
Computer Networks 53 (2009) 2967–2984
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Zero config residential gateway experiences for next generation
smart homes

Jaime García-Reinoso a,*, Iván Vidal a, Francisco Valera a, Arturo Azcorra a,b

a Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid, Spain
b IMDEA Networks, Avda. Mediterraneo 22, 28918 Leganés, Madrid, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Received 30 December 2008
Received in revised form 7 July 2009
Accepted 8 July 2009
Available online 20 July 2009
Responsible Editor: J. Neuman de Souza

Keywords:
Residential gateway
Configuration agents
Signaling
1389-1286/$ - see front matter � 2009 Elsevier B.V
doi:10.1016/j.comnet.2009.07.007

* Corresponding author. Tel.: +34 916248747.
E-mail addresses: jgr@it.uc3m.es (J. García-Reino

(I. Vidal), fvalera@it.uc3m.es (F. Valera), azcorra@it.
Home networks and home environments are developing so fast that a new generation of
residential gateways is needed in order to allow emerging services and the huge amount
of available bandwidth to take advantage of this evolution. New protocols, applications,
devices and services are appearing day after day and in order to properly cope with them,
gateways must continuously be evolved. This article presents a novel architecture devel-
oped so as to allow the automatic update and configuration of residential gateways. While
data flows are treated following a conventional procedure, it is for signaling messages that
the architecture proposes an application layer processing. This allows for an easier deploy-
ment of new modules capable of understanding the different signaling protocols that are
needed to set up the corresponding services. These different modules (Configuration
Agents) can be dynamically installed or uninstalled by Service Providers and can also inter-
act with the rest of the layers of the architecture in order to configure the whole platform.
This architecture has been validated by means of experiences within a SIP enabled environ-
ment to allow the automatic provisioning of QoS guaranteed services to next generation
smart homes.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Homes are becoming smarter, services are becoming
more complex, devices more different and numerous and
users more demanding. The key to open residential envi-
ronments to this new set of requirements is located in res-
idential gateways (RGW from now on), responsible for
connecting homes with access networks and for providing
a framework where services can be properly deployed and
configured according to client demands.

Current RGWs (most of them are still in fact more ‘‘rou-
ters” than ‘‘gateways”) have already increased their capa-
bilities to include a lot of interfaces (Ethernet, Wireless,
PLC, USB, etc.), to provide triple play, to split the reception
. All rights reserved.

so), ividal@it.uc3m.es
uc3m.es (A. Azcorra).
channels to guarantee the quality of the data streams, etc.
This implies a notorious advance compared with common
ADSL modem-routers that were, and still are, widely de-
ployed. However, up to now, they are not flexible enough
so as to be installed in a multiservice and multiprovider
environment. They are typically built as closed solutions
for particular providers.

This paper presents a general architecture for configura-
tion and control of RGWs whose main objective is to easily
allow different configuration agents (CAs) to be installed in
the RGW, in order to set its parameters based on the pro-
tocol primitives implemented by that certain CA. One of
the most relevant things related to this proposal is that
the interface offered by the control layer towards the dif-
ferent CAs is common. No particular technology is imposed
on the implementation of these CAs as far as the interface
used towards the control layer is respected. A CA may for
example be a Java application, a C program, an OSGi bundle

http://dx.doi.org/10.1016/j.comnet.2009.07.007
mailto:jgr@it.uc3m.es
mailto:ividal@it.uc3m.es
mailto:fvalera@it.uc3m.es
mailto:azcorra@it.uc3m.es
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


2968 J. García-Reinoso et al. / Computer Networks 53 (2009) 2967–2984
or a web server. It will be responsible for interpreting mes-
sages of different protocols like SIP, SNMP, TR-069, RTCP,
etc. (snooping protocol messages, acting as a server, etc.)
and based on the retrieved information interacting with
the communication control layer using the common inter-
face. In this paper we present an exhaustive description of
a SIP CA, as a possible automatic enabler for service config-
uration. The SIP protocol has been adopted to provide ses-
sion control functionalities in several Next Generation
Network architecture proposals (e.g. TISPAN NGN [1]).

The rest of the article is organized as follows. Section 2
presents the motivation of this paper describing the main
problems of nowadays home gateways. Section 3 proposes
the so called zero config architecture, based on configura-
tion agents implemented at the application level that can
be easily installed and can configure the gateway as re-
quired. In Section 4, the different layers of the proposed
architecture are instantiated and validated by means of
diverse tests performed over an RGW prototype in a real
scenario. Section 5 describes different examples of configu-
ration agents, some of them considered as signaling agents
(they manage signaling protocols) and some other as appli-
cation agents (capable of running real applications and
turning the RGW into a service gateway). Special attention
is given in this section to the SIP configuration agent, capa-
ble of automatically configuring the Quality of Service
(QoS) in the RGW. Section 6 presents some related work
and two examples describing how to implement some
RGW standards using the architecture presented in this pa-
per. Section 7 concludes with a brief description of the main
contributions of this work.
2. Motivation

There are a lot of initiatives to standardize the RGW
architecture, using different names and sometimes differ-
ent expressions to define what an RGW is. This last point
is very important, because different vendors, projects or
standardization bodies have their own vision about the
functionality of an RGW. The basic RGW is just a connec-
tion device between the home network and the access net-
work. Several new functionalities can be added to this
basic configuration like quality of service (QoS), multicast
capabilities, remote and local management, UPnP function-
alities, Network Address Translation (NAT), etc. It is also
possible to introduce services in the RGW like domotics,
media servers (for storing, transcoding, etc.), eCare, web
proxy, parental control, etc. promoting the RGW into a ser-
vice gateway.

It is clear that different RGW standards will define dif-
ferent functionalities and recommendations. Furthermore,
new versions of the same standard will require new RGW
boxes, which in turn will increase economic expenditures
to the companies (also to the customers) and electronic
trash.

A relevant fact when designing an architecture is its
extensibility which can be defined as the capacity to in-
crease the functionality without changing the main archi-
tecture. Although this definition may be too flexible
because some devices can increase their functionality, for
example with a firmware upgrade, inserting a new card,
etc., it is widely used.

Designing an extensible architecture is a problem that
has already been addressed and several RGWs devices have
this functionality nowadays. For example, an RGW could
be extended including new IMS capabilities upgrading its
firmware which is a common upgrading mechanism. This
behavior has several drawbacks:

� It is usual that just the device manufacturer has the
complete RGW hardware and software description, so
it is the only one able to create new firmware versions.
It is an obvious problem for those customers that want
fast adoptions of new functionalities.

� How this upgrade is performed? The user can download
a new firmware manually, install it and restart the plat-
form. The network provider can upload it and restart the
RGW after the installation process (it may interfere with
the normal operation). As the firmware is a monolithic
piece of software, the upgrade process typically ends
with a reboot sequence.

� Other providers do not have the opportunity to create
new modules with certain functionalities for the RGW,
so the customer is always forced to use products of its
RGW manufacturer. Although nowadays RGWs are
small and with a fixed and small set of functionalities,
next generation RGWs will be small computers with
high capacities, so it should be possible to add and
remove modules from different companies.

� Traditional Internet is changing, and due to new laws or
necessities, the classical model, where a customer has a
single ISP and just a couple of service providers, will
probably change [2]. In the near future a customer will
choose between several transport providers as his or
her connection with the digital world, and then contract
services with service providers: Internet access, video on
demand, IPTV, VoIP, etc. For this new scenario, a single
point of access to the RGW will be no longer valid,
because several entities must install and configure their
own software [3].

Because of that, a traditional monolithic architecture
design does not seem to be recommendable. A multi-lay-
ered approach appears to be more adequate to achieve a
dynamically extensible RGW device. With a layered architec-
ture it would be possible to request, load or unload a mod-
ule developed to perform a given functionality. The request
can be done by the customer using a web interface for
example, by another module or by a service or transport
provider when a non-existing functionality is necessary.

Furthermore, even with a good method to install new
functionalities into the RGW, it is also important to man-
age all running modules in order to increase the overall
performance and to prevent possible problems. With a
proper design, it should be possible to share functionalities
between modules and to protect restricted access to the
gateway core.

Regarding the initiatives described in the previous sub-
section, up to the author knowledge, none of them pro-
poses the changes explained here to create a dynamically
extensible RGW architecture.



J. García-Reinoso et al. / Computer Networks 53 (2009) 2967–2984 2969
2.1. Possible solutions

It is important not to confuse an architecture design
with its implementation. An architecture can define a func-
tional block design that will be afterwards implemented
(instantiated) using a given technology. This paper pro-
poses a zero config RGW architecture aiming at providing
a mechanism to automatize the configuration process. A
particular implementation of this architecture will be dis-
cussed in the validation section (see Section 4). However,
due to the flexibility enabled by this architecture, many
other alternative approaches are also possible for the
implementation. For instance, the OSGi [4] service platform
is a Java execution environment for software components,
used in a variety of applications like RGW devices. With
the execution environment defined, components can be
loaded and unloaded without a final reboot.

3. Proposed architecture

The architecture proposed in this article, depicted in
Fig. 1, represents the configuration and control layer of
the RGW. An overall architecture of the gateway is out of
the scope of this paper (for an overall general architecture,
please refer to [5]).

The main purpose of this architecture is to be able to
update the RGW with new capabilities (or upgrade existing
ones) without any intervention of the user (zero configura-
tion). The capabilities are provided by software modules,
called Configuration Agents (CA), which are expected to
be fully integrated in the gateway and in fact should be
able to configure the different parameters of the gateway
when needed.

For example, if the RGW does not support the Session
Initialization Protocol (SIP) [6] and the user wants to be
Fig. 1. Proposed a
subscribed to a VoIP service it may be necessary to load
a SIP CA. Furthermore, it may happen that the gateway
has to provide NAT traversal functionality for the SIP mes-
sages by means of an Application Level Gateway, ALG, for
example. However, if the terminal is enabled with the typ-
ical STUN client (Simple Traversal of User Datagram Pro-
tocol [7]) it will allow for a transparent traversal and
the ALG should be bypassed. It may also happen that
the user wants the gateway to configure the different
flows based on SIP information so that the quality of the
VoIP call is preserved or that the RTP or RTCP flows are
monitored by the gateway in order to react in case of
problems.

All these things could be automatically done by the
gateway with the proper CA if the provider installs it in
the RGW as soon as the user subscribes the service (this
installation will be detailed later on).

The architecture has been divided in two layers: the
Configuration Layer and the Transport Layer (being this last
one divided in the Transport Control Sublayer and the Trans-
fer Sublayer).

Following a bottom-up definition, the Transfer Sublayer
is responsible for the normal data forwarding mechanisms,
also including functionalities like traffic classification,
queuing, scheduling, shaping, routing/bridging, Network
Address and Port Translation (NAPT), etc. This layer is con-
figured by the Transport Control Sublayer that has direct
access to different parameters like queue length, maxi-
mum number of allowed flows, etc.

And finally the Configuration Layer is where the Config-
uration Agents (CAs) are managed. This layer is responsible
for their installation and un-installation procedures, for
creating a framework where CAs can be executed and for
relating different CAs into Configuration Contexts (CC in
the figure) when cooperation between CAs is required.
rchitecture.



2970 J. García-Reinoso et al. / Computer Networks 53 (2009) 2967–2984
The Configuration Agents are the entities responsible
for contacting the Transport Control Sublayer in order to
configure the RGW (or to read the configuration). Although
this is one of their main roles, the CAs are able to do many
other things since they are in fact independent pieces of
software installed in the gateway.

There are two types of CAs defined in this configuration
architecture (although in an overall architecture this idea
may be expanded to support more types):

� The signaling Configuration Agents are responsible for
processing messages corresponding to specific proto-
cols. This process may just imply snooping the traffic
to retrieve statistics, may imply a reconfiguration of
the gateway, may even imply changing the signaling
frame, etc. In general there will be one CA per signaling
protocol. Following with the SIP example already men-
tioned, a SIP CA may for example implement NAT tra-
versal functionalities (by means of an ALG) changing
the signaling messages as required, may behave as a
Back to Back User Agent (B2BUA) to support legacy SIP
terminals in an IMS/TISPAN scenario, may deduce (and
afterwards configure) the quality of service required
from the codec information exchanged in the signaling
messages, etc.

� Application Configuration Agents. These agents are
responsible for supporting applications or services. They
will not process protocol frames, but will also be able to
configure the RGW on behalf of the related services. An
example of an application CA may be an eCare service
where the gateway has an attached medical device
and it is responsible for configuring the Transfer Layer
in order to send the medical information towards the
hospital server using a high priority flow (see [8]).

The procedure to install the different CAs is implemen-
tation dependent. The idea is that they can be installed as
the result of a manual user order, an operator order, a ser-
vice intervention, automatically when the gateway detects
it is needed, etc. The mechanism to download the CA into
the gateway and the technology used to develop the CA is
left open. It can be developed in any language, be a stand-
alone application, be a Java bundle of an OSGi platform,
be an agent running into an intelligent or mobile agent plat-
form, etc. or even several of these options at the same time.
In Section 4 a particular implementation will be detailed.

The Transport Control Sublayer is offering a common
interface (set of primitives) to the Configuration Layer. This
way it does not matter how heterogeneous CA technology
is since the configuration of the residential gateway is al-
ways the same for them all. Once again the implementa-
tion of this interface is open (it may be by means of a
Java public interface, an XML definition like in the example
described in Section 4.3, etc.). This interface allows the
Configuration Layer to set or read a large number of
parameters (available bandwidth, NAT bindings, queue
sizes, etc.) and perform many actions (reboot, restore con-
figuration, etc.).

The Transport Control Sublayer is closely related with
the Transfer Sublayer because it configures the resources
used by this last sublayer.
And finally there is also another relation between the
Transfer Sublayer and the Configuration Layer: the CAs re-
ceive frames from the Transfer Sublayer (and may also
send frames to it).

When the CA is downloaded into the gateway an initial-
ization procedure must be performed so that the CA is
started and properly registered into the system, providing
information about:

� Its unique identifier and its version number.
� A procedure to receive frames from the Transfer Layer.
� A flag indicating if a frame has to be extracted or copied

from the Transfer Layer so as to submit it to the proper
CA.

� A set of conditions under which the frame will be for-
warded up to the CA.

� Where, from the Transfer Layer data flow, will the frame
be extracted (or injected). For example, before NAT rules
are applied, after a VLAN tag has been added, etc. These
interaction points in the data flow are called hooks in the
architecture.

A final important proposal in this architecture is the
decision of running both the Configuration Layer and the
Transport Control Sublayer at the application level, only
leaving the Transfer Sublayer at the Operating System
(OS) kernel (or even hardware) level. Although this is
more an implementation than an architectural fact, it is
relevant to state it like this, because part of the functional
flexibility that the architecture is offering would be lost
otherwise.

A possible disadvantage of this approach is the perfor-
mance. Not really related to processing time, where the
difference between processing a frame at the application
level or at the OS kernel level will be negligible anyway,
but related to the time taken to send frames from the lower
layers to the application layer and after their processing,
back again to the communication layers (Transfer Sublay-
er). This is something that will have to be validated once
the architecture is instantiated and implemented.

There are however notorious advantages following this
approach:

� CAs can be automatically and quickly installed: they can
be installed in the gateway or uninstalled, without user
intervention (as distinct from typical firmware updates).

� CAs are easier to maintain: the provider can always
upgrade the software whenever a new version is avail-
able (or even the gateway itself if an automatic update
mechanism is developed).

� Software development done at the application level is
easier than at the OS kernel level.

� CAs implementations are not OS kernel dependent and
so can be reused through different platforms.

Although the flexibility provided by this architecture is
helpful when it is integrated into a multiprovider environ-
ment (everyone is free to choose its own CA implementa-
tion), the implications of this situation from a security,
management, etc., viewpoint have been studied in [3]
where different solutions are proposed.



J. García-Reinoso et al. / Computer Networks 53 (2009) 2967–2984 2971
4. Architecture validation

4.1. Prototype architecture

Fig. 2 presents an instance of the general architecture
introduced in Section 3. A prototype that follows this in-
stance will be presented in the following subsections. A
first version of this prototype was used as inspiration for
the definition of the architecture presented here and was
demonstrated in [9].

As it will be explained later, the Transfer Sublayer was
implemented at the OS kernel level using the Click! mod-
ular router software [10] while the Transport Control Sub-
layer and the Configuration Layer were implemented at the
application layer using Java. It is important to note that the
architecture definition is independent from the technology
chosen to implement it.

Fig. 3 shows the testbed used for the validation and the
characteristics of the devices involved in the different tests.

4.2. Configuration layer validation

Following the flexible architectural philosophy de-
scribed in Section 3, the chosen technology used to imple-
ment the Configuration Layer is the Java programming
language, so each CA will be a Java application. The Config-
uration Agent Manager (CAM in Fig. 2) is the one responsi-
ble for the CA registration procedure (see Section 3) and for
installing the different CAs that conform Configuration
Fig. 2. Implemented
Contexts. In our implementation, the CAM is a Java applica-
tion too.

However, as it has been mentioned, this flexible appli-
cation level approach has the major drawback of the delay
that may be introduced due to the transit of messages from
the Transfer Sublayer to the Configuration Layer. It is also
important to note that this delay highly depends on the fi-
nal implementation. In this prototype, for example, as the
Transfer Sublayer is implemented in Click!, that runs at
OS kernel level, it is necessary a mechanism to extract or
copy frames from Click! and to send them to a given CA
at the application level. This mechanism is based on the
so called hooks in Section 3.

To calculate this delay, two experiments were per-
formed using the ping application (any traffic that tra-
verses the RGW both in the upstream and downstream
direction is valid for these tests). In the first test (Test1),
the ping directly traverses the Transfer Sublayer without
further considerations but in the second one (Test2) the
message is extracted in the upstream direction and then
reinjected down again. Fig. 4 shows the testing scenario
and a detailed disaggregation of the different delay compo-
nents (round-trip delay time).

Let D1 be the delay obtained after Test1 and D2 the de-
lay obtained after Test2. Using the nomenclature pre-
sented in Fig. 4 it is easy to obtain that D1 ¼ T1 þ Tclþ
T2 þ T3 þ T4 and D2 ¼ T1 þ T 0cl þ Tup þ Tproc þ Tdown þ T2þ
T3 þ T4. Notice that Tcl and T 0cl (the times necessary
to look up in the hook rules table in Test1 and Test2,
architecture.



Fig. 3. Testbed used on validation trials.

Fig. 4. Delay scenario.

2972 J. García-Reinoso et al. / Computer Networks 53 (2009) 2967–2984
respectively) are different. Therefore, if D1 is subtracted
from D2, it is possible to obtain the whole delay intro-
duced by this communication mechanism: D2 � D1 ¼
T 0cl þ Tup þ Tproc þ Tdown � Tcl. Assuming that Tcl � T 0cl, and
for these experiments Tproc is null (no special processing
is done in the upper layers), then D2 � D1 � Tup þ Tdown

is the extra-time imposed by the proposed architecture.
Fig. 5 shows the results (each point represents the



 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

100 200 400 800 1400

D
el

ay
 (m

s)

Packet Size (bytes)

Delay vs Packet Size

Test2
Test1

Fig. 5. Delay vs. packet size.

J. García-Reinoso et al. / Computer Networks 53 (2009) 2967–2984 2973
average of 20 different realizations), where it is possible
to observe the difference between these two delays
(different tests with different ping sizes are shown).

It is important to note that this extra-time is packet size
independent and around 100 ls (some considerations
about this value will be done after the following validation
test).

Another relevant value that must be obtained in order
to validate this implementation of the architecture is the
maximum throughput available between the Transfer Sub-
layer and the Configuration Layer. To do so, the system will
 0.1

 1

 10

 100

100 200

Th
ro

ug
hp

ut
 (M

bp
s)

Packet

Throughpu

Fig. 6. Maximum through
be stressed using the Iperf [11] application to generate
UDP packets with a constant bit rate pattern. This way it
will be possible to measure the maximum admissible
throughput of the system (using again different packet
sizes). For this trial, a CA is created and registered, so
UDP traffic with destination port 5001 is extracted from
an upstream hook (Hu1 in Fig. 2) and after a certain fixed
waiting time (emulating the processing time) the CA rein-
jects the traffic down towards the same hook (this is some-
how similar to Test2 described in the delay tests). To
estimate the processing time in a CA, several tests were
400 800 1400

 Size (bytes)

t vs Packet Size

Tproc=0ms
Tproc=0.5ms

Tproc=1ms

put vs. packet size.



2974 J. García-Reinoso et al. / Computer Networks 53 (2009) 2967–2984
performed in VoIP testbed in order to obtain the time nec-
essary to process several types of SIP messages (as SIP is a
text-based protocol, processing SIP frames is a very time
consuming task). These tests gave that Tmin

proc ¼ 0:5 ms and
Tmax

proc ¼ 1 ms.
Fig. 6 gathers the results of these tests. As expected,

packet size is a relevant parameter because for small pack-
ets the throughput is less than for the biggest ones and in
fact the throughput is almost doubled as the packet dou-
bles its size.

From the point of view of these delay and throughput
tests, the prototype has been successfully validated. As it
has already been mentioned, the CAs will be responsible
for processing signaling frames extracted from the normal
traffic flow and based on them reconfigure the RGW. It has
been seen that it is possible to maintain a sustained rate of
more than 2 Mbps for an average packet size (in the VoIP
testbed, the measured average packet size for SIP messages
is around 400 bytes) which is far than enough for signaling
messages that have an aggregated throughput which is
obviously small. This means that it is feasible to send
frames up to the application layer, process them (for sig-
naling messages the measured delay is not significant)
and send them down to the communication layer to con-
tinue their normal transmission. Although it is also possi-
ble to use the same idea for data frames, the typical
operations for them like transcodification, pattern recogni-
tion, quality detection, etc. imply a considerable increase in
the processing time and even more important, the aggre-
gated throughput may be really high (of course this all de-
pends on the hardware of the RGW and on the particular
operations).

After this performance validation, the last procedure to
be defined is the CA registration mechanism, that will be
mainly driven by the CAM. The implemented CA registra-
tion procedure works as follows:

� The available CAs are stored in web servers (it does not
matter if it is only one server or if they are distributed in
different servers as far as the CAM is aware of the differ-
ent URLs of all these servers). In each one of these web
servers there is an XML file that provides the informa-
tion about all the available CAs (and that is in fact the
file whose location must be provided to the CAM). This
XML file includes for every CA, the URL of the Java
bytecode, the CA identifier, the version, and a descriptor
with a human readable short text explaining the CA
functionality.

� The installation procedure implemented can be both
manual or automatic. For the manual procedure, the
end user or the provider can install a new CA. In the pro-
totype implementation, the CAM will provide the
required information to a Java servlet that performs as
a web front end for the installation (the URLs of the
XML description files are enough). Once the user (or
the provider) selects the CAs to be installed, the servlet
transmits this information to the CAM that will proceed
with the rest of the installation (in the automatic instal-
lation it should be an already installed CA the one that,
knowing in advance the identifier of another CA, will
ask the CAM for its installation).
� After receiving the installation request, the CAM down-
loads the CA bytecode file starting it in the Java Virtual
Machine, JVM (obtaining as the result of the execution
the PID, Process Identifier, from the operating system).

� Once started, the CA asks for its own registration to the
CCP (located on the Transport Layer) on a well-known
port. The CA includes the following information in the
request:
– The CA identifier (CAid) and the PID (CApid). Every

CA is run as a different process (different JVMs).
– One or several rules. Each rule indicates to the RGW

that the CA wants to receive all the packets passing
through a particular hook in Click! in a provided port
(a hook identifier is also provided as part of the rule).
The rule is in fact defining the matching pattern (for
example all SIP messages coming from IP address A
and interface I). It also indicates if it just wants to
receive a copy of the frame or to extract the frame
from the information flow for further processing.
Note that in general there may be many ports associ-
ated with one hook, and these ports do not have to be
different for different hooks (many CAs may be lis-
tening to the same hook on different ports, one CA
may be listening to several hooks on the same port
or on different ports, etc.).
� The CCP maintains a table with the ports that are being
used by the running CAs (the entries of that table have
the format <port, CAid>). The CAs have a configurable
port range [20000–21000] pre-assigned, so after receiv-
ing the registration request from the CA, the CCP verifies
for every port included in the request if they have
already been used in the table and in case they are free,
they are automatically assigned. Triggered by the regis-
tration request, the CCP performs the following actions:
– It returns a list with the ports that the CA will use to

listen for incoming frames on the corresponding
hook, using to send this message the same port used
by the CA to make the registration request. Note that
these ports may be different from the requested ones
in case the requested ports are already in use or in
case the requested ports are out of the assigned
range. The returned ports will be following the same
order as the previous set of rules.

– It stores the information of the CA in its local data-
base: CAid, bytecode name, descriptor, URL, version,
CApid.

– It adds the rules to the rules section of the MIBC (in
the same order as they are received).

– A parser then translates the XML of the MIB to a
Click! language file. Click! is instructed to use this
new information.
Once all these steps are completed, the CA installation
procedure is finished. The RGW is automatically updated
with the new functionalities provided by the CA in a
straightforward way.

Finally the CA will start its normal execution, listening
to incoming frames. Occasionally it may happen that a
CA creates one or several threads in order to allow a better
treatment of the different frames (to attend in parallel
incoming/outgoing frames from different ports/hooks for



J. García-Reinoso et al. / Computer Networks 53 (2009) 2967–2984 2975
example). These threads do not have to execute any partic-
ular procedure so as to be configured and registered. In
case a CA wants to create different threads, during the CA
registration process, it will indicate the different ports
where the threads will receive the frames. The existence
of threads is completely transparent for the rest of the
architecture because once the port has been registered by
a CA, for the rest of the architectural blocks it is indifferent
whether it is implemented by one CA that receives traffic
in different ports or by several threads launched by the
CA and each one listening in a different port.

The process to uninstall a CA from the RGW would be as
follows:

� The user, provider or another CA selects the CA to be
uninstalled and sends an unregistration request to the
CAM. The CAM kills the CA based on its pid and deletes
the CA bytecode (‘‘.class” file).

� The CCP deletes the information about the CA (ports,
hooks, etc.) and its rules from the MIBC.

In order to validate this Java implementation, it is
important to test the scalability of this proposal, in terms
of CPU and memory performance. To do this test, different
flows were being transmitted from the client and pro-
cessed at the application layer by a certain CA. Starting
with just 1 flow and 1 CA, subsequent tests were done
up to 100 simultaneous flows and 100 CAs that were pro-
cessing them at the same time. This test schema was re-
peated for three different processing time Tproc values
15 50 100

Number of CAs

(a) Idle CPU (Tproc=0ms)

Ra=0.5Mbps
Ra=1.5Mbps
Ra=2.5Mbps

0
10
20
30
40
50
60
70
80
90

100

15

Id
le

 C
PU

 (%
)

Numb

(c) Idle CPU (T

40

50

60

70

80

90

100

Id
le

 C
PU

 (%
)

Fig. 7. Idle CPU vs. n
and for each Tproc , three different aggregated throughputs
were used (i.e. the addition of the throughputs of the dif-
ferent flows were 0.5 Mbps, 1.5 Mbps or 2.5 Mbps, which
was set as maximum throughput since in the previous
tests it was shown that for Tproc ¼ 1 ms the maximum
throughput was around that value). The packet size was
set to 400 bytes (average packet size for SIP messages).
Fig. 7 shows the results of these tests representing the dif-
ferent CPU usage.

A very interesting result from these tests is that the CPU
usage does not depend on the number of CAs but on the
aggregated rates and the Tproc values. In addition, it was
shown, although not represented in the picture, that run-
ning one JVM per CA as it has been implemented in the
prototype, obviously consumes more memory than run-
ning CAs as different threads (although from the point of
view of security and management the different JVMs sche-
ma offers some advantages). Every new JVM uses around
4 Mbytes while 100 CAs running as different threads re-
quire around 11 Mbytes. Each approach has its own advan-
tages and disadvantages and in fact both of them can be
implemented since current RGWs should have enough
memory (the 100 CAs test can really be considered as a
high upper limit, since is not realistic to suppose that an
RGW will be running so many CAs).

4.3. Transport control sublayer validation

For the RGW prototype, the Transport Control Sublayer
has been implemented using three functional blocks:
40

50

60

70

80

90

100

15 50 100

Id
le

 C
PU

 (%
)

Number of CAs

(b) Idle CPU (Tproc=0.5ms)

Ra=0.5Mbps
Ra=1.5Mbps
Ra=2.5Mbps

50 100
er of CAs

proc=1ms)

Ra=0.5Mbps
Ra=1.5Mbps
Ra=2.5Mbps

umber of CAs.



2976 J. García-Reinoso et al. / Computer Networks 53 (2009) 2967–2984
� The Control and Configuration Process (CCP), apart from
providing a common interface to the Configuration
Layer and loading and unloading modules within this
sublayer (e.g. the CAC and the MIBC) has other function-
alities related with the CAC and the MIBC that will be
described next.

� The Main Information Base Control (MIBC) is the only
module in the whole architecture that is allowed to
change the Transfer Sublayer. Other modules can read,
write, modify, register or unregister Transfer Sublayer
objects stored in this MIB, but the proper translation
between the MIB and the Transfer Sublayer implemen-
tation is performed by the MIBC. The MIBC has to take
care about the integrity of this MIB and to control multi-
ple accesses. For the prototype implementation, the MIB
is an XML document defining all the available objects at
the Transfer Sublayer.

� The Call Admission Control (CAC) has a single (but not
easy) functionality: to accept or reject a new flow for a
given priority. In order to perform its functionality, it will
consider the installed flows and when there is a request
for a new flow, it will run the CAC algorithm. The output
of the algorithm is binary: accepted or not accepted.

The CAC algorithm has to consider the scheduling algo-
rithm, number of queues, queue size, maximum burst size
and jitter for a given priority. With these parameters, the
CAC algorithm will decide about the new flow based on
the priority and the requested bandwidth.

In addition, there are some special cases where the CAC
has to be deactivated. This is not a normal behavior and it
has to be considered as a critical situation. For example,
imagine an emergency call where there are not available
resources int the Transfer Layer. In that case, the CAC will
reject the call and the user will be forced to close other
connections before trying again (the TV, for example). For
an emergency call, this is not acceptable at all and other
mechanisms have to be enabled.

For this implementation, the unavoidable flag for a flow
rule is defined. The CAC module accepts all unavoidable
flow rules despite of their priority or bandwidth require-
ments. It is known that this kind of flow rules can make
the system unstable, as the QoS is not guaranteed anymore
while an unavoidable rule exists (the system will not neces-
sarily be unstable after the insertion of an unavoidable rule,
but it may be). In other words, if a new flow rule insertion is
requested while there are unavoidable rules installed, the
CAC will normally process it and will accept it or not
depending on the available resources at that moment. The
system will only be unstable when a flow rule should not
be accepted because there are not enough resources for it,
but it has to be accepted because the unavoidable flag is set.

It is then important to state who is allowed to set this
flag. As commented before, this must be an exceptional
case and only important events can originate this kind of
flows. In the example of the implemented SIP CA (see Sec-
tion 5.2), it can recognize emergency calls (112 is the Euro-
pean emergency call number) so it will automatically set
the unavoidable flag for those flows. This functionality
was tested and validated in several trials [8], where an
RGW with all its resources compromised by video on de-
mand applications received a SIP emergency call. In that
case, the call was successfully established.

Sometimes it is not enough to accept unavoidable rules,
because it may happen that there are not enough resources
for all the flows in the same priority as the unavoidable
flow. In this case, it is necessary to stop existing flows in
order to leave more resources for the unavoidable flow.
When a CA wants to insert an alarm flow, like the emer-
gency call, with a relatively high bandwidth requirement,
it will set the unavoidable flag an also the freeze one. The
algorithm is as follows:

– The CCP receives a flow insertion request with the
unavoidable and freeze flags set.

– The CCP sends the flow to the CAC (the freeze tag is not
set).

– The CAC accepts the flow.
– The CCP activates the freeze mode and adds the flow to

the freeze array.
– The CCP inserts the new flow and stops all the avoidable

flows (flows are not removed).
– The CAC does not consider the freeze tag (it is just han-

dled by the CCP).

Pseudocode for requests at the CCP is as follows:
IF Flow has to be added THEN

IF Flow does not have unavoidable

flag set THEN

IF FreezeMode is set THEN

RETURN

ENDIF

ELSE

IF Flow has freeze flag set THEN

SET avoidable flag in Flow

IF CAC(Flow) returns accepted THEN

CALL MIBC.write(Flow)

RETURN

ELSE

SET unavoidable flag in Flow

SET FreezeMode

ADD Flow to freeze array

DEACTIVATE all avoidable Flows

ENDIF

ENDIF

ENDIF

IF CAC(Flow) returns accepted THEN

CALL MIBC.write(Flow)

ENDIF

ELSE IF Flow has to be removed THEN

IF (Flow has freeze flag set) AND

(FreezeMode is set) THEN

REMOVE Flow from freeze array

IF freeze array is empty

UNSET FreezeMode

SET AvoidableFlows

ENDIF

ENDIF

CAC(Flow)

CALL MIBC.remove(Flow)

ENDIF
Another important contribution to the CAC module is
the provisional promotion behavior. After a flow insertion



J. García-Reinoso et al. / Computer Networks 53 (2009) 2967–2984 2977
is accepted, a CA can request a provisional promotion to
the CC. The CAC will promote the flow to the next higher
priority if there are enough resources, annotating both its
new priority and its original accepted priority. There is
not a maximum number of promotions. Afterwards, when
the CAC receives another flow insertion request, if there
are not enough available resources, it will try again to de-
crease the priority of a previously promoted flow. If there
are still not enough resources, the CAC will do it again until
there are some free resources for the new flow. If it is not
possible to accept the new flow at all, it will be rejected
and the previous state will be restored (actually, flows
are not changed until the CAC algorithm converges to a sta-
ble state).

When the CAC needs to decrease the priority of a pro-
moted flow, it has to select a candidate flow. There are sev-
eral ways to perform this functionality, but for this
prototype implementation, the most promoted flows (the
flows with the highest difference between the current pri-
ority and its accepted initial one) are the first options.
When there is more than one candidate, the chosen one
will be the oldest flow (according to its promotion
timestamp).

4.4. Transfer sublayer validation

The Transfer Sublayer provides the actual data trans-
mission functionalities within the RGW. These functional-
ities include but are not limited to QoS control, bridge/
routing and network address and port translation (NAPT).
As it can be seen from Fig. 2, incoming data flows arriving
to the RGW follow separate paths in the upstream and
downstream traffic directions. This way, an independent
treatment of traffic in each direction is supported, allowing
to provide a flexible solution in the design of the Transfer
Sublayer. With this approach, new value-added functional-
ities can be aggregated to the data traffic processing in one
specific direction without affecting the treatment of the
traffic flowing in the opposite direction.

On the other hand, at this level different types of blocks
are defined with specific functionalities. This block-ori-
ented architecture improves the flexibility and scalability
of the architectural design, enabling the addition of new
functionalities by means of the development of new blocks
that can be installed at this level either in the upstream or
downstream traffic direction.

These blocks are shown in Fig. 2 and are detailed below
for the upstream traffic direction:

� Classifier: in this block, the administrator can define
specific classification rules to allow or deny certain
flows. In addition, if one particular flow is accepted,
the Classifier block assigns some meta-information to
the flow, specifying how the frames belonging to the
flow have to be treated inside the RGW. The time taken
by the RGW to process the different classification rules
is the so called Tcl in Section 4.2.

� Packet marking: depending on the meta-information
that was previously assigned by the Classifier block, this
block configures a specific packet marking for every flow
frame. The packet marking function is necessary when
QoS is guaranteed in the access network by means of
traffic class differentiation mechanisms, e.g. VLAN tag-
ging or DiffServ.

� Dispatcher: using the meta-information attached to the
frame by the Classifier, this block pushes the frame
towards the proper queue.

� Queuing: this is a configurable block that allows an
administrator to utilize a certain number of queues, fix-
ing the size of each queue in terms of stored packets.
Each queue represents a priority level that will be taken
into account by a scheduling algorithm so as to priori-
tize the treatment of the different flows that traverse
the RGW in the upstream direction. In addition, the fixed
size configured for each queue allows to limit the effects
of the jitter introduced by the RGW in the processing of
the data flows that arrive from the end user network.

� Scheduling: this block implements the algorithm used
to extract the packets from the queues. Different algo-
rithms that have been proposed in the literature may
be used at this processing point (e.g. round robin, fair
queuing, etc.).

� Bridging/Routing: this block may implement bridging
or IP routing functionalities, depending on the configu-
ration required by the operator of the access network.

� NAPT: provides network address and port translation
functionalities, mapping the internal IP address and port
that identifies the source of each IP packet to a public IP
address and port. This public tuple of IP address and port
can be globally addressed out of the scope of the end
user network.

� Policing/Shaping: this block allows to control the rate
of data traffic that is sent on the upstream direction (this
rate can be configured by the administrator for each
data flow), dropping non conformant traffic in case of
using a policing mechanism, or buffering it in case of
using a shaping mechanism.

A mechanism to extract frames from this sublayer is
provided by means of the already mentioned hooks. Next
sections describe use cases for this mechanism.
5. Configuration agents use cases

5.1. CA types

In order to test the architecture flexibility two different
types of CAs were defined: signaling CAs and application
CAs. The signaling CAs are responsible for processing dif-
ferent protocols and for configuring the RGW based on pro-
tocol messages. The application CAs are designed to
provide support to different applications running in the
RGW. Some signaling CAs that were designed and imple-
mented are for example a NAT-STUN CA to integrate a
STUN server [7] in the RGW itself, to overpass the problems
with NAT boxes; a Web configuration servlet to remotely
configure the most important RGW parameters; a TR-069
CA to allow service providers to easily configure the RGW
and also a UPnP CA to allow automatic configuration for
in-home devices. However, the two most relevant signal-
ing CAs to allow an automatic configuration of the RGW



2978 J. García-Reinoso et al. / Computer Networks 53 (2009) 2967–2984
are the SIP CA and the ALG CA. The rest of this section will
detail them both. In addition, some application CAs were
also implemented to provide eCare and VoD services (see
[12] for more information of VoD services on an RGW as
a CA).

5.2. SIP

The SIP CA processes all the SIP signaling messages ex-
changed between the end user terminals and the SIP serv-
ers that are accessed from the residential environment. The
Transfer Sublayer in the RGW will be configured to redirect
all the SIP signaling messages to the SIP CA.

During the SIP session establishment procedure, after
receiving every SIP message containing a Session Descrip-
tion Protocol (SDP) [13] answer the SIP CA derives certain
service information from the SDP answer and its corre-
sponding SDP offer (this offer, according to the Offer/An-
swer model of SDP [14] must have been received in a
previous SIP message). The service information describes
the different media streams (e.g. an audio or video media
stream) that will be exchanged during the multimedia ses-
sion. In concrete, for each media stream, the service infor-
mation contains the parameters defining the flows
associated with the stream in the upstream and down-
stream traffic directions. These parameters include, for
each flow, the IP destination address and port, the band-
width requirements (optional), the media type (e.g audio
or video) and the accepted formats for the flow (e.g. ac-
cepted codecs in case of an RTP media stream).

With this information, the SIP CA will generate the set
of flow rules that must be installed in the RGW so as to
support the QoS requirements associated with the multi-
media session. These flow rules will be provided to the
CCP in the Transport Control Sublayer, that in turn will per-
form the admission control functionalities that are neces-
sary to verify if the QoS demands for the multimedia
session can be provided with the available resources in
the residential environment. If so, the CCP will install the
flow rules in the RGW, providing a proper configuration
of the Transfer Sublayer that guarantees an adequate re-
source reservation for the multimedia session.
Fig. 8. Session est
If a new SDP offer and answer exchange takes place, the
SIP CA will again derive the service information corre-
sponding to the new SDP offer and answer. If the new ser-
vice information indicates any change in the flow rules
associated with the session, the SIP CA will contact the
CCP in order to report the changes that must be performed
on the previously installed flow rules. If it is necessary, the
CCP will go through the admission control procedures and
will apply the modifications provided by the SIP CA to the
configuration of the Transfer Sublayer.

Fig. 8 shows an example where a multimedia session is
established and the Transfer Sublayer is automatically con-
figured so as to provide the required QoS for the session.

On the other hand, if the admission control procedures
state that there are not enough resources in the residential
environment to satisfy the QoS demands of the multimedia
session, then the session should be terminated. The proce-
dures to terminate the multimedia session will be different
depending on whether the session has been established or
not. Fig. 9 shows an example of both use cases.

In the first use case (labelled as ‘‘case 1” in Fig. 9), the
destination terminal accepts the establishment of the mul-
timedia session by means of a SIP OK response for the IN-
VITE request. In this response, the terminal includes an SDP
answer for the SDP offer that was previously contained in
the INVITE request. In this case, the CCP indicates to the
SIP CA that the admission control procedures cannot ac-
cept the QoS demands required for the session. Neverthe-
less, at this point the session has already been
established in the destination terminal. Therefore, to ter-
minate the multimedia session, the SIP CA sends to this
terminal a BYE request and answers the INVITE request
back with a 500 (Server Internal Error) response, which is
sent to the initiating terminal.

In the second use case (labelled as ‘‘case 2” in Fig. 9), the
destination terminal answers back the INVITE request with
a provisional response (Session in Progress in the example)
that contains the SDP answer. Again, the admission control
procedure states that the available resources are not en-
ough to cover the QoS demands for the session. However,
in this use case, the session has not been established yet,
so the SIP CA sends a SIP CANCEL request towards the des-
ablishment.



Fig. 9. Session cancellation.

J. García-Reinoso et al. / Computer Networks 53 (2009) 2967–2984 2979
tination terminal. In addition, it answers the INVITE re-
quest back with a 500 (Server Internal Error) response.
When the CANCEL request is received in the destination
terminal, as the cancelled request is the INVITE, the desti-
nation terminal answers the INVITE request back with a
487 (Request Terminated) response.

The SIP CA can be easily extended to support more func-
tionalities. For example:

� IMS/TISPAN. In IMS and TISPAN the session control
functionalities are based on SIP, SDP and the Offer/
Answer model of SDP. This way, the SIP support intro-
duced by the SIP CA in the RGW, is enough to integrate
the RGW in the residential environment of an IMS based
next generation network, such as the one that is cur-
rently being developed by the ETSI TISPAN group. Nev-
ertheless, in the IMS/TISPAN context, depending on the
operator policy, it is possible that early traffic (i.e. data
traffic exchanged prior to the completion of the session
establishment) is forbidden. In this case, a reserve and
commit resource management schema [15] has to be
used in the RGW. This schema has been implemented
in the following way:
– When the SIP SP provides the CCP with the flow rules

that must be installed in the RGW, it includes with
each rule an indication stating that the Classifier
block should filter out the frames belonging to the
flow.



2980 J. García-Reinoso et al. / Computer Networks 53 (2009) 2967–2984
– When the SIP CA receives a SIP OK response for an
INVITE request, it contacts the CCP to commit the
resource reservation for the multimedia session that
has been established. To do that, the SIP CA provides
the CCP with the flow rules that must be allowed in
the Classifier block, so gate is opened in the Transfer
Sublayer for all the flows of the session.

This way, the SIP SP can be started in a reserve-commit
resource management scheme, so as to cover the IMS/
TISPAN scenarios where early traffic is prevented from
being exchanged on the access network. If early traffic is
allowed, the single-stage resource management scheme
explained so far for the SIP CA can be used.

� B2BUA. In case the RGW is integrated in the residential
environment of an IMS based next generation network,
it is possible that legacy terminals (non-IMS) are used
within the end user network. In this case, the SIP CA
should behave as a SIP Back to Back User Agent
(B2BUA), adopting the role of a User Agent Server (as
it is specified in [6]) from the point of view of the legacy
terminal, and the role of a SIP User Agent Client (UAC)
with the exceptions and additional capabilities of SIP
and SDP described in [16], from the point of view of
the core IMS. This way, the SIP CA would be in charge
of performing the IMS session control functionalities
on behalf of the legacy terminal, as well as contacting
the CCP to install the flow rules in the RGW that are nec-
essary to reserve QoS resources in the residential envi-
ronment for the multimedia sessions being established.

� Emergency calls. In case that a SIP emergency call is
initiated from the end user network, QoS demands for
the call should be granted even if there are not enough
resources available in the residential environment.
Therefore, when the SIP CA processes the establishment
of an emergency call, the service information associated
with the call is derived as it has been explained, but
the flow rules generated from this information will
be marked with an unavoidable flag and possibly a freeze
tag, meaning that these flow rules must be installed in the
RGW overriding the admission control functionalities.
5.3. Application level gateway

This CA provides a SIP-specific solution to solve the
problems related with SIP and NAT traversal. The Applica-
tion Level Gateway (ALG) CA receives a SIP message and,
after examination, requests from the CCP the NAT bindings
that are necessary to substitute the internal IP addresses
and ports, that are contained in the message, by the public
values that will be used after traversing the NAT block in
the Transfer Sublayer. This way, internal IP addresses and
ports within the SIP messages and the SDP payloads are
changed by the bindings that will be assigned by the NAPT
block, guaranteeing that the initiator and destination ter-
minals get the information to address data traffic.

The ALG CA will be installed by the CAM in the same
Configuration Context as the CAs that will contact it
requesting for support. Therefore, if a NAT block is installed
in the Transfer Sublayer and SIP is used to provide auto-
matic QoS configuration in the residential environment,
an instance of the ALG CA will be installed by the CAM in
the same context as the SIP CA.

6. Implementing other RGW standards

This section shows how to implement other RGW stan-
dards using our proposed architecture. First of all, some
other proposals are reviewed in order to present the re-
lated work. Sections 6.2 and 6.3 present a detailed descrip-
tion in order to implement two of the most important
standardized RGW architectures using our proposal.

6.1. Related work

Nowadays the scientific and industry communities have
a special interest in smart homes and specially in the RGW,
as the main device in that environment. There are a lot of
initiatives created to standardize the RGW model architec-
ture, focusing on different points but with the same goal.
Some important standardization bodies or projects trying
to describe the RGW architecture are:

TISPAN. The ETSI TISPAN workgroup is currently stan-
dardizing a Next Generation Network using the IMS [17]
as the core of the control network and, in turn, SIP as the
signaling protocol. In the second release, TISPAN intro-
duces the home network environment in their architec-
ture, considering Customer Network Devices (CND) and
also the Customer Network Gateway (CNG) [18] with the
same objectives as an RGW. Although the main goal is to
interconnect IMS based CND, the TISPAN CGD architecture
defines blocks to allow non IMS terminals (both SIP-based
and legacy ones). The TISPAN CNG architecture will be ex-
plained later in Section 6.2.

HGI. ‘‘The Home Gateway Initiative is an open forum
launched by Telcos in December 2004 with the aim to re-
lease specifications of the home gateway.” The HGI re-
leased a document [5] proposing a very complete and
exhaustive RGW architecture. Security, QoS, management,
hotspot access and the support for the IP Multimedia Sub-
system (IMS) [17] are some of the functionalities consid-
ered in the architecture.

Regarding the RGW management, the HGI proposes a
Management Abstraction Layer to allow a protocol inde-
pendent configuration scheme. For example, it could be
possible to manage the RGW using the DSL Forum TR-
069 specification and another local management protocol
at the same time. The HGI home gateway architecture is
presented in Section 6.3.

DSL forum. In [19], the DSL forum gathers a huge list of
RGW parameters that extends the TR-069 [20] data model
to include the specific properties of an RGW (or Internet
Gateway Device, using DSL Forum terminology). Although
this is a complete object list, the DSL Forum does not spec-
ify an RGW architecture.

UPnP. The Universal Plug and Play (UPnP) Forum is a
big entity with more than 800 members formed to create
standards to allow seamless connections between devices
and to simplify network implementation in residential
and corporate environments. UPnP defines several steps
for addressing, discovery, description, control and eventing



J. García-Reinoso et al. / Computer Networks 53 (2009) 2967–2984 2981
between devices to allow a complete and full connection
between them. In the home environment, the RGW is an
important point for UPnP and [21] describes a data model
for this kind of devices, similar to the one proposed by the
DSL Forum in [19].

Research projects. The European Union has financed
several research projects like MUSE [22], ASTRALS [23]
and MEDIANET [24] where RGWs have a special research
interest. In the MUSE European project, for example, a
complete task force was created to study and propose an
RGW architecture. At the end of the project, some of the
proposed ideas, use cases and functionalities were shared
with the HGI to join forces and achieve a final RGW stan-
dard architecture.

6.2. Implementing the CNG architecture from TISPAN

Fig. 10 shows the architecture defined by TISPAN for the
Customer Network Gateway (CNG). This architecture can
easily be mapped to the flexible RGW architecture that
has been defined in this paper. In this respect, the figure
represents, by using different tones, the distribution of
the functional entities included in the TISPAN CNG into
Fig. 10. CNG architec
the architectural layers defined in this paper. This distribu-
tion is indicated below:

Transfer sublayer. The following functional entities can
be located at this level:

� CNG-NFF (CNG – NAPT and Firewall Function): provides
gate control functionality between the end user network
and the NGN.

� CNG-IPTVF (CNG – IPTV Function): provides forwarding
of incoming multicast packets to those interfaces where
subscribed members are connected, and translating of
link layer multicast to unicast, in cases when multicast
is not supported in the client network.

Transport control sublayer. This sublayer contains the
following functional entities:

� CNG-ACF (CNG – Admission Control Function): this func-
tional entity exchanges QoS related messages with the
CNG – SIP Proxy B2BUA function, being in charge of ver-
ifying if there are available resources for each communi-
cation, and performing the correspondent resource
reservation through the CNG-PCF.
ture (TISPAN).



2982 J. García-Reinoso et al. / Computer Networks 53 (2009) 2967–2984
� CNG-PCF (CNG – Policy Control Function): this entity may
include a database, containing QoS related parameters
that can be configured for applications and terminals
in the end user network.

Configuration layer. Finally, this layer includes the
remaining functional entities defined by TISPAN for the
CNG architecture. These entities can be implemented at
this layer by means of Configuration Agents (CAs):

� CNG-AuF (CNG – Authentication Function): handles the
authentication of client devices that are connected to
end user network.

� CNG-CMF (CNG – Configuration and Management Func-
tion): supports the configuration and firmware upgrade
of the CNG. In addition, the CNG-CMF allows the trans-
mission of configuration information to the end user
devices.

� CNG-AtF (CNG – Attachment Function): enables the con-
figuration of network addresses for the CNG and the
devices connected to the client network.

� CNG-LF (CNG – Location Function). Enables internal
applications to provide location information.

� CNG-PPF (CNG – Plug and Play Function): this entity pro-
vides functionalities related with retrieving information
and allowing the control of client devices, and with sup-
porting a certain degree of communication between cli-
ent devices (it may also support this communication
between the NGN and the client devices).

� CNG-UIF (CNG – User Interface Function): allows the user
to manage in the CNG the transport layer parameters.

� ISIM module: this is an application related with IMS
access that stores IMS-specific subscriber data, such as
the private user identity, the public user identity and
the necessary elements to support AKA authentication.

� CNG – SIP Proxy B2BUA Function: implements a SIP regis-
trar, an outbound SIP proxy and may implement a non-
IMS SIP to IMS SIP adaptation module.
Fig. 11. HG archite
6.3. Implementing the HG architecture from HGI

The Home Gateway architecture [25] proposed by the
Home Gateway Initiative forum can be easily mapped to
our architecture. Fig. 11 shows the HG architecture where
boxes are filled with different tones in order to follow the
mapping to our architecture previously presented in Fig. 1.
Following our two layers scheme, the HG architecture can
be implemented as follows:

Transfer Sublayer The following HG blocks can be
implemented in this sublayer: PHY, L2-ETH, L3-ETH, IP
Switching, ETH Switching and Firewalling (see Fig. 2).

Transport Control Sublayer QoS handling CAC, Access
Auth. and the HG-MIM HG blocks can be implemented in
this sublayer. These blocks can be configured through our
CCP.

Configuration Layer The remaining HG blocks (Man-
agement, Control and Data interoperation, all Enablers
and i-ATA, PSTN int. and USB Host int. drivers) can be
implemented as Configuration Agents. It is important to
notice that our proposal fits very well in the HGI proposal,
because Data and Control interoperation CAs have to regis-
ter rules in the Transfer Sublayer in order to accomplish
their tasks.

7. Conclusions

In this paper, a generic architecture for a Residential
Gateway covering the configuration and the transport
layer has been proposed. This architecture allows the auto-
matic update and configuration of the RGW based on flex-
ible Configuration Agents. This capability is supported by
the hybrid nature of the architecture, that imposes the exe-
cution of CAs at the application level while keeping the
communication layer at the OS kernel or hardware level.
It is one of the most important architectural decisions be-
cause it would be certainly easy to implement and run CAs
at the OS kernel level, probably increasing the execution
cture (HGI).



J. García-Reinoso et al. / Computer Networks 53 (2009) 2967–2984 2983
efficiency without having to send the frames up to the
application level. However this approach would lose the
main advantages of the architecture: flexibility, reusability,
upgrading facilities, extensibility, etc. As a general conclu-
sion, it can be stated that if flexibility in the configuration
is pursued in the RGW, the Configuration Layer and Trans-
port Control Sublayer should be implemented at the appli-
cation level while the Transfer Sublayer functionality
should be performed at the OS kernel or hardware level.

This generic architecture has been instantiated into an
RGW prototype allowing its validation by means of the dif-
ferent tests that have been performed. It has been shown
that implementing Configuration Agents at the application
level does not impose a severe impact on the bandwidth or
on the delay since all the traffic that is going to be pro-
cessed by the CAs is signaling traffic. In addition, a com-
plete mechanism that supports the automatic and
manual installation of CAs at the configuration level has
been shown. Regarding the Transport Control Sublayer, a
Call Admission Control mechanism has been implemented
including several original value added enhancements to
enable the coexistence of the QoS mechanism with the pre-
emptive requirements of alarms or emergency calls. For
the Transfer Sublayer, a block-oriented architecture has
been described allowing to implement QoS control func-
tionalities based on traffic class differentiation and/or
policing/shaping mechanisms.

Finally, several use cases have been included in order to
show the possibilities offered by the proposed architecture.
Special emphasis has been set on the automatic configura-
tion based on the SIP protocol. It has been detailed how the
RGW can configure the different services without any user
intervention by means of this SIP interception performed
by the SIP CA, which is capable of inferring the quality re-
quired by the flows following the session negotiation and
of reserving and releasing resources accommodating the
different session demands.

Regarding the different research issues that still remain
open in this architecture, probably one of the most interest-
ing ones is the possibility of extending the application layer
processing to data flows. In general it is on the signaling
messages (this is particularly true for SIP) where the infor-
mation about the requirements for the connection resides.
However, by data packet flow inspection (all the packets or
certain samples) it may be possible to obtain information
about the quality received by the platform and finally deliv-
ered to the user, or to estimate traffic patterns that can be
useful to make occupation predictions, etc.

It should also be interesting to test other solutions to
implement this architecture in order to go further in the
validation. The authors consider that the OSGi platform is
a technological alternative that could naturally fit into this
architecture, since OSGi bundles can play the role of CAs
and the OSGi platform is already providing some mecha-
nisms for bundle management or inter-bundle communi-
cations. Finally, there are different concerns like the
performance (the purpose of the implementation was just
to validate the feasibility of the proposed architecture and
not to evaluate its performance) or the security (which is
out of the scope of this paper) that should also be consid-
ered and studied.
Acknowledgement

This article has been partially granted by the Spanish
MEC through the CONPARTE project (TEC2007-67966-
C03-03/TCM) and by the Madrid Community through the
BIOGRIDNET project (S-0505/TIC-0101). The authors would
like to thank the whole ‘‘MUSE implementation team” for
their efforts along these last four years and particularly
David Díez for his support in this article.

References

[1] ETSI-TISPAN, <http://www.etsi.org/tispan/TISPAN> (Telecoms &
Internet converged Services & Protocols for Advanced Network).
URL <http://www.etsi.org/tispan/>.

[2] T. Monath, Business role models for bb access, in: BB Europe, 2004,
Brugge, Belgium.

[3] S. Royon, Y. Frenot, Multiservice home gateways: business model
execution environment management infrastructure communications
magazine, IEEE 45 (10) (2007) 122–128.

[4] OSGI, OSGi Service Platform Release 4, <http://www2.osgi.org/
Release4/Download> (October 2007).

[5] H.G.I. HGI, Home gateway requirements: Residential profile, 2007.
[6] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R.

Sparks, M. Handley, E. Schooler, SIP: Session Initiation Protocol, RFC
3261 (Proposed Standard), updated by RFCs 3265, 3853, 4320, June
2002.

[7] J. Rosenberg, J. Weinberger, C. Huitema, R. Mahy, STUN – Simple
Traversal of User Datagram Protocol (UDP) Through Network
Address Translators (NATs), RFC 3489 (Proposed Standard) (March
2003). URL <http://www.ietf.org/rfc/rfc3489.txt>.

[8] V. Ribeiro, V. Pinto, J. Wellen, W. Hellenthal, W. van Willigenburg, F.
Valera, I. Vidal, J. Garcia, M.I. nez, A European high speed Access
Platform and Residential Gateway, in: BB Europe, Antwerp, Belgium,
2007.

[9] F. Valera, J. Garcia, C. Guerrero, V.M. Ribeiro, V. Pinto, Demo of triple
play services with QoS in a broadband access residential gateway, in:
IEEE Infocom, Barcelona, Spain, 2006.

[10] E. Kohler, R. Morris, B. Chen, J. Jannotti, M.F. Kaashoek, The Click
Modular Router Project, Internet, <http://www.read.cs.ucla.edu/
click/>, May 2006.

[11] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, K. Gibbs, Iperf, <http://
dast.nlanr.net/Projects/Iperf/>.

[12] J. Garcia, F. Valera, I. Vidal, A. Azcorra, A broadcasting enabled
residential gateway for next generation networks, in: Second IEEE
International Workshop on Broadband Convergence Networks (BcN
2007), Munich, Germany, 2007.

[13] M. Handley, V. Jacobson, C. Perkins, SDP: Session Description
Protocol, RFC 4566 (Proposed Standard), July 2006.

[14] J. Rosenberg, H. Schulzrinne, An Offer/Answer Model with Session
Description Protocol (SDP), RFC 3264 (Proposed Standard), June
2002.

[15] TISPAN, ETSI ES 282 003 V1.1.1: Telecommunications and Internet
converged Services and Protocols for Advanced Networking
(TISPAN); Resource and Admission Control Sub-system (RACS);
Functional Architecture, March 2006.

[16] TISPAN, ETSI ES 283 003 V1.1.1: Telecommunications and Internet
converged Services and Protocols for Advanced Networking
(TISPAN); IP Multimedia Call Control Protocol based on Session
Initiation Protocol (SIP) and Session Description Protocol (SDP) Stage
3, July 2006.

[17] 3GPP, 3GPP TS 23.228 v8.4.0: Digital cellular telecommunications
system (Phase 2+); Universal Mobile Telecommunications System
(UMTS); IP Multimedia Subsystem (IMS); Stage 2, 2008.

[18] 3GPP, 3GPP TS 185.003 V2.1.1: TISPAN Customer Network Gateway
(CNG) Architecture and Reference Points, July 2008.

[19] DSLForum, TR-098 Amendment 1: Internet Gateway Device Data
Model for TR-069, December 2006.

[20] D. Forum, TR-069 Amendment 1. CPE WAN Management Protocol,
2006.

[21] UPnP, Internet Gateway Device (IGD) Standardized Device Control
Protocol V 1.0., 2001.

[22] MUSE, Multi Service Access Everywhere., Internet, <http://www.ist-
muse.org/>, May 2006.

[23] ASTRALS, Audio–visual STreaming plAtform for domestic Leisure
and Security, Internet, <http://www.ist-astrals.org/>, May 2009.

http://www.etsi.org/tispan/TISPAN
http://www.etsi.org/tispan/
http://www2.osgi.org/Release4/Download
http://www2.osgi.org/Release4/Download
http://www.ietf.org/rfc/rfc3489.txt
http://www.read.cs.ucla.edu/click/
http://www.read.cs.ucla.edu/click/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://www.ist-muse.org/
http://www.ist-muse.org/
http://www.ist-astrals.org/


2984 J. García-Reinoso et al. / Computer Networks 53 (2009) 2967–2984
[24] MEDIANET, MultiMedia Networking., Internet, <http://www.ist-
ipmedianet.org/>, May 2009.

[25] H.I.G. forum, Home Gateway Technical Requirements: Residential
Profile. Version 1.0, Internet, <http://www.homegatewayinitiative.
org/publis/HGI_V1.01_Residential.pdf, April 2008.
Jaime García-Reinoso received the Telecom-
munications Engineering degree in 2000 from
the University of Vigo, Spain and the Ph.D. in
Telecommunications in 2003 from the Uni-
versity Carlos III of Madrid, Spain. He is cur-
rently an associate professor at Univ. Carlos III
of Madrid having joined in 2002 and he has
published over 25 papers in the field of
broadband computer networks, peer-to-peer
IPTV and Next Generation Networks in mag-
azines and congresses.

He has been involved in several interna-
tional and national projects related with protocol design, user localiza-
tion, broadband access and signaling protocols like the EU IST MUSE, the
EU NoE CONTENT project and the BIOGRIDNET project funded by the

Madrid Community.
Iván Vidal received the Telecommunication
Engineering degree in 2001, from the Uni-
versity of Vigo, Spain, and the Master degree
on Telematic Engineering in 2007 and the
Ph.D. in Telecommunications in 2008, both
from the University Carlos III of Madrid, Spain.
He is a research and teaching assistant in
Telematics Engineering at University Carlos III
of Madrid since 2002. He has been involved in
several national and international research
projects, including the IST MUSE and E-PHO-
TON/ONE. His current research interests are

focused on multi-service broadband access networks and on network-
level multicast transport services within IMS based Next Generation
Networks.
Francisco Valera was born in Ciudad Real,
Spain in 1974 and received the Telecommu-
nication Engineering degree in 1998 from the
Technical University of Madrid, Spain (UPM)
and the Ph.D. in Telecommunications in 2002
from the University Carlos III of Madrid, Spain
(UC3M). He is currently a tenured associate
professor in the UC3M and he has published
over 50 papers in the field of advanced com-
munications in magazines and congresses. He
has been involved in several international
research projects related with protocol design,

protocol engineering, network management, advanced networks and
multimedia systems. Some of the recent research projects funded by the
European Commission in which he has participated are: TRILOGY, MUSE,
E-NEXT or E-NET. He has also has participated in the scientific committee,
organization and technical review in different national and international
conferences (like IEEE Networks, IEEE Communication, Elsevier Computer
Communications, IEEE Infocom or IEEE Globecom).
Arturo Azcorra received the Telecommuni-
cation Engineering degree in 1986, and the
Ph.D. in Telecommunications in 1989, both
from the Technical University of Madrid
(UPM), Spain. On 1993 he obtained a Master
in Business Administration from Instituto de
Empresa, Madrid. He is currently a full pro-
fessor at Univ. Carlos III de Madrid, having
joined it on 1998. He has been involved in
several international research projects related
with protocol design, protocol engineering,
advanced networks and multimedia systems.

Some of the recent research projects in which he has participated are:
MUSE (IST), DAIDALOS (IST), GCAP (IST), LONG (IST), MobyDick (IST), BTI
(AC 362), NICE (AC 110), FORMAT (ESPRIT III), BRAIN (RACE), DAMS

(ESPRIT II), SDE (ESA-ESTEC), MEHARI (CICYT), SIMM (PLANBA) and SIGER
(PASO). He has published over 60 papers in the field of advanced com-
munications in technical books, magazines and congresses. Some of these
publication fora are IEEE Communications Magazine, IEEE Network
Magazine, European Transactions on Telecommunications, Computer
Networks and ISDN Systems, ATM Forum Newsletter, Networld + Interop,
IEEE-PROMS-MMNET, PSTV and FORTE. Professor Azcorra has been invi-
ted speaker in tutorials, conferences and panels, and has participated in
the program committee, organization and technical review in different
national and international conferences. These conferences include ACTS
Workshop, IEEE-BAC, IEEE-INFOCOM, ABC, IEEE-PROMS-MMNET, JITEL,
FORTE and PSTV.

http://www.ist-ipmedianet.org/
http://www.ist-ipmedianet.org/
http://www.homegatewayinitiative.org/publis/HGI_V1.01_Residential.pdf
http://www.homegatewayinitiative.org/publis/HGI_V1.01_Residential.pdf

	Zero config residential gateway experiences for next generation smart homes
	Introduction
	Motivation
	Possible solutions

	Proposed architecture
	Architecture validation
	Prototype architecture
	Configuration layer validation
	Transport control sublayer validation
	Transfer sublayer validation

	Configuration agents use cases
	CA types
	SIP
	Application level gateway

	Implementing other RGW standards
	Related work
	Implementing the CNG architecture from TISPAN
	Implementing the HG architecture from HGI

	Conclusions
	Acknowledgement
	References


