the will get the protocol implementation. Since not all the students are tluent in C we simplity
their task by giving some C code that implement more of the aspect related with the more operating
system, mainly I/O procedures. With this the students implement the C functions that send and receive
PDU and annotates the specification in order to use it.

For making some testing we set-up son sertal connection between diftferent PC in our laboratory so
each student can run an instance of his implementation in the PC. Since if everything goes ok there are



some parts of the specification that are not exercised a switch was introduce in the cable connection
between the PC's so the students can introduce error on the transmission.

In order to simply the structure of the laboratory some courses implement communication on top
of TCP/IP. We must take into account that is for demonstration purposes (otherwise using a reliable
protocol to implement a non-reliable protocol may look a bit silly). In this case the library offered to
use sockets include a programmable random chance of a PDU not to be send or recerved.

Once the get an implementation the can use two instances to interoperate and see the protocol
running,

6.2.4 Session 4

In this session the will use the annotations and the C code used in the last session with some traces
that the obtained from the LOLA tool. In this way the get no an implementation for the specification
but for a test of the specitication.

Ones the get this implementation running the can interoperate with the implementations of the
protocol that they obtained last session. This way the get a tester for the protocol.

Also the see if the annotation processes left out some properties that where present in the
specification, like non determinism, but that is lost in the implementation process.

During these practical sessions, the students see really working the entire thing that they studied
before and see who. The students can practice how an implementation is related with a specification
and which 1s the way to get a real running implementation for a protocol.

7 Conclusions

The teaching of FDTs, and particularly LOTOS, has been a challenge for DIT-UPM. The first
problems arise when we learned that the didactic material was not enough mature for teaching courses
to students with a normal engineering background. So the first task, in parallel with the development of
the language itself, was the creation of didactic material including written material, supporting tools,
and reference examples. Tutorials, examples and tools like TOPO and LOLA where created consuming
a lot of human eftort.

The second step in this works was the consolidation of a course that covers the necessities of
engineers that are working on the environment companies. This was achieved with the development of
a tull course that combines theory and practices focusing the problems from a practical point of view.
This means that we reduced the amount of basic mathematics contents of the course in order to
provide more information about the usage and practical application of the language.

The tinal conclusion of this experience s that hundred of engineers have attended such courses.
They have improved their protessional skills in the FDTs background, and the idea of the use of formal
languages in the development of complex systems 1s now a common understanding of many companies
of our near environment.

References

[1] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO Specification Language LOTOS. Computer Networks and ISDN Systems.
1988.

[2] Stephan Budkowski and P. Dembinski. An Introduction to Estelle: A Specification Language for Distributed Systems. Computer
Networks and ISDN Systems. 1987.

[3] Ed. Brinksma. A Tutorial on LOTOS. In Proceedings of the Protocol Specification, Testing, and Verification V7. 1985.

[4] H. Ehrig, W. Fey and H. Hansen. ACT ONE: An Algebraic Language with two Levels of Semantics. Internal Report Tech Universitat
Berlin, 1983.



[5] Peter van Eijk and Henk Eertink. Design of the LotoSphere Symbolic LOTOS Simulator. Ir Proceeding of the 3th International Conference on
Formal Description Techniques, Madrid, 1990.

[6] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[7] ISO. Information Processing Systems -- Open Systems Interconnection -- LOTOS - A Formal Description Technique Based on the
Temporal Ordering of Observational Behaviour. IS-8807. 1989.

[8] ISO. Working Draft for the Guidelines for Application of Estelle, LOTOS and SDL. ISO/IEC~]JTC~1/8C~21/N2549. 1988
[9] D. Larrabeity. Ph.D. Tesis: "Contribucion al Andlisis del Espacio de Estados de Especificaciones LOTOS". 1996.
[10] Robin Milner. A Calculus of Communicating Systems. Serie: ecture Notes in Computer Science. Spring-Verlang, 1980.

[11] J. A. Manas. The Case of a Producer and a Consumer: An Example of Using the Sedos Compiler. Working paper,
sedos/c3/wp/41/m. 1987.

[12]]. A. Mafias and Fernando Fournén. The Abracadabra Protocol. In Using Formal Description Techniques, Wiley, 1993.

[13] J. A. Mafias A Tutorial on ADT Semantics for LOTOS Users; Part I: Fundamental Concepts. Internal Report Dpt. Telematics
Engineering Technical Univ. Madrid, 1998.

[14] J. A. Mafias. A Tutorial on ADT Semantics for LOTOS Users; Part II: Operations on Types. Internal Report Dpt. Telematics
Engineering Technical Univ. Madrid, 1998.

[15] J. A. Marias, T. de Miguel, T. Robles, J. Salvachta, Gabriel Huecas and Marcelino Veiga. TOPO: Quick Reference -- C Code
Generator. Internal Report of Dpt. Telematics Engineering Technical Univ. Madrid, 1993.

[16] J. A. Maiias, T. de Miguel, T. Robles and J. Salvachia. Manual versus Hand Coded Implementation of LOTOS Data Types. Internal
Report of Dpt. Telematics Engineering Technical Univ. Madxid, 1989.

[17] J. A. Matias and T. de Miguel. From LOTOS to C. In Proceeding of the 1t International Conference on Formal Description
Techniques, Stiring, 1988.

[18] T. de Miguel, T. Robles, J. Salvachtia and A. Azcorra. The SRTS Experience: Using TOPO for LOTOS Design and Realization. Ix
Proceeding of the 3th International Conference on Formal Description Techniques, Madrid, 1990.

[19] R. de Nicola and M. Hennessy. Testing Equivalences for Processes. Theoretical Computer Science. 1984.
[20] J.Quemada and A. Azcorra. The Two-key System. In Using Formal Description Techniques, Wiley, 1993.

[21] J. Quemada, A. Fernandez and J. A. Marias. LOLA: Design and Verification of Protocols Using LOTOS. In Proceeding of the
IBERIAN Conference on Data Communications. Lisbon 1987.

[22] J. Quemada, S. Pavén and A. Fernandez. Transforming LOTOS Specifications with LOLA: The Parameterized Expanse. Ir Proceeding
of the 15 International Conference on Formal Description Techniques. Stirling, 1988,

[23] A. Rockfrom and R. Saracco. SDL -- CCITT Specification and Description Language. IEE Natl. Comm. Conf. 1981.
[24] Kenneth J. Turner (Editor). Using Formal Description Techniques --- An Introduction to Estelle, LOTOS and SDL. Wiley, 1993.



