
Measuring BitTorrent Ecosystem: Techniques, Tips
and Tricks

Michal Kryczka∗†, Rubén Cuevas∗, Ángel Cuevas∗, Carmen Guerrero∗ and Arturo Azcorra∗
∗University Carlos III Madrid
†Institute IMDEA Networks

Abstract—BitTorrent is the most successful peer-to-peer ap-
plication. In the last years the research community has studied
the BitTorrent ecosystem by collecting data from real BitTorrent
swarms using different measurement techniques. In this paper we
present the first survey of these techniques that constitutes a first
step in the design of future measurement techniques and tools
for analyzing large scale systems. The techniques are classified
into Macroscopic, Microscopic and Complementary. Macroscopic
techniques allow to collect aggregated information of torrents
and present a very high scalability being able to monitor up
to hundreds of thousands of torrents in short periods of time.
Rather, Microscopic techniques operate at the peer level and
focus on understanding performance aspects such as the peers’
download rates. They offer a higher granularity but do not scale
as well as the Macroscopic techniques. Finally, Complementary
techniques utilize recent extensions to the BitTorrent protocol in
order to obtain both aggregated and peer level information. The
paper also summarizes the main challenges faced by the research
community to accurately measure the BitTorrent ecosystem
such as accurately identifying peers or estimating peers’ upload
rates. Furthermore, we provide possible solutions to address the
described challenges.

I. INTRODUCTION

BitTorrent [5] is the most successful peer-to-peer file-
sharing application. Indeed, it is responsible for a major
portion of the Internet traffic share [10] and is daily used by
dozens of millions of users. This has attracted the interest
of the research community that has thoroughly evaluated the
performance and the demographic aspects of BitTorrent. Due
to the complexity of the system, the most relevant studies have
tried to understand different aspects by performing real mea-
surements of BitTorrent swarms in the wild, this is inferring
information from real swarms in real time.

Several techniques have been used in order to measure
different aspects of BitTorrent so far, however to the best of
the authors knowledge there is no document that compiles,
describes and classifies these techniques. In this paper we
firstly describe the main aspects and functionality of the com-
plete BitTorrent Ecosystem in Section II. Afterwards, Section
III presents a survey of the existing BitTorrent measurement
techniques. Finally, we describe the main challenges that these
techniques face and the possible solution to them in Section
IV before concluding the paper in Section V.

II. BITTORRENT ECOSYSTEM

BitTorrent [5] is the name used by Brian Cohen to define the
peer-to-peer file-sharing protocol that he designed one decade

ago. Due to the great success of this protocol a complex system
was created around it. In this paper we adopt the terminology
used by Zhang et al. [16] to refer to this complex system as
the BitTorrent Ecosystem. In this section we describe the main
players of this ecosystem as well as its functionality. This is
summarized in Fig. 1.

A. Description of BitTorrent Functional Elements

• A BitTorrent Portal is a server into which content
publishers upload .torrent files and BitTorrent clients
download those .torrent files.

• A BitTorrent Swarm is formed by a set of peers down-
loading a given content using the BitTorrent protocol.

• A BitTorrent Tracker is a server that maintains a list
of clients forming the BitTorrent swarm associated to a
given content. Furthermore the Tracker is aware of the
download progress of each peer within the swarm.

• A BitTorrent Client or Peer is an entity that participates
in a BitTorrent swarm by downloading and/or uploading
pieces of the content. Two categories of peers may be
distinguished: A seeder is a client that has a complete
copy of the content, thus only uploads pieces to other
peers. A leecher is a client that does not have a complete
copy of the content, thus uploads and downloads pieces
to and from other peers respectively.

• A .torrent file is a meta-information file associated to
a content shared through BitTorrent. The .torrent file
includes the following information: content name, file
size, number and size of the pieces that form the con-
tent named chunks, torrent infohash (an identifier that
uniquely identifies the swarm associated to the .torrent
file) and IP address(es) of the Tracker(s) managing the
swarm associated to the file.

B. Publishing Content in BitTorrent

In order to make available a content C in BitTorrent, the
content publisher creates a .torrent file associated to C. After
creating the .torrent file, the content publisher uploads it to a
BitTorrent portal. A detailed analysis of the BitTorrent content
publishing phenomenon can be found at [6]. There are a few
BitTorrent portals such as The Pirate Bay1 indexing millions
of torrents and receiving millions of daily visits. These portals

1This is the current largest BitTorrent portal based on Alexa Ranking.



2

Fig. 1: BitTorrent Ecosystem basic functionality: (i) The BitTorrent client contacts a BitTorrent portal to download the .torrent
file associated to the desired content (the .torrent file includes the IP address of the Tracker managing the swarm associated
to the desired content); (ii) The BitTorrent client contacts the Tracker that provides the IP addresses of a set of peers within
the swarm; (iii) The BitTorrent client connects to these peers for downloading the content.

are critical for the BitTorrent ecosystem as demonstrated by
Zhang et al. [16]. They offer detailed information regarding
each indexed torrent. This information slightly varies from one
portal to another, but in general it includes: category of the
content, number of associated files, size of the whole content
in the torrent, complete name of the file, uploading date,
username who uploaded the torrent, number of seeders and
leechers participating in the torrent swarm (this data is updated
every few minutes) and a description text giving more detailed
information regarding the content. Fig. 2 shows an example
of a torrent web-page from the Pirate Bay portal. Finally, it is
worth noting that some of these major portals offer a Really
Simple Syndication (RSS) feed to announce the new published
torrents.

C. Joining a BitTorrent Swarm and Discovering Peers

When a BitTorrent user wants to download a given content
C, it looks for the .torrent file associated to C in a BitTorrent
portal and downloads it. The .torrent file can be opened
with any of the existing BitTorrent clients2. Upon opening
the .torrent file, the BitTorrent client connects to one of the
Trackers included in this one. A new peer first contacts the
Tracker using an announce started request that is answered
by the Tracker with the number of seeders and leechers
participating in the swarm along with the IP addresses of N
(between 40 and 200) randomly selected peers. These N peers
form the initial neighbourhood of the new node. Furthermore,
if a peer’s neighbourhood size falls below a given threshold
(typically 20), it sends again an announce started request to
the Tracker in order to get new neighbours. Finally, when a
peer leaves the swarm, it sends an announce stopped request to

2http://en.wikipedia.org/wiki/Comparison of BitTorrent clients

the Tracker that removes this peer from the list of participants
in the swarm.

It is worth noting that, in practice, the BitTorrent Ecosystem
relies in few Trackers that manage a large number (up to a
few millions) of torrents in parallel. The OpenBitTorrent and
PublicBitTorrent Trackers3 are currently the most important
ones.

D. BitTorrent Delivery Procedure
In BitTorrent two peers communicate using the peer wire

protocol. Every communication starts with an initial hand-
shake. Just after the handshaking sequence is completed (and
before any other messages are sent) the peers exchange the
bitfields by using a BITFIELD message. The bitfield indicates
which chunks of the file a peer has already downloaded.
Furthermore, every time a peer gets a new chunk, it informs to
its neighbours by using a HAVE message. Hence, every peer is
aware of the chunks that each neighbour has at any moment.

BitTorrent uses the Tit-for-Tat as incentive model for the
delivery mechanism; basically each leecher uploads chunks
to those other leechers from whom it is downloading more
chunks. The Choking Algorithm is responsible for providing
this behaviour. It is a periodical operation where every 10
seconds a leecher selects (unchoke) n other leechers from
its neighbourhood to upload chunks to. These n (typically 4)
unchoked leechers are those from whom the peer downloaded
more chunks during the last 20 seconds. The rest of the
neighbours are blocked (choked). In the case of a seeder,
it unchokes n (typically 4) leechers to whom more chunks
it uploaded in the last 20 seconds (i.e., those with higher
download rate)4. In addition to the regular unchoke operation,

3www.openbittorrent.org and www.publicbt.org
4Note that different BitTorrent clients may implement different variations

of the explained unchoke algorithms.



3

Property Portal Crawling Tracker Crawling Peers Crawler Own client/plugin
Category Macroscopic Macroscopic Microscopic Microscopic
Type of Information Torrents Demographics and High level performance Peer Level Performance Peer Level Performance
Cost of Crawler preparation Low Medium High High
Scalability Very High High Medium Medium-Low
Obtained details Basic Medium Advanced Very Advanced
Completeness of Torrent Population - High Very High Low

TABLE I: Comparison of main BitTorrent measurement techniques

BitTorrent implements the optimistic unchoke operation. Every
30 seconds (this is, every 3 regular unchoke operations) both
leechers and seeders randomly select one choked neighbour to
upload chunks to. Finally, when a leecher is unchoked by a
neighbor, it applies the Rarest First Policy in order to choose
which chunk to request to this neighbor. Since leechers have
full knowledge about the availability of every chunk in its
neighbourhood, it always request the rarest one.

E. BitTorrent Extension

Several extensions to BitTorrent have been proposed so far.
Here we just mention those relevant to measurement studies:
-Distributed Hash Table (DHT): Trackers are a single point
of failure in the BitTorrent ecosystem. Indeed, they are typ-
ically threatened by legal actions. The BitTorrent developers
reacted to this by designing a Tracker-less mechanism that
allows a BitTorrent user learning the IP addresses of peers
without contacting the Tracker. This mechanism is based on a
DHT [15].
-Peer Exchange (PEX): This is a simple gossiping protocol
that is used to get IP addresses of peers participating in the
swarm. In more detail PEX works as follows: a given peer P
sends a PEX request to one of its neighbours, e.g., N . If N
supports PEX, it responds with the list of IP addresses of all
its neighbours. Hence, by using few PEX queries a given peer
can learn the IP addresses of a large number of participants
in the swarm without requesting them to the Tracker.

III. TECHNIQUES FOR MEASURING THE BITTORRENT
ECOSYSTEM

In this section we describe the BitTorrent measurement tech-
niques defined in the literature so far. We classify them into
two main categories: Macroscopic and Microscopic depending
on the retrieved information. The former obtains demographic
and high level performance information whereas the latter
gathers peer level performance information. A summary of
different techniques is presented in Tab. I.

A. Macroscopic Techniques

The main objective of these techniques is understanding the
demographics of the BitTorrent ecosystem: the type of content
published, the popularity of this content, the distribution of
BitTorrent users per country (or ISP), the relevance of the dif-
ferent portals and Trackers, etc. Furthermore the Macroscopic
measurements also allow to study some performance aspects
such as the ratio of seeders/leechers, the session time of the
BitTorrent users, the arrival rate of peers, the seedless state
(period the torrent is without seeder) duration, etc.

We classify the Macroscopic techniques into two subcat-
egories: BitTorrent portals crawling and BitTorrent Trackers
crawling.

-BitTorrent portals crawling:
As shown in Section II, the (major) BitTorrent portals

index millions of torrents in a structured way. Furthermore,
they provide detailed information about each indexed torrent
(typically) in an specific torrent web-page. For instance, in the
case of The Pirate Bay, the torrent web-page associated to a
torrent with an assigned torrent-id equal to i can be accessed
through the url http://thepiratebay.org/torrent/i (See Fig 2).
Hence, once we know the id assigned to a given torrent in
The Pirate Bay, we just need to access its web-page and parse
it (using an html-parser) to retrieve the torrent information.
However, in order to analyze the demographics of BitTorrent
we need to crawl a large number of torrents. Next we describe
two types of crawling techniques that can be used in order to
systematically crawl up to millions of torrents from an specific
portal (we consider The Pirate Bay as example):

Backwards Crawling: In this case the aim is to retrieve the
information associated to the alive torrents published in The
Pirate Bay from a given past date to the current instant. For
this purpose the Crawler sequentially parses all the torrents’
web-pages from the last published torrent (http://thepiratebay.
org/torrent/last torrent id/) decreasing up to the first torrent
published in the target date, for instance with torrent id k
(http://thepiratebay.org/torrent/k/). The last published torrent-
id can be identified either manually or using the RSS feed.

Upwards Crawling: In this case the aim is to retrieve the
information associated to every torrent published in The Pirate
Bay from now during a given time (e.g., 1 month). In this case,
each new torrent will be assigned a torrent-id that can be learnt
from the RSS feed. We will use these learnt torrent-ids to crawl
the torrents web-pages.

By post-processing the retrieved data from the BitTorrent
portal crawling very relevant aspects of the BitTorrent Ecosys-
tem demographics can be characterized. Next we describe few
representative examples. We refer the reader to [16] for a
detailed analysis of the BitTorrent Ecosystem demographics:

• Content Popularity Distribution: For this purpose we ob-
tain the number of leechers and seeders for each specific
torrent from the html-parsing. Note that if we want to
study the evolution of popularity for a given torrent
we have to periodically parse its web-page to retrieve



4

Fig. 2: Example of a The Pirate Bay torrent web-page. HTML parsing techniques can retrieve the following information:
Content name (Predators 2010 R5), Content category and subcategory (Video and Movies), Number of files (3), Size of the
whole content (1.36 GB), Language (English), Uploading date (2010-09-24), username uploading the .torrent file (cgaurav007),
current number of seeders and leechers (4535 and 6671) and a text-box with further information regarding the content.

the evolution of the torrent population (i.e., number of
leechers and seeders).

• Distribution of number of published content per category
and subcategory: For this purpose we obtain the category
and subcategory for each specific torrent from the html-
parsing.

• Torrents Publishing Rate per date: For this purpose we
obtain the date when each specific torrent was uploaded
from the html-parsing.

By applying the described measurement study to different
portals, we can perform a comparative study of the relevance
of these portals in the BitTorrent ecosystem.

Finally, by tracking the evolution of the number of seeders
and leechers for a given torrent we can also infer some
performance metrics such as the seeder-to-leecher ratio and
its evolution along the time.

-BitTorrent Trackers crawling:
The crawling of a BitTorrent portal gives detailed infor-

mation regarding the torrents (type, publishers) and some ag-
gregated numbers such as the number of seeders and leechers.
However, this does not suffice if we aim to study more detailed
demographics parameters such as the distribution of BitTorrent
users per country (or ISP) or relevant performance aspects
such as peers arrival rate and peers session time. In order

to study these issues we need to collect the IP addresses of
the peers participating in the swarms. This can be obtained
from Trackers (remind that a Tracker managing a given swarm
knows the IP addresses of all the participants).

There are various ways of accessing the information of
a Tracker (i.e., IP addresses of participants in the swarms
managed by the Tracker):

• Getting access to the Tracker logs [12]. This requires the
Tracker owner’s collaboration.

• Using a Tracker where the information is publicly avail-
able [9]. Unfortunately, only minor Trackers offer this
functionality.

• Using measurement techniques, i.e., crawling the Tracker
as depicted in Fig. 3. In this case we need to use
a BitTorrent Crawler that implements the part of the
BitTorrent protocol to communicate with the Tracker.
More specifically, this Crawler works as follows: first, we
define the list of torrents whose participants’ IP addresses
we want to obtain. This list of torrents can be retrieved
(for instance) from a BitTorrent portal. For each torrent
in the list, the Crawler performs an initial announce
started request to the correspondent Tracker. From this
request the Crawler retrieves the number of participants
(seeders and leechers) in the swarm and an initial list of
IP addresses. Afterwards, the Crawler performs as many



5

Fig. 3: BitTorrent Tracker Crawler basic functionality: The
BitTorrent Crawler retrieves the .torrent file from a BitTorrent
portal and obtains the IP address of the Tracker managing the
swarm from it. Afterwards, it sends as many announce started
request as needed until obtain the IP addresses of all the peers
participating in the swarm.

announce started requests as needed to obtain as many
IP addresses as the number of participants in the swarm.

Hence, by using any of the previous techniques we are
able to collect the IP addresses of the participants in a large
number of torrents. This data allows to study some relevant
demographics and performance BitTorrent features. Next, we
briefly describe some of them:

• The Distribution of clients per country or ISP: Some
studies have applied the described crawling technique to a
large number (even millions) of torrents [16]. Afterwards,
the IP address of each client is mapped to its country and
ISP (e.g., using the MaxMind database [1]). From this
data we can compute the distribution of BitTorrent users
per country and/or ISP.

• Heavy Hitters: By doing a cross-torrent inspection we
can find those users (IP addresses) being present in a
large number of torrents [3]. We name these users Heavy
Hitters.

• BitTorrent Traffic: The authors of [7] performed the
described crawling technique in a short period of time
(90 min) over the most recent 40k torrents announced
by a BitTorrent Portal. This can be viewed as a snapshot
of a portion of the BitTorrent ecosystem. By computing
the traffic flowing between the BitTorrent clients in the
different torrents, the authors estimate the Intra-ISP and
Inter-ISP traffic generated by BitTorrent in a large number
of ISPs.

• Peers’ Arrival Rate and Session Time: If we apply any of
the described techniques periodically on a given torrent,
we are able to continuously monitor the peers participat-
ing in the torrent. Therefore for each single user (i.e.,

IP address) we can approximately determine the instant
in which it joins and leaves the torrent, thus being able
to define the session time for each user. Furthermore by
looking at the time between the subsequent arrivals of
peers we can infer the arrival rate. Authors of [9], [13]
have performed this analysis in a large number of torrents.

B. Microscopic Techniques

The described Macroscopic techniques retrieve exclusively
the peers’ IP addresses, thus only metrics associated to the
presence/absence of the peer can be studied. Unfortunately,
an IP address does not suffice to infer relevant performance
metrics at the peer level such as peers’ download and upload
rate. For this purpose we need to apply more sophisticated
(but less scalable) techniques that we name Microscopic
techniques.

To perform Microscopic techniques we need to implement
different parts of the BitTorrent peer wire protocol. Any Micro-
scopic Crawler has to implement the functions to perform the
handshaking procedure. This is essential to connect to other
peers. The handshaking procedure can be done actively (the
Crawler initiates it) or passively (the Crawler waits until a
peer starts the handshaking). Once the Crawler is connected
to a peer, it exploits different messages of the peer wire
protocol in order to measure different parameters. This process
is illustrated in Fig. 4. Next we describe the specific techniques
proposed in the literature to measure the most important peer
level performance aspects of BitTorrent:
Peer Type:

After the handshaking procedure succeed with a peer, this
one immediately sends a BITFIELD message to the Crawler.
By analyzing the bitfield, the Crawler classifies the peer as
seeder or leecher [13], [14].

Furthermore, when using an active Crawler there are some
peers that do not respond to the Crawler’s handshake mes-
sages. These peers are typically located behind a NAT or a
firewall that prevents the establishment of incoming connec-
tions. Thus, these peers are classified as NATed [13], [14]. In
order to infer if a NATed peer is a seeder or a leecher we need
to apply passive techniques and wait until the peer contacts
the Crawler.
Instantaneous Download Rate:

After the handshaking procedure is completed (either pas-
sively or actively) the Crawler waits until it receives two
HAVE messages from a given peer. The size of the chunk (e.g.,
4MB) used in a given torrent is well-known5. Furthermore,
the Crawler measures the time between the reception of
these two consecutive HAVE messages from a peer, that is
approximately the time needed to download a chunk. Hence,
by dividing the size of the chunk by the time needed to
download it we can infer the instantaneous download rate of
the peer. By repeating this operation periodically we can obtain
the evolution of the instantaneous download rate of a given
peer [14].

5This information is available in the .torrent file.



6

Fig. 4: BitTorrent Peer Crawler basic functionality: The
Crawler retrieves the IP addresses of peers participating in a
given swarm as explained in the Macroscopic Tracker crawling
technique. Afterwards, the Crawler contacts each individual
peer, performs the handshake procedure and exchange differ-
ent messages (BITFIELD, HAVE) to obtain different peer-
level performance information.

Average Download Rate:
In this case the Crawler connects to a peer, obtains its

bitfield and disconnects. After some time (e.g., 1 hour) the
Crawler repeats the same operation on the same peer. Then,
by comparing the two bitfields, we can compute the number
of downloaded chunks between the two connections to the
peer. Since we know the size of each chunk (S), the number
of downloaded chunks (D) and the time between the two
connections to the peer (T), we can easily compute the peer’s
average download rate as (S*D)/T.
Upload Rate:

This is probably the hardest parameter to be measured.
Indeed, to the best of the authors knowledge there is no
work that has properly measured the upload bandwidth. Rather
some few works have measured some parameters related to
the upload rate. On the one hand, Isdal et al. [11] measure
the physical upload capacity (≥ upload rate dedicated to
BitTorrent). For this purpose, the authors implement a passive
Crawler that measures the peers’ upload capacity using the
chunks sent by these peers to the Crawler during optimistic
unchokes. On the other hand, Siganos et al. [14] measure the
number of IP packets sent by a node. For this purpose, the
authors implement an active technique that uses a special type
of ICMP message. The peers’ answer to this ICMP packet
includes the number of IP packets sent since the last time the

computer was switched on. Hence, this Crawler sends two of
these ICMP packets separated a given time T. The answers
to the first and second ICMP messages indicate a number of
packets equal to P1 and P2. Therefore the rate of IP packets
sent by the peer is computed as (P2-P1)/T. Note that this rate
includes IP packets associated to BitTorrent but also to other
applications.
Chunk distribution (Rarest First performance):

An important aspect of BitTorrent delivery mechanism is
the Rarest First Algorithm. In order to study its performance
we have to analyze how the distribution of the number of
available copies of each chunk in a swarm looks like. For this
purpose we implemented a Crawler that collects the bitfield
of a large number of peers in a swarm (ideally all) in a
relative short period of time (few minutes). By analysing the
collected bitfields we achieve our objective, i.e., computing
the number of available copies of each chunk in the swarm
and calculating its distribution. We performed this study in
[13] demonstrating that the Rarest First Algorithm guarantees
a uniform distribution of pieces.

C. Complementary Techniques

Some researchers have used measurement techniques that
can complement the above described Macroscopic and Mi-
croscopic techniques. On the one hand, some Crawlers [13],
[14] have implemented the DHT and/or PEX functionalities in
order to learn the IP addresses of the peers participating in a
given swarm. On the other hand, some research groups have
implemented their own client [2] or a plugging for a popular
BitTorrent client such as Vuze [4]. These clients (or pluggings)
report information to a log server. This technique complements
the Microscopic measurements mechanisms since it gives
very accurate information regarding peer level performance
parameters, for instance it can precisely informs about a peer’s
download and upload rate.

D. Techniques comparison

In this subsection we compare the different measurement
techniques introduced above, stating the pros and cons of each
one of them. Macroscopic techniques are the most scalable
ones allowing to analyze up to hundreds of thousands of
torrents. These techniques are valid to retrieve: (i) aggregated
information at the swarm level and (ii) specific information re-
garding the presence of a the peer (represented by the IP+port)
in a given swarm. Therefore, they are useful to characterize
important information such us content publishing phenomeon
(i.e., which users are responsible for making available the
content shared through BitTorrent), popularity distribution of
torrents, seeder/leecher ratio, peers’ session time, cross-torrent
interactions (e.g., peers participating in multiple torrents), etc.
However, these techniques cannot provide information at the
peer level (e.g., peer’s download progress, peer’s download
rate, chunk distribution, etc) since this requires to contact the
peer. Microscopic techniques were designed to perform the
peer level analysis. For this purpose the measurement software



7

connects periodically to a large number of peers (potentially to
all the peers participating in th set of analyzed torrents). This
makes Microscopic techniques to scale up to analyze (at most)
few thousand torrents in parallel. This means at least one order
of magnitude less than the Macroscopic counterpart.

Moreover, we have briefly defined a set of Complementary
techniques. On the one side, the usage of DHT and/or PEX to
learn the IP addresses of the peers participating within a swarm
compete directly with the traditional technique of learning the
peers from the Tracker. PEX and DHT allow the measurement
software to speed up the IP addresses collection and eliminate
the risk of being blacklisted by the Tracker (see Section IV).
However, the Tracker provides relevant information such as the
number of peers participating in the swarm, thus even when
using PEX and DHT to learn peers, it is strongly recommended
that the measurement software queries the Tracker regularly
in order to have an estimation of the the number of peers
participating in the swarm. An important aspect to consider
is the simplicity of the measurement tool. In this case, those
measurement tools based on a traditional Tracker crawling are
simpler than those enhanced versions that implement a PEX
and/or DHT module.

On the other side, the collection of data based on a specific
client or plugging implementation competes directly with the
Microscopic techniques. Using a client that reports logs to a
server is the most accurate method to measure the activity
of a peer (e.g., download rate, upload rate, etc) and surely
provides more accurate results than the traditional Microscopic
techniques. On the downside, the scalability of this technique
is limited to the number of clients running the BitTorrent
client (or plugging), this means that we have a partial view
of the analyzed torrent. Moreover, the retrieved data is only
representative of a specific client with a specific implementa-
tion, thus the obtained results may not be generalized to other
clients. Traditional Microscopic techniques lack of the level of
accuracy of the client based measurement but offers a better
scalability and coverage of the analyzed torrents.

Finally, it is important to highlight that the described tech-
niques are not necessarily exclusive. Therefore it is strongly
recommended to perform a study of the required data to be
collected and then decide which of the described techniques
the measurement software has to implement.

IV. CHALLENGES

In this section we enumerate the main challenges faced
by the previously described techniques as well as possible
solutions for some of them:
Peer Identification:

Description: In BitTorrent the peers do not have a per-
manent Peer-ID. Every time a BitTorrent client is started a
new random Peer-ID is generated. Then, it is not possible
to follow a peer across multiple sessions using its Peer-ID.
Most of the studies performed so far utilize the IP address or
the IP address+port to identify a single user across multiple
sessions. This works for all those users having a static IP
address. However, most of the BitTorrent users are residential

users with a dynamic IP address that is frequently changed by
their ISP. Hence, identifying these peers by their IP addresses
introduces inaccuracies in the obtained data. Furthermore, in
the current Internet a single IP address may be shared by
multiple users located behind a Network Address Translator
(NAT) [8], thus using the IP address to identify a peer may
lead to wrongly map several users as a single peer.

Possible Solutions: On the one hand, one way of guarantee-
ing the correct identification of a peer across sessions is using
measurement techniques based on the implementation of your
own BitTorrent client/plugin. Each installed instance of your
client is assigned a unique and permanent ID (different than
the Peer-ID used in the swarms) which is used by the client
to report the logs to the log server. Other option is to get
access to the log of private Trackers. In most of the private
Trackers the users are required to register with a username
and password. Each time a user initiates a session in the
Tracker it has to login, thus it can be uniquely identified
across sessions. Unfortunately, both described techniques have
scalability limitations. On the other hand, identifying the peer
by the combination of IP+port typically eliminates the problem
of wrongly mapping users with the same IP address as a
single peer. BitTorrent clients typically select a random port to
operate, thus it is unlikely that two peers behind a NAT select
the same port.
Crawler’s IP address banned by the Tracker:

Description: The described Macroscopic Tracker crawling
technique may produce the Crawler’s IP address being banned
by the Tracker. In some studies [3], [6], [16] the Crawler
performs a large-scale crawling by continuously sending an-
nounce started requests to a specific Tracker for a large
number (e.g., tens of thousands) of torrents. Then, the rate
of announce started requests is very high what is detected
by the Tracker. The reaction of the Tracker is blocking the
IP address showing this anomalous behaviour. Therefore the
Crawler has to limit the announce started requests rate to avoid
being banned by the Tracker.

Possible Solutions: LeBlond et al. [3] describe a technique
to avoid being banned while keeping a very high rate of
announce started requests. The technique consists on sending
an announce stopped just after the announce started request.
Then, the Tracker removes the IP address of the Crawler from
its log just after answering the announce started request. By
using this simple technique, the authors report that they are
able to crawl up to 750k torrents in around 30 min.

A second option is using an anonymization service such as
TOR6. By using this service, the messages sent by the Crawler
pass through an overlay of proxies before reaching the Tracker.
Then, the IP address seen by the Tracker is that of the egress
node from the proxies overlay, thus the Tracker cannot block
the actual Crawler’s IP address. Note that TOR is used by tens
of thousands of BitTorrent clients in order to preserve their
privacy while downloading content through BitTorrent. This
is well-known by the Trackers administrators that do not ban

6http://www.torproject.org/



8

the TOR proxies IP addresses. Furthermore, the load created
by the BitTorrent measurement tools in the TOR proxies is low
compared to that created by the tens of thousands of BitTorrent
clients using this service.

Finally, we can increase the rate of requests to the Tracker
using several instances of the Crawler distributed among
different machines with different IP addresses.
Crawler’s IP address blacklisted by the client:

Description: In the case of Microscopic measurements the
Crawler always performs the handshaking procedure with the
target peer. Afterwards, it retrieves the needed information
(e.g., the bitfield) and then it can either keep connected or
disconnect and reconnect after a while. In the first case since
our Crawler does not provide any chunk to the peer, due to
the optimistic connect algorithm implemented by the most
important BitTorrent clients, the peer is likely to substitute
the Crawler by other peer in its neighbourhood. Once the
Crawler has been removed from the peer’s neighbourhood,
it is typically hard to reconnect since the peer recognizes the
Crawler as a useless peer. In the second case after the Crawler
connects and disconnects from a given peer few times (2 or
3), this peer also blacklists the Crawler’s IP address. The IP
addresses in the blacklist have a timer associated, after this
timer expires the IP address is removed from the blacklist. This
means that the Crawler can contact a given peer in intervals
≥ blacklist timer7.

Possible solution: In the case we want to monitor the peers
with a higher resolution than that imposed by the peer’s
blacklist timer, the solution is using several instances of our
Crawler, each one with a different IP address and contact a
given peer following a round robin schedule [13]. We could
also use TOR, if two connections to the same destination are
at least 10 min apart, TOR establishes a new overlay path with
a new egress node. Thus, TOR guarantees a 10 min resolution.
Completeness of a torrent population

Description: BitTorrent developers have recently imple-
mented the magnet links. Basically, this is an id that allows
a peer to learn IP addresses of peers participating in the
swarm directly from the DHT service without connecting
to the Tracker. Therefore, the Tracker is unaware of the
presence of these peers. Although the clients using magnet
links to access a swarm are still a minority, this brings some
difficulties to obtain the complete list of peers participating
within an specific swarms because we need to obtain those
that are available from Tracker information and those that are
available from the DHT service (note that some peers will be
available from both). Unfortunately, this problem is even more
complicated. Some torrents are associated to multiple Trackers
that form separated swarms. In short, to retrieve the whole set
of peers downloading a given content we should collect the
peers from each of the Trackers and those available through
the DHT service.

Possible Solution: In order to retrieve the whole set of peers

7This timer value varies among the different clients. A conservative
estimation based in our studies is 2 hours.

downloading a given content, we need to crawl all the Trackers
included in the .torrent file. Furthermore we have to retrieve
the list of peers that use the DHT instead of using a Tracker.
This crawling can be quite costly since some torrents can use
tens of Trackers.
Upload Rate Estimation:

Description: We have discussed above the difficulties for
measuring the upload rate and what other parameters have
been measured as an approximation of the upload rate so far.

Possible Solutions: The only available technique that allows
to accurately measure the upload rate of a peer is the one based
in our own BitTorrent client (or plugging) implementation.

V. CONCLUSION

In this paper we have presented and classified the main mea-
surement techniques applied in order to understand different
aspects of one of the largest-scale systems in the current Inter-
net, i.e., BitTorrent. We believe that the described techniques
can constitute the basis for the design of measurement tools
for the analysis of current and future large-scale systems in
the Internet, but also other environments.

REFERENCES

[1] MaxMind- GeoIP. http://www.maxmind.com/app/ip-location.
[2] Tribler. http://www.tribler.org.
[3] S. Le Blond, A. Legout, F. Lefessant, W. Dabbous, and M. Ali Kaafar.

Spying the world from your laptop. LEET’10, 2010.
[4] David R. Choffnes and Fabián E. Bustamante. Taming the torrent: a

practical approach to reducing cross-isp traffic in peer-to-peer systems.
SIGCOMM Comput. Commun. Rev., 38(4):363–374, 2008.

[5] Bram Cohen. Incentives build robustness in BitTorrent. In Proc. of First
Workshop on Economics of Peer-to-Peer Systems, Berkeley, CA, USA,
Jun 2003.

[6] R. Cuevas, M. Kryczka, A. Cuevas, S. Kaune, C. Guerrero, and Rejaie.R.
Is content publishing in bittorrent altruistic or profit-driven? In ACM
CoNEXT 2010, 2010.

[7] R. Cuevas, N. Laoutaris, X. Yang, G. Siganos, and P. Rodriguez. Deep
diving into bittorrent locality. Proc. of IEEE INFOCOM’11, 2011.

[8] M. Ford, M. Boucadair, A. Durand, P. Levis, and P. Roberts. Issues
with IP Address Sharing. draft-ietf-intarea-shared-addressing-issues-05,
2011.

[9] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang. Measurements,
analysis, and modeling of bittorrent-like systems. In Proc. of ACM
IMC’05.

[10] Ipoque. Ipoque internet study 2007, 2007. http://www.ipoque.com/
userfiles/file/internet study 2007.pdf.

[11] T. Isdal, M. Piatek, Krishnamurthy. A, and Anderson T. Leveraging
bittorrent for end host measurements. In PAM, 2007.

[12] M. Izal, G. Urvoy-Keller, E.W. Biersack, P.A. Felber, A. Al Hamra,
and L. Garces-Erice. Dissecting bittorrent: Five months in a torrent’s
lifetime. In Proc. of PAM ’04.

[13] S. Kaune, R. Cuevas, G. Tyson, A. Mauthe, C. Guerrero, and R. Stein-
metz. Unraveling BitTorrent’s File Unavailability: Measurements, Anal-
ysis and Solution Exploration. In IEEE P2P’10, 2010.

[14] Georgos Siganos, Xiaoyuan Yang, and Pablo Rodriguez. Apollo:
Remotely monitoring the bittorrent world. Technical report, available
from: http://research.tid.es/georgos/images/apollo imc09.pdf, Telefonica
Research, 2009.

[15] M. Steiner and Biersack E. W. Crawling azureus. Technical re-
port, institut eurecom. available from: http://www.eurecom.fr/∼btroup/
BPublished/RR-08-223.pdf, 2008.

[16] C. Zhang, P. Dhungel, D. Wu, and K.W. Ross. Unraveling the bittorrent
ecosystem. IEEE Transactions on Parallel and Distributed Systems,
2010.


