
Deseeding Energy Consumption of Network Stacks
Iñaki Ucar∗ and Arturo Azcorra∗†

∗Dept. of Telematics Engineering, Universidad Carlos III de Madrid, Spain
†IMDEA Networks Institute, Madrid, Spain

inaki.ucar@uc3m.es, azcorra@it.uc3m.es

Abstract—Regular works on energy efficiency strategies for
wireless communications are based on classical energy models
that account for the wireless card only. Nevertheless, there is
a non-negligible energy toll called cross-factor that encompasses
the energy drained while a frame crosses the network stack of
an OS.

This paper addresses the challenge of deepen into the roots of
the cross-factor, deseed its components and analyse its causes.
Energy issues are critical for IoT devices. Thus, this paper
conceives and validates a new comprehensive framework that
enables us to measure a wide range of wireless devices, as well
as multiple devices synchronously. We also present a rigorous
methodology to perform whole-device energy measurements in
laptops, a more generic and suitable device to perform energy
debugging. Finally, and using this framework, we provide a
collection of measurements and insights that deepens our un-
derstanding of the cross-factor.

Index Terms—Energy efficiency, energy measurement, wireless
networks.

I. INTRODUCTION

We are living in an era in which consumer electronics are
becoming wireless consumer electronics. That is, just about
any known gadget is capable of connecting to cellular, wireless
LAN or wireless PAN networks nowadays. The Internet of
Things (IoT) is growing fast and wireless communications
become its main driver. Due to the densification of wireless
networks and the ubiquity of battery-powered devices, energy
efficiency stands as a major research issue in the IoT.

More and more devices around us are becoming smart,
incorporating more processing power in order to do more
things, and some of them are already comparable to a small
laptop computer. As a consequence, not only do they share
hardware components, but also software: in particular, the
Linux kernel is spreading into billions of devices all over the
world, whether inside of the popular Android operating system
or other embedded systems.

Whereas a lot of research were and is devoted to obtain more
energy-efficient hardware components (e.g., wireless cards,
processors, screens), too little attention has been paid, in terms
of energy, to a core software component that enables all these
devices: the operating system and, inside it, the network stack.
A recent study [1] unveils that the energy toll —called cross-
factor— ascribed to a frame crossing the operating system
(i.e., the network stack and the wireless driver) is anything
but negligible. In fact, it may account up to 97% of the total
energy consumption per frame in some devices. This poses
doubts on prior works that propose energy efficiency strategies
taking into account the wireless card only.

Therefore, this inspired us to deepen into the roots of the
cross-factor, deseed its components and analyse its causes. The
main contributions of our work are the following:

• The conception of a comprehensive, high-accuracy and
high-precision measurement framework that enables us
to measure the consumption of any type of device, as
well as multiple heterogeneous devices synchronously.

• A rigorous methodology to perform whole-device energy
measurements in laptops. As we will justify in detail
later, we have chosen the laptop as target device in our
measurements. Here we introduce the components of a
common laptop, analyse which of them are key part of
wireless transmissions, which others can become an issue
(e.g., generating noise) and how to mitigate their impact.

• A collection of measurements and insights that deepens
our understanding of the cross-factor.

The remainder of this paper is organized as follows. Sec-
tion II gives the current state-of-the-art on energy efficiency of
wireless devices and establishes the foundation and motivation
of this work. Section III presents our measurement framework:
we describe in a reasoned manner the selected instrumentation,
the testbed assembled for our experiments and its validation.
Section IV assembles a measurement methodology by looking
throughout the components of a common laptop. Section V
presents and discusses our results and its implications. Finally,
Section VI summarizes the conclusions of this paper.

II. BACKGROUND

A. Cross-factor: Towards a New Energy Model

The seminal paper [2] gives the very first insight on energy
consumption of wireless interfaces. This work was done on
a per-frame basis by accounting for the energy drained by an
802.11 wireless card. Subsequent experimental works followed
the same approach, which assumes that the network card
dominates the consumption [3], [4]. All these results show that
the energy consumption of wireless transmissions/receptions
can be characterised using a simple linear model. This fact
arises from the three typical states of operation of a wireless
card: idle, transmitting and receiving.

The model, commonly expressed in terms of power, has a
fixed part ρid, device-dependent, attributable to the idle state,
and it grows linearly with the airtime percentage τ (i.e., the
fraction of time in which the card is transmitting or receiving).

This model has been assumed and widely used (implicitly or
explicitly) in tens of papers [5]–[17] to justify energy savings



with optimizations of diverse kind: PHY layer rate and power
[7], MAC parameters [8]–[10], backoff operation [11], [12],
idle state [13], overhearing [14], packet relying [15], data
compression [16], [17], etcetera.

However, more recently, the novel work [1] performed ex-
tensive per-frame measurements for seven devices of different
types (smartphones, tablets, embedded devices and wireless
routers) and it unveiled that actually there is a non-negligible
per-frame processing toll ascribed to the frame crossing the
network stack. This component emerges as a new offset pro-
portional to the frame generation rate, and it is not explained
by the classical model.

The new model is expressed as follows:

P (τ, λ) = ρid + ρtxτtx + ρrxτrx
classical model

+γxgλg + γxrλr (1)

where:
γxg, γxr are the cross-factor for generation and reception

respectively. It is the fixed energy toll, measured
in mJ, that every frame pays while crossing the
network stack.

λg, λr are the frame generation and reception rates
respectively.

The results obtained with this new multilinear model show
that the so called cross-factor accounts for 50% to 97% of the
per-frame energy consumption. Additional findings show that
it is independent of the CPU load on some devices and almost
independent of the frame size.

Bearing in mind these results, it is imperative to reconsider
existing schemes for energy efficiency in wireless commu-
nications. Old schemes like packet relying [15] and data
compression [16], [17] may no longer be valid. On the
contrary, packet batching or low-level packet generation could
potentially produce real savings in this new component [1].

B. Motivation of this Work
Due to its relevance, a better understanding of the cross-

factor is required. We need to look at the kernel of the oper-
ating system, and specifically at the network stack, from an
energy perspective: new tools and methodologies are needed
to perform energy debugging [18].

Our intention is to separate the cross-factor into its con-
stituent parts in order to comprehend the underlying causes,
all this within the scope of providing an accurate mathematical
description of the cross-factor which would give the energy
model an unprecedented specificity. This would enable us
to evaluate old energy efficiency strategies and to propose
and test new schemes, both at device and at network level.
Therefore, building a more general long-term measurement
framework —solid, accurate and flexible enough— is required
to cope the new challenge and those that will come.

Once this new framework is developed and validated, our
proposal is to switch to a new target platform, more open
and with easy access to in-kernel instrumentation. A laptop
computer with a Linux-based distribution has all the resources
to perform fine-grained energy debugging.

III. A COMPREHENSIVE MEASUREMENT FRAMEWORK
FOR WIRELESS DEVICES

The main specifications for our framework are the follow-
ing:

• High-accuracy, high-precision; in the range of mW.
• Avoid losing information between sampling periods, with

events that last tens of microseconds.
• Wide range of devices, from low- to high-powered de-

vices, while keeping accuracy and precision.
• Multiple devices under test (DUTs) at the same time,

synchronously, for network-related energy measures (e.g.,
protocol/algorithm testing, energy optimization for a net-
work as a whole).

Based on the above, we selected the proper hardware
components as we shall see. Making use of this framework,
a testbed intended for deseeding the energy consumption of a
Linux kernel stack is proposed and validated.

A. Instrumentation

1) Hardware: The most power-hungry laptops in the mar-
ket rarely surpass the barrier of 100 W. For instance, typical
Dell computers bring 65 or 90 W AC adapters with maximum
voltages of 19.5 V. We selected the Keithley 2304A DC
Power Supply, which is optimized for testing battery-operated,
wireless communication devices such as smartphones, tablets
or even laptops (up to 100 W, 20 V, 5 A) that undergo
substantial load changes for very short time intervals. This
power supply simulates a battery’s response during a large
load change by minimizing the maximum drop in voltage and
recovering to within 100 mV of the original voltage in 40 us
or less.

As measurement device, we selected the National Instru-
ments PCI-6289, a high-accuracy multifunction data acquisi-
tion (DAQ) device. It has 32 analogue inputs (16 differential
or 32 single ended) with 7 input ranges optimized for 18-bit
input accuracy, up to 625 kS/s single channel or 500 kS/s
multi-channel (aggregate). The timing resolution is 50 ns with
an accuracy of 50 ppm of sample rate.

A custom three-port circuit, specifically designed by our
university’s Technical Office in Electronics, converts the cur-
rent signal to voltage and accommodates the voltage signal to
the DAQ’s input limits without precision loss. Fig. 1b shows a
simplified scheme of this circuit. The voltage drop in a small
and high-precision resistor is amplified to measure the current
signal. At the same time, a resistive divider couples the voltage
signal. Considering that the DAQ card has certain settling time,
it can be modelled as a small capacity which acts as a low
pass filter. Thus, two buffers (voltage followers) are placed
before the DAQ card to decrease the output impedance of the
circuit [19].

2) Software: A small command-line tool was developed to
perform measurements on the DAQ card using the open-source
Comedi1 drivers and libraries.

1http://comedi.org/



DUTAP

Power Supply
DAQ

Controller

Switch

Custom Circuit

Probe

(a) Testbed

V+

V-

I-

I+

SOURCE+

SENSE+

SENSE-

SOURCE-

DUT

LTC6102

(b) Custom Circuit (simplified)

DUT AP

configure

configure connect

check ping

get counters

get counters

start receiver

start transmitter

wireless channel monitoring

energy measuring

get counters

get counters

stop transmitter

stop receiver

Controller

(c) Methodology

Fig. 1. (1a) Testbed for energy measurements of a whole wireless device. (1b) Simplified scheme of a custom circuit that connects the power supply with
the DUT and extracts voltage and current signals accommodated to meet the DAQ input requirements. (1c) Time sequence of a single experiment.

Regarding the in-kernel instrumentation, we take advan-
tage of SystemTap2, an open-source infrastructure around the
Linux kernel that dramatically simplifies the gathering of
information about a running Linux system (kernel, modules
and applications). It provides a scripting language for writing
instrumentation. SystemTap scripts are parsed into C code,
compiled into a kernel module and hot-plugged into a live
running kernel, eliminating the need for recompiling and
rebooting.

B. Testbed

Fig. 1a shows the proposed testbed. It is composed of two
laptop computers —the DUT and an access point (AP)— and
a controller. The controller is a workstation with the DAQ
card installed and it performs the energy measurements. At the
same time, it sends commands to the DUT and AP through
a wired connection and monitors the wireless connection
between DUT and AP through a probe.

The experimental methodology works as follows. Given a
collection of parameter values (modulation coding scheme or
MCS, transmission power, packet size, framerate), we run
steady experiments for several seconds in order to gather av-
eraged measures. Each experiment comprises the steps shown
in Fig. 1c.

1) AP and DUT are configured. The DUT connects to
the wireless network created by the AP and checks the
connectivity. Setting up this network in a clear channel is
highly advisable to avoid interference. The 5 GHz band,
with an 802.11a-capable card, has good candidates.

2) The packet counters of the wireless interfaces are saved
for later use.

3) Receiver and transmitter are started. We use the mgen3

traffic generator and a simple netcat at the receiver.
4) The controller monitors the wireless channel and collects

an energy trace that will be averaged later.
5) Transmitter and Receiver are stopped.

2https://sourceware.org/systemtap/
3http://cs.itd.nrl.navy.mil/work/mgen/

6) Because of the unreliability of the wireless medium, the
packet counters, together with the monitoring informa-
tion, are used to ensure that the experiment was suc-
cessful (i.e., the traffic seen agrees with the configured
parameters).

C. Validation

In order to validate our measurement framework, several
experiments were performed with one of the devices studied in
[1] as DUT. We selected the Soekris net4826-48 equipped with
an Atheros AR5414-based 802.11a/b/g Mini-PCI card because
it is the one with the largest cross-factor. The OS was Linux
Voyage with kernel 2.6.30 and the MadWifi driver v0.9.4.

The first task was to perform the energy breakdown given
in [1] in transmission mode:

• User space: The Soekris generates packets using mgen,
but they are discarded before being delivered to the OS,
by using the sink device rather than udp.

• Kernel space: Packets cross the network stack and are
discarded in the driver, by commenting the hardstart
MadWifi command that performs the actual delivery of
the frame to the wireless network interface card (NIC).

• Wireless NIC: Packets are transmitted, i.e., are delivered
to the wireless medium.

The NoACK functionality of 802.11e was activated in order
to avoid ACK receptions. Thus, the energy model that governs
Soekris’ complete transmissions is simplified as follows:

P (τ, λ) = ρid + ρtxτ + γxgλ (2)

Fig. 2 represents the Equation (2) (red lines) and depicts
how the energy toll splits across the processing chain with
different parameters (blue and green lines). The dashed line
depicts the idle consumption as a reference, ρid = 3.65(1) W.

Indeed, these results are quite similar to [1] and confirm
that the cross-factor accounts for the largest part of the energy
consumption. Moreover, [1] reports that the cross-factor is
almost independent of the packet size. Interestingly, our results
have captured a small dependence that can be especially
observed in the 600 fps case.



ρid

ρid

6 Mbps, 200 fps

48 Mbps, 800 fps

4.0

4.5

5.0

4.0

4.5

5.0

10 20 30 40

airtime [%]

P
(τ

,λ
) 
[W

]

experiment

complete transmission

drop before NIC

drop before stack

cross-factor

user space

kernel space

wireless NIC

Fig. 2. Power consumption breakdown versus airtime in a Soekris net4826-48.

4.00

4.25

4.50

4.75

200 400 600 800

λ [fps]

P
(0

,λ
) 

[W
]

MCS [Mbps]

6

12

24

48

Fig. 3. Power consumption offset (τ = 0) versus framerate in a Soekris
net4826-48.

Finally, we can derive the cross-factor value and compare
it. Taking the offset of the red regression lines of Fig. 2, we
can plot Fig. 3 and fit the points to the Equation (2) with
τ = 0. This regression yields the values ρid = 3.72(4) W
(3.65(1) W measured) and γxg = 1.46(7) mJ, quite close to
the values reported in [1].

IV. COMPONENTS OF A COMMON LAPTOP

As pointed out previously in Sections I-II, we have chosen
the laptop as DUT in our measurements using the testbed
described and validated in Section III. The main reason is
that this platform is flexible and powerful enough to provide
us with the proper debugging tools.

However, a laptop is not without drawbacks as a complex
and power-hungry piece of hardware. It comprises a number
of components, both hardware (battery, screen, hard disk
drive, fan, wireless card, RAM memory, CPU) and software
(services, kernel, drivers), that require a thorough discussion
for one of two reasons: 1) they are not present in other devices
or 2) they are essentially different.

The laptop selected for our experiments is a Dell Latitude
E5540 with Intel Core i5-4300U CPU at 1.9 GHz and 8 GB of
SODIMM DDR3 RAM at 1.6 GHz, equipped with an Atheros
AR9280-based 802.11a/b/g/n Half Mini-PCI Express card and
running Fedora Linux 20.

A. Battery

The battery is a serious obstacle for energy measurements.
Although using it as power source is actually possible, it is
totally impractical because it prevents long term experiments,
and the constant need for recharging is a waste of time. Then,
the use of an external power source is highly advisable, but in
this case the battery must be removed to avoid noise coming
from battery charging and discharging.

Nevertheless, supplying DC voltage through the power jack
socket is not enough. Most laptops are capable of detecting
the AC adapter. This is done through a third connection in the
power jack. In the case of Dell computers, this third wire goes
to a transistor-shaped component placed in the AC transformer.
Actually, this component is a small memory that can be read
using a 1-wire protocol. It stores a serial number identifying
the AC adapter.

If the laptop does not detect this memory, the BIOS can
do improper things. For instance, we have detected that the
BIOS of Dell computers do not allow the OS to control CPU
frequency scaling. Fortunately, it is very straightforward to
borrow such component from an official AC adapter and attach
it permanently to the third connection of the power jack socket.

B. Screen

Same as for smartphones [20], the laptop screen is the most
energy-hungry device. It accounts for more than a half of the
energy consumed by our laptop when it is just powered on and
idling. Thus, the screen constitutes a very high and variable
(as it depends on the GPU activity) baseline consumption that
must be avoided in wireless experiments.

In Linux, this can be done by finding the backlight device
entry in the /sys/class subsystem and simply resetting it.
The screen goes off.

C. Hard Disk Drive

Regarding the system’s non-volatile memory, we cannot get
rid of it because it is needed for the OS storage. Commonly,



laptops carry hard disk drives (HDD), which are mechanical
devices powered with voltages ranging from 5 to 12 V. HDDs
are proven to be energy-hungry devices with a consumption
variability in ascending order of tens of W [21]. As a con-
sequence, every read/write during an experiment generates an
intractable noise.

On the contrary, all the devices studied in [1] use flash
memories. This kind of non-volatile memory is the best
option, because its consumption variability is three orders of
magnitude below HDD’s [22]. In our experiments, we replaced
the original HDD by a solid-state disk (SSD). As an SSD is
composed of NAND flash units, its consumption is far more
stable.

D. Fan

The thermal characteristics of a laptop computer require a
cooling subsystem: heat sinks (CPU and GPU), air ducts and
one fan (at least). The fan is regulated dynamically with a
pulse-width modulation (PWM) technique. This component
becomes an unpredictable source of electrical noise, as its
operation point depends on the computer’s thermal state.

Suppressing the fan is not an option because, at some point,
the CPU will heat and the computer will turn off. Our solution
was to set it at fixed medium speed with the help of the i8k
kernel module and the i8kfan user-space application.

E. Wireless Card

This is the last part of the wireless transmission chain
and the first of the reception one. In principle, the energy
models reviewed in Section II assure us that a linear behaviour
is expected, independently of the manufacturer or model.
However, there are a couple of factor may lead us to select a
given card.

• Capabilities: Nowadays, it is very difficult to perform
interference-free wireless experiments over ISM bands
without an anechoic chamber (especially when all your
fellows are within the same research topic). The 2.4 GHz
band is typically overcrowded, while in the 5 GHz band
we have better chances to find a clear channel. Thus, an
802.11a-capable card is advisable.

• Manufacturer: Distinct manufacturers (and models)
have better or worse driver support in the Linux kernel.
For instance, Intel PRO/Wireless cards are known for
requiring a binary firmware to operate. On the other hand,
Atheros released some source from their binary HAL to
help the open-source community add support for their
chips. As a result, there are completely free and open-
source drivers available for all Atheros chipsets.

The factory default card of our Dell Latitude was an
Intel PRO/wireless card, and it was replaced by an Atheros
AR9280-based 802.11a/b/g/n Half Mini-PCI Express.

F. RAM Memory

The random-access memory is a fundamental peripheral
device in a computer system: it holds the instructions of the
running programs —the kernel of the OS included— and

P0

P1

P2

...

C0

C1

C2

...

C0

lo
w

e
r 

fr
e
q
/v

o
lt

a
g
e

m
o
re

 p
o
w

e
r 

s
a
v
in

g
s

idle states running states

Fig. 4. CPU P- and C-states.

the data associated. Therefore, our first guess was that the
RAM memory could play a meaningful role in the energy
consumption of a wireless communication.

G. CPU

The CPU is another power-hungry component. For many
years, the first CPUs were like bulbs: they were consuming the
same power whether doing something useful or not. In fact,
they executed junk code (i.e., a loop of NOPs) in idle time.
Later, CPU architects realised that more intelligent things can
be done in such periods of time. For instance, performing some
kind of energy saving mechanism.

Nowadays, CPUs are becoming more and more complex.
Without seeking to be exhaustive, a modern CPU has arith-
metic control units (ALUs), pipelines, a control unit, registers,
several levels of cache, some clocks, etcetera. But more
interestingly, modern CPUs implement several power man-
agement mechanisms (see Fig. 4) covered by the Advanced
Configuration and Power Interface (ACPI).

• P-states: Also known as frequency scaling. When the
CPU is running (i.e., executing instructions), one of these
states apply. P0 means maximum power and frequency.
As Px increases, the voltage is lower and, thus, the
frequency of the clock, and thus the energy consumed, is
scaled down.

• C-states: When the CPU is idle, it enters a Cx state. The
C0 means maximum power, because junk code is being
executed. This can be a little bit confusing because, as
Fig. 4 shows, the CPU is also in C0 when running. In
general, C0 means the CPU is busy doing something,
whether executing actual programs (running) or some-
thing not useful (idle). In C1, the CPU is halted, and
can return to an executing state near instantaneously. In
C2, the main clock is stopped and, as Cx increases, more
and more functional units are shut off. As a consequence,
returning from a deep C-state is very expensive in terms
of latency.

Finally, multicore systems introduce additional complexity.
As a clue, the OS decides how many cores become active
at any time, and each core has its own power management
subsystem (i.e., P- and C-states). Therefore, we work always
in single core mode to simplify the analysis.



H. Services

There may be a lot of active user-space services (also called
daemons) in a Linux system by default. They can add noise to
our measurements in two ways: by consuming CPU time and
writing logs to disk. Hence, disabling not essential services is
desirable.

I. Kernel

There exist two power management subsystems for each
CPU in the Linux kernel: cpufreq4 controls P-states and
cpuidle5 controls C-states. Both subsystems have the same
architecture, separating mechanism (driver) from policy (gov-
ernor).

• Driver: It provides the platform-dependent state detec-
tion capability and the mechanisms to support entry/exit
into/from different states. By default, there exists an ACPI
driver that implements standard APIs. Usually, CPU-
specific drivers are capable of detecting more states than
ACPI-compliant ones.

• Governor: It is an algorithm that takes in several system
parameters as input and decides the state to activate.

The cpufreq governor has several policies that focus on
certain P-states or frequencies to the detriment of others, e.g.,
performance (high frequencies) or powersave (low fre-
quencies). It is also possible to manually fix certain frequency
or range of frequencies.

The cpuidle governor takes in the next timer event as
main input. Each C-state has a certain energy cost and exit
latency. Thus, intuitively there are two decision factors that
the menu governor (the most common) must consider: the
energy break-even point and the performance impact. The next
timer event is a good predictor in many cases, but not perfect
since there are other sources of wake-ups (e.g., interrupts).
Therefore, it computes a correction factor using an array of
12 independent factors through a running average. Moreover,
it is possible to manually disable the C-states (excepting C0).

J. Drivers

All Linux drivers are compiled as separate modules. In
particular, wireless drivers6, along with the entire 802.11
subsystem, can be compiled out-of-tree within the backports
project7. This is very useful in order to use latest drivers on
older kernels.

The wireless driver module interacts directly with the NIC.
In our case, the selected card uses the ath9k driver. The
function ath9k_tx() is the entry point for the transmission
path. The driver fills the transmission descriptors, copies the
buffer into the NIC memory and sets up several registers that
trigger the transmission.

In [1], the authors claim that their methodology discarded
packets right after the driver in order to perform the energy

4https://www.kernel.org/doc/Documentation/cpu-freq/
5https://www.kernel.org/doc/Documentation/cpuidle/
6http://wireless.kernel.org/
7https://backports.wiki.kernel.org

breakdown depicted in Fig. 2. This statement becomes un-
certain when a closer look at any wireless driver is taken.
Discarding a frame before the buffer is copied into the NIC
implies that only half of the driver is actually taken into
account for the cross-factor value. On the other hand, if we
try to discard it in the very last instruction of the driver
(i.e., avoiding setting the register that triggers the hardware
transmission), then the module crashes. This occurs because
the buffer is already in the NIC’s memory and it needs to
be cleaned up, a non-trivial task that anyway would consume
more energy.

This, combined to the fact that drivers differ greatly from
one to another, makes it not advisable to include the driver into
the definition of cross-factor, given the difficulty of isolating
driver and NIC consumptions.

As with the variety of drivers mentioned above, a similar
argument can be wield against the user-space consumption.
Therefore and from here on, we define kernel cross-factor
as the energy consumed from the system call that delivers
the message until the driver is reached. Cross-factor, as is,
maintains the definition given in [1] to avoid confusion.

We would also like to highlight that our way of interrupting
the transmission path by discarding a frame in the driver
is a bit different from [1]. They conduct this breakdown
commenting a driver function. This method implies the need
for recompiling the driver, which is time-consuming and not
very portable (think about a similar task inside the kernel core).

For our part, we look for a short string in the beginning of
packet payloads. The presence of this magic string triggers
the packet drop. Our method, despite introducing a very
little overhead, is agile and portable (for instance, it can be
implemented on the fly using SystemTap).

V. NETWORKING MEASURES ON A LAPTOP

In our measurements, we use Fedora-default pre-compiled
kernels. We arranged two separate partitions: one with Fedora
12 and kernel version 2.6.32 and the other with Fedora 20
and kernel 3.14. Only the latter supports Intel-specific drivers,
thus we use ACPI drivers only in order to operate under similar
conditions.

Intel Haswell processors support up to eight C-states: C1,
C1E, C3, C6, C7s, C8, C9, C10. However, the BIOS reports
two C-states to the ACPI driver, which are named C1 and C2.
We have verified by comparing idle consumptions of each C-
state that the correspondence is as follows:

• ACPI C1 = Intel C1: the CPU is halted and stops
executing instructions when it enters into idle mode.

• ACPI C2 = Intel C6: this is a new sleep state introduced
in the Haswell architecture.

A. Cross-factor: Separating the Wheat from the Chaff

We have identified the two components suspected of being
responsible of the cross-factor, and our first priority is to
quantify their impact:



9.50

9.75

10.00

10.25

10.50

20 40 60

airtime [%]

P
(τ

,λ
) 

[W
]

experiment

complete transmission

drop before NIC

drop before stack

configuration

300 fps.6 Mbps

600 fps.12 Mbps

1200 fps.24 Mbps

2400 fps.48 Mbps

Fig. 5. Energy breakdown with the CPU fixed at P0-C0 states.

• CPU: As the cross-factor is caused by software process-
ing, the CPU is expected to be the main source of energy
drain.

• RAM Memory: It stores the instructions to be executed
as well as the associated data.

It is not possible to regulate the activity of the RAM
memory, but it can be done with the CPU. For this purpose,
the CPU was fixed at P0-C0 states, i.e., always running
at maximum frequency, maximum energy consumption. We
performed an energy breakdown using this configuration in
kernel 3.14 and the results are shown in Fig. 5.

The lines appear superimposed: the laptop is consuming
the same power among different parameters, different packet
rates. Hence, one important conclusion to be drawn is that
the RAM memory has no significant impact in the overall
energy consumption of wireless transmissions. The noise can
be ascribed to the fact that not all the instructions consume
exactly the same energy [23]. Other possible sources of noise
are cache and pipeline flushes.

With this simple experiment, we have demonstrated that
the CPU is the leading cause of cross-factor in laptops, and
it is clear that the cpuidle subsystem has a central role,
because a CPU spends most of the time in idle mode [24].
From now on, and in order to take a deeper look at C-states, we
remove a variable by keeping the P-state fixed at P0 (maximum
frequency).

B. Power Consumption in Unattended Idle Mode

The Soekris net4826-48 is equipped with an AMD Geode
SC1100 CPU that supports ACPI C1, C2 and C3 states8.
Unfortunately, it seems that Linux distributions for embed
devices, such as Voyage Linux, disable cpuidle in their
kernels, which means that the OS has no control over the idle
mode. In such conditions, we know now that the CPU cannot
be in C0 all the time, because the device does not consume
the same power with different parameters. What is happening
then?

8http://datasheets.chipdb.org/upload/National/SC1100.pdf

6 Mbps, 300 fps

48 Mbps, 2400 fps

8.0

8.5

9.0

9.5

10.0

8.0

8.5

9.0

9.5

10.0

20 40 60

airtime [%]

P
(

,
) 
[W

]

experiment

complete transmission

drop before NIC

drop before stack

kernel

2.6.32

3.14

kernel cross-factor (3.14)

kernel cross-factor (2.6.32)

Fig. 6. Power consumption breakdown versus airtime with fixed C1 state for
kernels 2.6.32 and 3.14.

8.1

8.4

8.7

9.0

9.3

500 1000 1500 2000 2500

λ [fps]

P
(0

,λ
) 

[W
]

MCS [Mbps]

6

12

24

48

kernel

2.6.32

3.14

Fig. 7. Power consumption offset (τ = 0) versus framerate with fixed C1
state for kernels 2.6.32 and 3.14.

Back to our laptop, it is possible to disable cpuidle
through the kernel command-line. The idle power consumption
in this situation, which we call unattended idle mode, reveals
that the laptop is entering C1. This fact can be extrapolated
to the Soekris case, which makes sense, since there is no
governor to resolve what C-state is the more suitable. Thus,
the processor simply halts when there is no work to do.

Fig. 6 shows the energy breakdown for both kernels, 2.6.32



6 Mbps, 300 fps

48 Mbps, 2400 fps

7

8

9

7

8

9

20 40 60

airtime [%]

P
(τ

,λ
) 

[W
]

C-states

C1

C1 + C2

experiment

complete transmission

drop before NIC

drop before stack

Fig. 8. Power consumption breakdown versus airtime with two cpuidle
configurations for kernel 3.14.

and 3.14, when the C1 state only is enabled. The obtained
kernel cross-factor is almost negligible, which suggests that
Intel Haswell’s C1 state saves a very small amount of power,
unlike the Soekris’ C1 state as shown in Fig. 2.

There is also a baseline power difference between kernels.
This offset can be ascribed to several factors. For instance, a
lot of code has changed —and probably improved— between
those kernel versions. In particular, the scheduler and the
cpuidle algorithms have evolved. Moreover, the compiler
used has changed also.

At this respect, we can calculate the complete cross-factor
(including the user-space, as done in Section III) by extracting
the slopes of the regressions of Fig. 7. These values are
comparable to the Linksys case reported in [1]: 0.51(2) mJ
(kernel 2.6.32) and 0.38(2) mJ (kernel 3.14).

It is also important to note that, unlike results from Fig. 2,
there is absolutely no dependence on the frame size in this
case. Our guess is that RAM memory consumption would be
proportional to the frame size and may have a small but still
perceptible impact in low-power devices, but it is negligible
compared to a laptop’s CPU consumption. As a consequence,
the frame size can be removed as a parameter from the cross-
factor analysis in laptops.

6.5

7.0

7.5

8.0

8.5

0 500 1000 1500 2000 2500

λ [fps]

P
(0

,λ
) 

[W
]

C-states

C1

C1 + C2

MCS [Mbps]

6

12

24

48

Fig. 9. Power consumption offset (τ = 0) versus framerate with two
cpuidle configurations for kernel 3.14.

C. Power Consumption with Full cpuidle Subsystem

With the knowledge acquired so far, we can move onto
a more realistic scenario by enabling the whole cpuidle
subsystem, i.e., keeping both ACPI C-states enabled and
letting the governor decide.

Fig. 8 depicts the energy breakdown for kernel 3.14 with
full cpuidle subsystem (C1+C2 enabled) and compares it to
the previous case (C1 only). By enabling C2, the consumption
appears to be always lower up to driver level (blue and green
lines). Nevertheless, the consumption of complete transmis-
sions (red lines) is lower in the 300 fps case, but it is the
same in the 2400 fps case.

Fig. 9 compares the offsets of complete transmissions in
Fig. 8 for both cases: C1+C2 and C1 only. The red line
corresponds to C1: as expected, its behaviour is linear as seen
in Fig. 7. On the other hand, the C1+C2 case (blue points)
is not linear globally. It comprises three clearly distinct parts:
when the framerate is low, there is an approximately linear
behaviour because the CPU only uses C2; when the framerate
is high, C2 is no longer used, and the slope matches the
red line; between them, the behaviour becomes unpredictable
because of the mix of C1 and C2. Therefore, the cross-factor
as defined in [1] makes no sense anymore. When all C-states
are active, there is no more linear behaviour: we cannot talk
neither about a slope nor a fixed energy toll per frame.

Furthermore, we had assumed, as [1], that we can simply
drop the packets at certain points, measure the mean power up
to those points and represent all this as an energy breakdown.
But obviously this is not true either. For instance, the last
plot of Fig. 8 (48 Mbps, 2400 fps) shows that the CPU is
not entering C2 when complete transmissions are performed,
as the consumption is the same as the C1-only case. On the
other hand, the CPU is clearly spending some time in C2
when the frames are dropped early. Even it seems that the
network stack is consuming more power because the energy
band (between green and blue lines) is larger. Evidently, it
should be the opposite: the stack would be consuming less



0

25

50

75

100

0 2000 4000 6000

Stress [wake-ups/s]

R
e

s
id

e
n

c
e

 t
im

e
 [

%
]

C-state

C0

C1

C2

CPU load [%]

0

50

Fig. 10. Residence time of each C-state versus wake-ups/s for kernel 3.14.
Each wake-up does nothing.

0

25

50

75

100

0 2000 4000 6000

Stress [wake-ups/s]

R
e

s
id

e
n

c
e

 t
im

e
 [

%
]

C-state

C0

C1

C2

CPU load [%]

0

50

Fig. 11. Residence time of each C-state versus wake-ups/s for kernel 3.14.
Each wake-up performs a UDP transmission.

power as soon as it enters a lower C-state.

D. Exploring the cpuidle Subsystem

As stated in Section IV, the cpuidle subsystem is a very
complex component. Kernel timer events are the main input for
the governor algorithm as they often indicate the next wake-up
of the CPU, but the running average used to scale the latter
makes it unpredictable, as it depends on the recent state of the
whole machine. The purpose of this section is to shed light on
the linkage between the residence time of C-states, the number
of wake-ups per second, the CPU load and the transmission
of wireless frames.

We implemented a very simple application with two modes
of operation: it is capable of setting a kernel timer at a given
constant rate and, when this timer is triggered, it 1) does
nothing or 2) sends a UDP packet. At the same time, it
calculates the mean residence time of each C-state over the
whole execution. Figs. 10-11 have been compiled using this
tool. The additional CPU load was added on top of the latter

6

7

8

9

10

0 2000 4000 6000

Stress [wake-ups/s]

P
 [
W

]

transmission

no

yes

CPU load [%]

0

50

Fig. 12. Power consumption offset versus wake-ups/s for kernel 3.14.
A comparison between the ”wake-up” (Fig. 10) and ”wake-up + UDP
transmission” (Fig. 11) cases is made.

using a modified version of lookbusy9. Fig. 12 compares
the two previous figures in terms of power consumption.

In Fig. 10, the only source of wake-ups is the kernel timer
that our tool sets. Each C-state is represented by a colour, and
shapes and line types distinguish between CPU loads. The
first observation is that the addition of a substantial source
of CPU load has no impact on the distribution of residence
times. Another important clue is that, up to 2000 and from
3500 wake-ups/s onwards, there is only one active idle state
—C2 or C1 respectively (C0 means executing)—, and the
behaviour is linear. This fact can be verified by checking the
power consumption (Fig. 12, red lines). From 2000 to 3500
wake-ups/s, the transition between C-states occurs in a non-
linear way.

In Fig. 11, on other hand, there is another source of wake-
ups: hardware interrupts caused by the wireless card each time
a packet is sent. The transition between states occurs earlier
because there is actually twice the wake-ups. And, again, CPU
load shows no impact on the distribution of residence times.

These are partial results and are limited to constant rate
wake-ups, but these findings are in line with the non-linearities
previously discovered in the cross-factor and they confirms the
enormous complexity we face.

VI. CONCLUSIONS

This paper follows the path set out by [1] with the discovery
of the cross-factor, an energy toll not accounted by classical
energy models and associated to the very fact that frames are
processed along the network stack. On the achievement of
this goal, we have built and validated a comprehensive, high-
accuracy and high-precision measurement framework capable
of measuring any type of device, as well as multiple heteroge-
neous devices synchronously. We have introduced the laptop
as a more suitable device to perform whole-device energy

9http://www.devin.com/lookbusy/



measurements in order to deseed the root causes of the cross-
factor by taking advantage of the wide range of debugging
tools that such platform enables.

Our results, albeit preliminary, provide several fundamental
insights on this matter:

• We have identified the CPU as the leading cause of
the cross-factor in laptops. Thus, the cross-factor shows
absolutely no dependence on the frame size, because the
RAM memory has no significant impact in the overall
energy consumption of wireless transmissions. On the
other hand, low-powered devices, like the Soekris, show
a very small but perceptible dependency that can be
ascribed to the RAM memory.

• The CPU’s C-state management plays a central role in
the energy consumption, because a CPU spends most of
the time in idle mode.

• When the C-state management subsystem is not present
in the OS, the device enters C1 in idle mode (halted) and
cannot benefit from lower idle states.

• In contrast to low-powered devices, the C1 state of a
laptop’s CPU saves a very small amount of power.

• With a fully functional C-state management subsystem,
the linear behaviour disappears. In consequence, we can-
not talk about cross-factor as a fixed energy toll per frame.

• A non-linear behaviour implies that we cannot perform
energy breakdowns by dropping packets inside the trans-
mission chain. Therefore, new methodologies and tech-
niques are required to enable energy debugging.

• C-state residence times depend primarily on the number
of wake-ups per second produced by software and hard-
ware interrupts. However, they show no dependence on
the CPU load.

Further research is needed in order to fully understand the
key role of the C-state subsystem in the energy consumption
of wireless communications, as well as to investigate other
processor capabilities not accounted for here, such as P-states
and multicore support.

REFERENCES

[1] P. Serrano, A. Garcia-Saavedra, G. Bianchi, A. Banchs, and A. Azcorra,
“Per-Frame Energy Consumption in 802.11 Devices and Its Implication
on Modeling and Design,” IEEE/ACM Transactions on Networking,
vol. PP, no. 99, pp. 1–1, 2014.

[2] L. Feeney and M. Nilsson, “Investigating the energy consumption of
a wireless network interface in an ad hoc networking environment,” in
Proceedings IEEE INFOCOM 2001. Conference on Computer Commu-
nications. Twentieth Annual Joint Conference of the IEEE Computer and
Communications Society (Cat. No.01CH37213), vol. 3. IEEE, 2001,
pp. 1548–1557.

[3] Jean-pierre Ebert, B. Burns, A. Wolisz, and A. Wolisz, “A trace-based
approach for determining the energy consumption of a WLAN network
interface.”

[4] E. Shih, P. Bahl, and M. J. Sinclair, “Wake on wireless:,” in Proceedings
of the 8th annual international conference on Mobile computing and
networking - MobiCom ’02. New York, New York, USA: ACM Press,
Sep. 2002, p. 160.

[5] R. Bruno, M. Conti, and E. Gregori, “Optimization of efficiency and
energy consumption in p-persistent CSMA-based wireless LANs,” IEEE
Transactions on Mobile Computing, vol. 1, no. 1, pp. 10–31, Jan. 2002.

[6] M. Carvalho, C. Margi, K. Obraczka, and J. Garcia-Luna-Aceves,
“Modeling energy consumption in single-hop IEEE 802.11 ad hoc
networks,” in Proceedings. 13th International Conference on Computer
Communications and Networks (IEEE Cat. No.04EX969). IEEE, 2004,
pp. 367–372.

[7] Daji Qiao, S. Choi, A. Jain, and K. G. Shin, “MiSer: An optimal low-
energy transmission strategy for.”

[8] D. Agrawal, “Analysis and optimization of energy efficiency in 802.11
distributed coordination function,” in IEEE International Conference on
Performance, Computing, and Communications, 2004. IEEE, 2004, pp.
707–712.

[9] Jyh-Cheng Chen and Kai-wen Cheng, “EDCA/CA: Enhancement of
IEEE 802.11e EDCA by Contention Adaption for Energy Efficiency,”
IEEE Transactions on Wireless Communications, vol. 7, no. 8, pp. 2866–
2870, Aug. 2008.

[10] A. Garcia-Saavedra, P. Serrano, A. Banchs, and M. Hollick, “Energy-
efficient fair channel access for IEEE 802.11 WLANs,” in 2011 IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks. IEEE, Jun. 2011, pp. 1–9.

[11] N. Vaidya, “An energy efficient MAC protocol for wireless LANs,” in
Proceedings.Twenty-First Annual Joint Conference of the IEEE Com-
puter and Communications Societies, vol. 3. IEEE, 2002, pp. 1756–
1764.

[12] V. Baiamonte and C.-F. Chiasserini, “Saving Energy during Channel
Contention in 802.11 WLANs,” Mobile Networks and Applications,
vol. 11, no. 2, pp. 287–296, Mar. 2006.

[13] X. Zhang and K. G. Shin, “E-MiLi: Energy-Minimizing Idle Listening in
Wireless Networks,” IEEE Transactions on Mobile Computing, vol. 11,
no. 9, pp. 1441–1454, Sep. 2012.

[14] M. Ergen and P. Varaiya, “Decomposition of Energy Consumption in
IEEE 802.11,” in 2007 IEEE International Conference on Communica-
tions. IEEE, Jun. 2007, pp. 403–408.

[15] X. He and F. Y. Li, “Throughput and energy efficiency compari-
son of one-hop, two-hop, virtual relay and cooperative retransmission
schemes,” in 2010 European Wireless Conference (EW). IEEE, 2010,
pp. 580–587.

[16] S. Baek, G. DeVeciana, and X. Su, “Minimizing Energy Consumption
in Large-Scale Sensor Networks Through Distributed Data Compression
and Hierarchical Aggregation,” IEEE Journal on Selected Areas in
Communications, vol. 22, no. 6, pp. 1130–1140, Aug. 2004.

[17] A. B. Sharma, L. Golubchik, R. Govindan, and M. J. Neely, “Dynamic
data compression in multi-hop wireless networks,” ACM SIGMETRICS
Performance Evaluation Review, vol. 37, no. 1, pp. 145–145–156–156,
Jun. 2009.

[18] A. Pathak, Y. C. Hu, and M. Zhang, “Bootstrapping energy debugging
on smartphones,” in Proceedings of the 10th ACM Workshop on Hot
Topics in Networks - HotNets ’11. New York, New York, USA: ACM
Press, Nov. 2011, pp. 1–6.

[19] “Using a unity gain buffer (voltage follower) with a daq device,” White
paper, National Instruments, Jan. 2014.

[20] A. Carroll and G. Heiser, “An analysis of power consumption in a
smartphone,” p. 21, Jun. 2010.

[21] A. Hylick, R. Sohan, A. Rice, and B. Jones, “An Analysis of Hard Drive
Energy Consumption,” in 2008 IEEE International Symposium on Mod-
eling, Analysis and Simulation of Computers and Telecommunication
Systems. IEEE, Sep. 2008, pp. 1–10.

[22] L. Grupp, A. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. Siegel,
and J. Wolf, “Characterizing flash memory: Anomalies, observations,
and applications,” pp. 24–33, 2009.

[23] V. Tiwari, S. Malik, A. Wolfe, and M. Tien-Chien Lee, “Instruction level
power analysis and optimization of software,” Journal of VLSI Signal
Processing Systems for Signal, Image, and Video Technology, vol. 13,
no. 2-3, pp. 223–238, Aug. 1996.

[24] L. A. Barroso and U. Hölzle, “The Case for Energy-Proportional
Computing,” Computer, vol. 40, no. 12, pp. 33–37, Dec. 2007.


