
Designing a Broadband Residential Gateway using
Click! Modular Router

Hugo Gasćon, David D́ıez, Jaime Garcı́a, Francisco Valera, Carmen Guerrero and Arturo Azcorra
Universidad Carlos III de Madrid

Avda. de la Universidad 30, Leganés
Madrid, Spain

Email: hgascon, ddiez, jgr, fvalera, guerrero, azcorra@it.uc3m.es

Abstract— Nowadays DSL and cable are the two main access
technologies used to bring real broadband Internet to the
residential environment but in a near future, with the deployment
of FTTH (Fiber To The Home), transfer rates will not be a
problem anymore and one of the most important challenges
will be located on the provisioning of QoS (Quality of Service)
facilities. In MUSE 1 [1] project the overall objective is ”the
research and development of a future low-cost, full-service access
and edge network, which enables the ubiquitous delivery of
broadband services to every European citizen”. Within MUSE
our main work is related to the design of a RGW (Residential
Home Gateway) compliant with this QoS requirements and to the
development of a RGW prototype based on the Click modular
router [2]. In this paper we propose a new model to design RGW,
based on Click, but using user level applications too. This is what
we call an Hybrid Model and test validations are presented to
support this innovative idea.

I. I NTRODUCTION

MUSE project looks towards the future European broadband
network, where the Residential Gateway (RGW) will be the
first network device accesible by the user as is depicted in
Fig. 1. Every home equipment will be connected (wireless or
wired) through the RGW to a broadband but shared environ-
ment so, real-time signals such as alarms connected to the
fire stations may be sharing the medium together with regular
packets such as the messages sent by refrigerators when they
detect some food have to be bought. As it is seen, priorization
and QoS become essential tasks before packets are allowed
to flow to the network. Moreover traffic shaping is needed to
manage available bandwidth.

Besides all these functionalities, the RGW must perform
many other tasks on behalf of the end user: auto-configuration,
control, management, service configuration, etc. There are
some functionalities not covered in this paper as the QoS
service signalling. The IMS (IP Multimedia Subsystem) [6]
will be used in MUSE for the service configuration. Actually,
this specification must be adapted to a fix access scenario
because nowadays IMS is just specified for the mobile and
wireless LAN worlds. MUSE will work together with ETSI-
TISPAN [9] to make this adaptation. Obviously, the RGW

1MUSE is a large integrated R&D project on broadband access. Within
the 6th Framework Programme, MUSE contributes to the strategic objective
”Broadband for All” of IST (Information Society Technologies) and it is
partially funded by the European Commission.

Fig. 1. The MUSE Broadband Network

prototype will incorporate this functionality but not at this
very beginning stage.

For the implementation stage Linux has been chosen as
operating system and it will run over a compacti386 PC
compatible device [7]. Since the RGW have to manage low
level packets (link layer) and Linux does not provide this
manipulation natively, it was decided to use the Click modular
router [2]. This election will be explained in II together with
the main characteristics of Click. Next section III is dedicated
to the description of the hybrid model designed to implement
the RGW. As the RGW will be performing continuous auto-
configuration tasks based on IMS control frames, management
at the application layer is also desirable. This is the main
reason for the Hybrid Model design, which combines Click
modular router with an application called Manager. Section IV
describes the pretended testing scenarios and the tests already
performed. Section V concludes with the summary of some
important abilities acquired in this stage proposing new issues
for the future work.

II. CLICK MODULAR ROUTER

Click is a modular software router developed by MIT LCS’s
Parallel and Distributed Operating Systems group, Mazu Net-
works, the ICSI Center for Internet Research, and now UCLA.
A Linux kernel running Click is able to act as a router
in a flexible and configurable way. Routing tasks are made
extremely fast, for software routers running on commodity
hardware. On a 700 MHz Pentium III, a Click IP router can
handle up to 333,000 64-byte packets per second [2]

A Click router configuration is based on interconnected
modules calledelementswhich control every aspect of the



operation of the router: communicating with devices, packet
modification, queueing, dropping policies, packet scheduling,
etc. As modularity is the main advantage of a Click router, it
is possible to write new modules in C++ with the desired be-
havior. The router configuration results from gluing elements
together in a plain text configuration file using a simple script
language.

Click can work either at user level or using a driver program,
overriding linux kernel. The second option has been chosen as
it lets the router deal with frames faster, avoiding kernel stack.
This is the main reason why Click has been selected instead
of other options as IPTables [3], EBTables [4] or libpcap [5].
None of them let the router deal with frames at the link layer.

Click router software works, by now, in a Linux kernel 2.2
or 2.4 with a kernel module, but will be soon available for
kernel 2.6. As an open source-project many developers are
working in order to make Click support kernel 2.6, IPv6 and
some other features.

III. C LICK /APPLICATION HYBRID MODEL

For the RGW prototype we need a software capable of
catching all packets at layer two level, modify them, reinject
them into the network, sending them up to the upper layers
and so on, so we decided to use the Click modular router
software (more precisely the ’module Click’, as the application
Click way to work is not so useful for us). Although we chose
Click, it may not be mandatory or desirable to develop new
applications at linux kernel level due to two main points:

1) Programming new applications at the kernel level is
sometimes very difficult.

2) The creation of new hardware and software network
applications is also desirable, and they should be as
independent as possible from low level packet facilities
(these applications may be programmed in Java, for
example).

To overcome these problems, it was decided to create a new
hybrid modelwhere no pure Click nor pure application model
will be developed but a combination of these two ones. Fig. 2
depicts thehybrid model. The figure shows three main boxes:

Click is the Click software router working at kernel
level. It will receive every packet, will wrap
them inside a new UDP packet and will
forward them up to the Manager or Process
application.

The Managerwill receive fresh packets from the Click
module and process them. Depending on the
received packet characteristics, the Manager
could reconfigure the Click module to for-
ward the same kind of packets to a certain
process.

Processes n are the user level applications developed to
assume certain functions.

This model proposal must be tested to assure it is not suf-
fering any serious performance problem. When an application
is programmed at the Click module level the time a frame

Fig. 2. Hybrid Model

Fig. 3. Manager model

expends crossing the Linux kernel is cancelled. This is why the
delay imposed by the Manager must be estimated to validate
the hybrid model.

A. Testing the Hybrid Model Viability

Two tests were defined to validate the hybrid model and new
techniques were also proposed to minimize the delay imposed
by the packet walk-through between the Click module and the
different applications.

1) Reception Delay in Click: ToHostSniffers vs. ToHost:
The main intention of the hybrid model is to help the pro-
grammer to develop RGW applications in an easy and fast
way, but there are some issues that must be tested before the
model is finally validated. In these tests we try to measure
the delay increment introduced by the hybrid model due to
the transmission of the packet from the Click layer to the
application layer and then back to Click.

In a typical Click application, when a packet has to be
relayed to the application layer, the packet has to pass through
all the Linux kernel to arrive to the final application. Some-
times this is not the desired performance because of the delay
imposed by some kernel operations like the TCP/IP protocols,
IPTables, etc. This situation is depicted in Fig. 3

In order to prevent packets from passing along the whole
kernel, Click provides two different elements to pass the packet



ToHostSniffer ToHost
Send at Received at Delay Send at Received at Delay
792358 792370 12 238694 241465 2771
242900 243063 163 419857 424088 4231
374958 378089 3131 560984 569566 8582
784325 785121 796 674645 678154 3509
472349 476723 4374 309027 310941 1914
545403 547961 2558 895921 898466 2545
545403 547961 2558 44727 46137 1410
763808 765446 1658 291357 293008 1651
269527 271023 1496 112631 115348 2717
819782 822051 2269 884444 892718 8274

Average delay:1901, 5µs Average delay:3760, 4µs

TABLE I

DELAY RESULTS

up directly to the application layer:ToHostSniffersandToHost.
ToHostelement allows Click to send a frame directly to the
TCP/IP linux stack responsible then for resending the frame
to the Manager application (that should be listening in a well
known port). On the other hand,ToHostSnifferselement lets
Click to send a frame directly to an application level that must
be configured to run as if it were a sniffer2.

In order to find out the delay introduced using these two
Click elements the following tests were performed:

• The first step is the time synchronization between two
hosts A and B.

• Then, from host A, a group of frames are sent towards
host B (using a maintained ping), where Click is running.
Transmission and reception times are taken down from
the Ethereal sniffer output.

Both process are running over a compacti386 PC compatible
device with a linux kernel 2.4.26 and 10/100 Fast Ethernet
cards.

Table I shows some of the results obtained in this test (time
values are expressed in microseconds):

The result of this test reaffirms the previous ideas about the
delay imposed by Linux kernel because, as it is shown, the
delay obtained using the elementToHost is around two times
the delay obtained usingToHostSniffer(i.e. usinglibpcap[5]).

2) Delay introduced by the Manager Application:This
scenario tries to test if the use of a user-level application
called Manager does slow down frame management or not
(should it really reduce the performance it could always
be possible to manage the frames inside the Click module,
without passing them to the user level although the flexibility
of the development at the application layer would be lost).
For this test Click has been installed in a computer with two
different configurations:

Direct connection frames are encapsulated in an UDP
packet by Click, and then they are

2a sniffer is a program used to capture data in network, typically in
shared medium. Used by network operators and maintenance personnel to
troubleshoot network problems

sent again directly to the same inter-
face they came from.

Manager connectionframes are also encapsulated in an
UDP packet, but now they are sent
to the Manager. This process can be
carried out by a fake interface called
fake0 (for example). When the Man-
ager receives a frame, it returns it to
the source machine through Click.

In both cases packets had the same size and they were sent
by the same source machine. In order to perform the test, a
high number of streams of 1000 packets have been sent, with
different sizes in each experiment. Information was collected
by the source machine with a sniffer application (Ethereal[8]).
Both configurations are shown in Fig. 4 and Fig. 5.

Fig. 4. Manager model

Fig. 5. Click-only model

Table II shows the results obtained in these tests.
Taking into account this result it can be concluded that the

usage of the Manager increases the time around130−140µs,
(this is packet size independent result). Nevertheless, the
Manager will not always directly resend packets, because
sometimes it has to send packets to another user-level applica-
tions or Click modules (through a fake interface for example).
Then, time used for managing frames could be similar in both
cases (Click handling or Manager handling). It must also be



Packet size Direct connection Manager Connection Delay
100 bytes 120µs 250µs 130µs
540 bytes 200µs 330µs 130µs
1060 bytes 290µs 430µs 140µs
1440 bytes 365µs 500µs 135µs

TABLE II

DELAY INTRODUCED DUE TO THE HYBRID MODEL

Fig. 6. Test scenario

noticed that we are working to achieve that packets arrive
to Manager without passing by Linux kernel stack (using
ToHostSniffer), and this will decrease reception times, but in
this scenario just the Manager presence is tested.

IV. T EST SCENARIOS

Probed the hybrid model viability, the next step is to test
the Click module stand alone. Fig. 6 shows the test scenario
used to test the Click modular router as a basic NAPT
(Network Address Port Translation) device. The scenario is the
following: a video server listens for HTTP connections on its
8282 TCP port. A user in the laptop introduces in its browser
the corresponding URL of the server. The laptop and the video
server belong to two different networks so the laptop sends the
HTTP request to its default gateway. The video server runs
over a linux machine, using a kernel 2.4.26 and connected
to the RGW by a gigabit ethernet. The RGW, also a linux
system, uses both interfaces, 1 Gbps and 11 Mbps wireless, the
second one controlled by the Atmel WLAN driver. The laptop
is running a Windows system and a common http browser.

The instantaneous traffic rate at the laptop input is depicted
in Fig. 7 (high quality video) and 8 (medium quality). Neither
delay nor packet losses were noticed in these tests.

Another important tested value is the maximum number
of packets that have ever been in a queue at once. It is a
value stored in the Click environment and it is easy to read.
Click creates a virtual file directory where elements can write
and read different values depending on the element itself.
For example, aqueueelement creates a read-only variable
calledhighwaterlengthwhere it stores the maximum number
of packets in a queue. At the end of these experiments just
four packets were waiting at the same time to be transmitted.
In other words, the Click module is able to process all frames
at these rates.

V. CONCLUSIONS ANDFUTURE WORK

Click is a modular router designed for an easy configuration
and high performance when it is used in the Linux kernel area.

Fig. 7. Results for the high quality test

Fig. 8. Results for the medium quality test

Nevertheless, working at the kernel space has some problems:
it is difficult to program and debug at this level and the final
application is too operating system dependent.

In this paper we proposed and validated the benefits of
working with an hybrid model, using Click to capture low
level frames (link layer frames) and process them at higher
layers.

Two different tests were presented where the low delay
imposed by the transfers between the Click level and the
Manager application is probed to be acceptable.

In the future the Click core module must be well designed to
allow an easy configuration and integration with the Manager
and the different processes. An important study must be done
in this field, because of the notorious impact this decision may
have in the future work. It is also important to define an API
to allow other developers to write Click-independent RGW
processes.

ACKNOWLEDGMENTS

This article has been partially granted by the European
Commission through the MUSE project.

REFERENCES

[1] Multi Service Access Everywhere (MUSE) European Project,
http://www.ist-muse.org/

[2] Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The Click
Modular Router.ACM Transactions on Computer Systems18(3) (2000)
263–297

[3] The netfilter/iptables project. [Online]. Available: http://www.netfilter.org/
[4] The ebtables project. [Online]. Available: http://ebtables.sourceforge.net/
[5] Lawrence Berkeley National Labs,libpcap, Network Research Group,

http://www.tcpdump.org/
[6] 3GPP TS 23.228 V6.6.0 (2004-06), Technical Specification 3rd Gen-

eration Partnership Project; Technical Specification Group Services and
System Aspects; IP Multimedia Subsystem (IMS); Stage 2 (Release 6)

[7] Lex System, http://www.lex.com.tw:8080/home.htm
[8] Ethereal. [Online]. Available: http://www.ethereal.com/
[9] ETSI-TISPAN: Draft ETSI: TISPANNGN; Release 1: Release Defini-

tion. V0.3.0”, RF00001, November 2004.


