
EUNICE 2003 1

SPDP: A Secure Service Discovery Protocol for
Ad-hoc Networks

Florina Almenárez, Celeste Campo
Dept. Telematic Engineering - University Carlos III of Madrid

Avda. Universidad 30, 28911 Leganés (Madrid), Spain
http://www.it.uc3m.es/pervasive

{florina, celeste}@it.uc3m.es

Abstract— In ad-hoc networks, mobile devices
communicate via wireless links without the aid of
any fixed networking infrastructure. These de-
vices must be able to discover services dynamically
and share them safely, taking into account ad-hoc
networks requirements such as limited processing
and communication power, decentralised manage-
ment, and dynamic network topology, among oth-
ers. Legacy solutions fail in addressing these re-
quirements.

In this paper, we propose a new service discov-
ery protocol with security features, the Secure Per-
vasive Discovery Protocol. SPDP is a fully dis-
tributed protocol in which services offered by de-
vices can be discovered by others, without a cen-
tral server. It is based on an anarchy trust model of
PKI and on existing protocols. This way it provides
location of trusted services, protection confidential
information, secure communications, identification
between devices, and service access control.

Keywords— Ad-hoc networks, service discovery
protocol, security, trust.

I. Introduction

Recent advances in microelectronic and wire-
less technologies have fostered the proliferation
of small devices with limited communication and
processing power. They are what are known as
“pervasive systems”. Personal Digital Assistants
(PDAs) and mobile phones are the more “visible”
of these kinds of devices, but there are many oth-
ers that surround us, unobserved. For example,
today most household appliances have embedded
microprocessors. Each one of these small devices
offers a specific service to the user, but thanks
to their capacity for communication, in the near
future they will be able to collaborate with each
other to build up more complex services. In order
to achieve this, devices in such “ad-hoc” networks

should dynamically discover and share services be-
tween them when they are close enough.

In ad-hoc networks composed of limited devices,
it is very important to minimise the total num-
ber of transmissions, in order to reduce battery
consume of the devices. It is also important to
implement mechanisms to detect, as soon as pos-
sible, both the availability and unavailability of
services produced when a device joins or leaves
the network. Security in these networks is also
critical because there are many chances of misuse
both from fraudulent servers and from misbehav-
ing clients.

In this paper, we propose a new service discov-
ery protocol with security features, the Secure Per-
vasive Discovery Protocol (SPDP). SPDP is a fully
distributed protocol in which services offered by
devices can be discovered by others, without a cen-
tral server. It provides location of trusted services,
protection confidential information, secure com-
munications, identification between devices, and
service access control by forming a reliable ad-hoc
network.

The paper is organised as follows: Section II
enumerates the main service discovery protocols
proposed so far in the literature, we will see that
none of them adapts well to ad-hoc networks. Sec-
tion III presents our secure pervasive discovery
protocol, SPDP, with its application scenario, de-
scription of the algorithm and security model. Fi-
nally, we summarise and list our future research
directions in Section IV, including SPDP imple-
mentation issues.

2 EUNICE 2003

II. Related Works

Dynamic service discovery is not a new problem.
There are several solutions proposed for fixed net-
works, with different levels of acceptance, like SLP
[1], Jini [2] and Salutation [3]. Recently, other pro-
tocols for dynamic environments have appeared:
UPnP’s SSDP [4] and DEAPspace [5]. Only a few
protocols have built-in security, the most impor-
tant are SSDS [6] and Splendor [7].

However, these solutions can not be directly ap-
plied to an ad-hoc network, because they were de-
signed for and are more suitable for (fixed) wired
networks. We see three main problems in the so-
lutions enumerated:
• First, many of them use a central server, such
as SLP1, Jini and Salutation. It maintains the di-
rectory of services in the network and it is also a
reliable entity the security of the system is based
on. An ad-hoc network cannot rely upon to have
any single device permanently present in order to
act as central server, and furthermore, maybe none
of the devices present at any moment may be suit-
able to act as the server.
• Second, the solutions that may work without
a central server, like SSDP, are designed without
considering the power constraints typical in wire-
less networks. They make an extensive use of mul-
ticast or broadcast transmissions which are almost
costless in wired networks but are power hungry
in wireless networks.
• Third, security issues are not well covered. SSDS
provides security in enterprise environments but
may not work in ad-hoc networks with mobile ser-
vices. Splendor does not provide certificate re-
vocation and trust models of PKIs. They both
depend on trustworthy servers and they propose
solutions which are provided at the IP level.

Accepting that alternatives to the centralised
approach are required, we consider two alternative
approaches to distributing service announcements:
• The “Push” solution, in which a device that
offers a service sends unsolicited advertisements,
and the other devices listen to these advertise-
ments selecting those services they are interested
in.
• The “Pull” solution, in which a device requests
a service when it needs it, and devices that offer

1SLP supports a distributed mode, but usually the implemen-
tations use centralised mode

that service answer the request, perhaps with third
devices taking note of the reply for future use.

In ad-hoc networks, it is very important to min-
imise the total number of transmissions, in order
to reduce battery consume. It is also important to
implement mechanisms to detect as soon as possi-
ble both the availability and unavailability of ser-
vices produced when a device joins or leaves the
network. These factors must be taken into account
when selecting between a push solution or a pull
solution.

The DEAPspace algorithm is the only service
discovery protocol, listed above, that tries to min-
imise the total number of transmissions. It uses a
pure “push” solution and each device periodically
broadcast its “world view” although none of them
has to request a service.

In this paper we propose a new service discovery
algorithm, the Secure Pervasive Discovery Proto-
col (SPDP), which merges characteristics of both
pull and push solutions. This way we think a bet-
ter performance can be achieved. On the other
hand, SPDP provides security based on existing
protocols and an anarchy trust model of PKI. An
anarchy trust model does not require neither a
central trusted server nor hierarchy architecture
being suitable to overcome the challenges imposed
by ad-hoc networks such as no central manage-
ment, no strict security policies and highly dy-
namic nature.

III. SPDP: Secure Pervasive Discovery
Protocol

The Secure Pervasive Discovery Protocol
(SPDP) is intended to solve the problem of enu-
merating the services available in single hop ad
hoc networks, composed of devices with limited
transmission power, memory, processing power,
etc. Legacy service discovery protocols use a cen-
tralised server that listens for broadcast or mul-
ticast announcements of available services at a
known port address, and lists the relevant services
in response to enquiries. The protocol we propose
does away with the need for the central server.
Ad-hoc networks cannot rely upon to have any
single device permanently present in order to act
as central server, and further, none of the devices
present at any moment may be suitable to act as
the server.

FLORINA ALMENAREZ ET AL. 3

One of the key objectives of the SPDP is to min-
imise battery use in all devices. This means that
the number of transmissions necessary to discover
services should be reduced as much as possible. A
device announces its services only when other de-
vices request the service. Service announcements
are broadcasted to all the devices in the network,
all of which will get to know about the new service
simultaneously at that moment, without having to
actively query for it.

In addition, SPDP enables to share services
safely, through a trust model between devices
which act like its own Certification Authority
(CA). Both the servers and the clients are pro-
tected from malicious devices.

In the remainder of this section, we present the
application scenario for SPDP and some consider-
ations to be taken into account. Then, we will for-
mally describe the algorithm used to implement it,
and we will discuss the security support of SPDP
based in a new trust model for open distributed
environments.

A. Application scenario

Let’s assume that there is an ad-hoc network,
composed of D devices, each device offers S ser-
vices, and expects to remain available in this net-
work for T seconds. This time T is previously con-
figured in the device, depending on its mobility
characteristics.

Each device has an SPDP User Agent
(SPDP UA) and an SPDP Service Agent (SPDP SA).
The SPDP UA is a process working on the user’s
behalf to search information about services of-
fered in the network. The Service Agent SPDP
(SPDP SA) is a process working to advertise ser-
vices offered by the device. The SPDP SA always
includes the availability time T of its device in its
announcements.

Each device has a cache associated which con-
tains a list of the services that have been heard
from the network. Each element e of the cache as-
sociated to the SPDP UA has three fields: the ser-
vice description, the service lifetime and the ser-
vice expiration time. The service expiration time
is the time it is estimated the service will remain
available. This time is calculated as the minimum
of two values: the time the device has promised
to remain available, T, and the time the server an-

nounced that the service would remain available.
Entries remove themselves from the cache when
their timeout elapses.

With regard to security, each device handles a
list of reliable devices and the trust degree associ-
ated with them. Depending on the trust degree,
a device decides to store the service offered by a
device on its cache. When the devices go to access
to the service, it select first the device with biggest
trust degree, also.

B. Algorithm description

The SPDP has two mandatory messages: SPDP

Service Request, which is used to send ser-
vice announcements and SPDP Service Reply,
which is used to answer a SPDP Service Request,
announcing available services. SPDP has one
optional message: SPDP Service Deregister,
which is used to inform that a service is no avail-
able longer.

Now, we will explain in detail how SPDP UA
and SPDP SA use these primitives.

B.1 SPDP User Agent

When an application or the final user of the de-
vice needs a service, whether a specific service or
any service offered by the environment, it requests
the service from its SPDP UA (Fig. 1).

If a specific type of service has been requested:
• The SPDP UA searches for that service in the
list of local services and in its cache. If it is found,
the SPDP UA gives the application the service de-
scription.
• If it is not found, the SPDP UA broadcasts a
SPDP Service Request for that service, and it
waits CONFIG WAIT RPLY seconds for replies. If no
reply arrives, the SPDP UA answers to the ap-
plication that the service is not available in the
network. If some reply arrives, the SPDP UA up-
dates its cache accordingly. In order to minimise
the spreading of service announcements of mali-
cious devices, the SPDP UA does not store ser-
vices offered by untrustworthy devices. Finally,
it gives the application the service descriptions of
trusted servers received.

In order to allow an application to request its
SPDP UA to discover all available services in the
network, we introduce a new type of service: ser-
vice ALL. Whenever an application requests for all

4 EUNICE 2003

search(s) {
foreach (l ∈ Local)

if (l.type == s.type) result +=l;
foreach (e ∈ Cache)

if (e.type == s.type) result += e;
if (result.length != 0) return(result);
broadcast(SPDPServiceRequest(s.type));
timeout tout = CONFIG WAIT RPLY;
loop (forever) {

list remote = hear network(SPDPServiceReplys);
if (expired tout) {

break;
} else {

update cache(list remote);
result += list remote;

}
}
return(result);

}

search(ALL) {
broadcast(SPDPServiceRequest(ALL));
timeout tout = CONFIG WAIT RPLY;
loop (forever) {

list remote += hear network(SPDPServiceReplyALL);
if (expired tout)

if (list remote.length == 0) delete cache();
break;

else
update cache(list remote);

}
result = Cache + Local;
return(result);

}

update cache(list) f
foreach (l ∈ list)

if (trust degree(l.IP) ≥ 0.5)
Cache += l;

}

trust degree(ip) f
if ∃ trust degree of l.IP return this
else

goto trust formation
}

Fig. 1. SPDP UA pseudocode implementation

available services in the network, the SPDP UA
sends a SPDP Service Request searching a service
type ALL, and waits CONFIG WAIT RPLY seconds for
the reply:

• If a reply arrives, the SPDP UA updates the
cache accordingly and answers to the application
listing the local services plus the services in the
cache.
• If no reply arrives, the SPDP UA deletes all ser-
vices stored in the cache and replies to the appli-
cation listing only the local services.

The SPDP UA in all devices are continually
listening on the network for all types of mes-

sages (SPDP Service Requests and SPDP Service
Replies). Whenever a SPDP Service Reply an-
nouncing a service is received, the SPDP UA up-
date its cache accordingly (Fig. 1).

Moreover, the device’s cache has a limited size.
When an SPDP UA hears a new announcement
but the cache is full, it deletes the service entry
offered by the device with less trust degree or less
expiration time. In the next section we will ex-
plain how SPDP UA calculates the trust degree
of the devices.

B.2 SPDP Service Agent

The SPDP SA advertises services offered by the
device. It has to process SPDP Service Request
messages and to generate the corresponding SPDP
Service Reply, if necessary (Fig. 2).

receive(SPDPServiceRequest(s.type)) {
foreach (l ∈ Local)

if (l.type == s.type) result += l;
foreach (e ∈ Cache)

if (e.type == s.type) result += e;
if (result.length != 0) {

timeout tout = generate random time(1
T

);
loop (forever) {

list remote += hear network(SPDPServiceReplys);
if (expired tout) {

update cache(list remote);
if not (result ⊆ list remote) {

result = result - (list remote ∩ result);
broadcast(SPDPServiceReply(result));
exit;

}
}

}
}

}

receive(SPDPServiceRequest(ALL)) {
timeout tout = generate random time(1

T∗Cache.size
);

result = Local + Cache;
loop (forever) {

list remote += hear network(SPDPServiceReplyALL);
if (expired tout) {

update cache(list remote);
if not (result ⊆ list remote) {

result = result - (list remote ∩ result);
broadcast(SPDPServiceReply(result));
exit;

}
}

}
}

Fig. 2. SPDP SA pseudocode implementation

When a SPDP SA receives a SPDP Service Re-
quest with a service type different of service ALL:
• First, it checks whether the requested service, S,
is one of its local services, or it is in the cache.

FLORINA ALMENAREZ ET AL. 5

• If it is, it generates a random time t, inversely
proportional to the availability time of the device,
T . So, the more time the device is able to offer the
service, the higher the probability of the device
answering first.
• During this time, the SPDP SA listens the net-
work for any SPDP Service Reply of the same re-
quest and it updates the cache accordingly.
• When the timer expires, if the SPDP SA knows
about some additional devices offering the service
S and that have not been announced yet, it sends
its SPDP Service Reply.

When a SPDP request for all services (service
type ALL) is received, then the SPDP SA:

• Generates a random time t, inversely propor-
tional to the availability time of the device, T , and
to the number of elements stored in the cache of
that interface. So, the more time the device is able
to offer the service and the bigger the cache, the
higher the probability of answering first. We sup-
pose the device with the highest availability time
and the bigger cache is the one with the most ac-
curate view of the world.
• During the interval t, the SPDP SA listens to
the network for any SPDP Service Reply of the
same request and it updates the cache accordingly.
• When the timer expires, if the SPDP SA knows
about some new services that have not been an-
nounced yet, it sends its SPDP Service Reply, list-
ing the local services plus the services in the cache.

In certain network technologies, it is possible to
detect when a device is switched off or it roams
to other network. If this happens, its SPDP SA
has to send a SPDP Service Deregister, listing all
its local services. When a SPDP UA hears this
message, it deletes these services of its cache.

C. Security Issues

SPDP provides authentication, authorisation,
data integrity, confidentiality, and non-repudiation
through an anarchy PKI.

Mutual authentication is based on a challenge
mechanism between devices. When a foreign de-
vice wants to join to the ad-hoc network, we must
look for any trusted device that entrusts it, in
order to establish a distributed trust. If no one
knows it, then we must decide whether rely on it
or not. From authentication, we use digital signa-
tures for non-repudiation purpose.

Authorisation to the services is granted accord-
ing to security policies. This policies determine
the trust degree that a client must be for access
to the offered service.

Data integrity and confidentiality are guaran-
teed by IPSec [8]. SPDP Service Request and
SPDP Service Reply messages are protected in or-
der to guarantee their integrity and confidentiality.

We propose an anarchy trust model in which ev-
ery device acts as its own CA, issuing certificates
for its own services; therefore, it is a decentralised
trust model. Trust relationships are established
between CAs, this way we ensure the storage of
reliable service information in our cache. That is,
a device stores only in its cache the service infor-
mation originated from other trusted user agents
and service agents.

Each device handles a list of reliable devices and
the trust degree associated with them. This model
is very simple indeed since, unlike in SSDS and
Splendor, the trust degree are established only be-
tween two components.

We choose an anarchy trust model due to its
advantages. The more important ones are: a new
device can be easily incorporated, when a device
is compromised the security of the hole network is
not, and multiple trust paths between devices can
be defined. All this avoids the dependence on a
central server.

C.1 The Trust Model

In the last decades, some trust models, based
on hierarchy PKI, have been defined such as [9],
[10], [11], [12]. These models do not consider that
the entities interacting are autonomous and mo-
bile. They do not define a dynamic trust model
along time and always depend upon a root server.
These characteristics are not suitable for ad-hoc
networks. But, what does trust mean?

Different definitions of trust are given in psy-
chology, sociology, economics and mathematics.
Based on the definition of trust given by Josang
[13], we define trust as: “A belief that one entity2

has about another entity; there must be a reason
behind the belief such as past experiences, knowl-
edge about entity’s nature or recommendations.
The belief represents how an entity will behave or

2In this paper entity is equivalent to device

6 EUNICE 2003

perform an specific task which implies a potential
hazard”.

Thus, trust can be expressed as a belief about
another entity in terms of its rigth behaviour. It
is a subjective concept, being a personal opinion
based primarily on first observations or carefully
considered advice from others if available, allowing
decisions to be made with only partial knowledge.

To formalise a decentralised trust model we have
identified three properties of the trust relation-
ships. Let A, B and C be the devices in a ad-hoc
network. We define the trust relationship function
between two devices A and B, R(A,B). R is a con-
tinuous function with values between 0 and 1. We
use fuzzy logic rather than the usual boolean logic.
0 and 1 are extreme cases, but values in between
are also possible, for example, 0 for distrust, 1/2
for ignorance and 1 for trust. The properties of R
are the following:
Reflexive Every device trust on itself (R(A,A) =
1).
Non-symmetrical If A trusts on B, not necessarily
B trusts on A. If we have R(A,B) = β∧R(B, A) =
γ ; β = γ.
Conditionally transitive If A trusts on B and B
trusts on C, then A conditionally trusts on C. In
mathematic terms: it exists the pairs R(A,B) =
β ∧R(B, C) = γ ⇒ R(A,C) ≤ β.γ.

The trust model architecture (Fig. 3) has five
modules: context, trust formation, trust evolu-
tion, communication and system trust and trust
relationships. In accordance with the trust defini-
tion, given an specific context, first a device forms
an initial trust value. Next, this value may change
(increase or decrease) depending on the device be-
haviour.

C.1.a Trust Formation. Initially new devices
have no evidence of past experiences to establish
an initial trust value for interaction. There are
two sources to form an initial trust degree: per-
sonal opinion (direct trust) or recommendations
(indirect trust).
Direct Trust . The trust value is formed from an
initial threshold, for example, ignorance value 0.5.
This value could be increased either by getting
some information about the device’s nature i.e.
device type, owner, etc., or by human interven-
tion.
Indirect Trust . It is applied when there ex-

Fig. 3. Trust Model Architecture

ists trust relationships between some devices.
The trust value is created from recommendations
which are given by third trusted parties. We con-
sider third trusted parties whose trust value is big-
ger than a threshold α, where α ≥ 0.5.
We assume that certificates issued by third trusted
parties are a recommendation mechanism, too. In
this case, recommendation value R(Di) would be
α and otherwise the recommendation would be the
trust degree sent by third trusted party.
We calculate the trust value of device B (TB) by
making a weighted average:

TB = 1Pn
i=1 Ti

∑n
i=1 R(Di) ∗ Ti

where R(Di) is recommendation value from device
i, Ti is its trust value, and n is the recommender
number.
Trust information is shared between trustwor-
thy devices through a recommendation protocol.
The recommendation protocol has three messages:
SPDP Recommendation Request, SPDP Recom-
mendation Reply and SPDP Recommendation
Alert. SPDP Recommendation Request is used
to request recommendations about other devices;
with SPDP Recommendation Reply we answer to
this request. When we are attacked by a device,
then we use SPDP Recommendation Alert in or-
der to warn all devices within the network about
it. For example, when a device sends us multiple
SPDP Service Request during a very short period
of time. In this case, the device is considered un-

FLORINA ALMENAREZ ET AL. 7

reliable.
Fig. 4 shows the algorithm to request and reply
recommendations. When we detect an unknown
device (target) we broadcast a recommendations
request from other devices. We wait a time x

for the replies. When recommendations are re-
ceived, we recalculate the trust value taking into
account only the replies from trusted devices (rec-
ommenders).

trust recommendation(Target ID) {
broadcast(SPDPRecommendationRequest(Target ID));
timeout x;
loop (forever) {

R = hear network(SPDPRecommendationReplyTarget ID);
if Trecommender ≥ α {

Trust += R*Trecommender;
Totalrec += Trecommender;

}
if (expired x) exit;

}
if (Totalrec == 0) Trust = 0.5;
else Trust = 1

Totalrec
*Trust;

return Trust;
}

Fig. 4. Trust Recommendation Protocol pseudocode im-
plementation

C.1.b Trust Evolution. As we mentioned pre-
viously, trust learning is gradual and dynamic,
since the trust degree changes along time. In fact,
it is often a consequence of a complex set of be-
liefs, perceptions and interpretations. Trust value
changes according to positive and negative expe-
riences in an specific context.

Therefore, we calculate a new trust value Ti+1

taking into account both past and present, that
is, the previous trust value Ti and the value of the
actions Va that represents device’s behaviour. We
also define a parameter β as the weight of the past,
with 0 < β < 1.

Ti+1 = β ∗ Ti + (1− β) ∗ Va

With this function, the trust value increases or
decreases according to the device’s behaviour.

Positive and negative actions are considered ev-
idences. Thus, we build our evidence space that
are facts in the knowledge base of each device.
These facts are useful to identify trustworthy and
untrustworthy devices. It is important to identify
untrustworthy devices because mistrust is differ-
ent of a simple absence of trust (ignorance).

As a consequence of the evidence space, we cre-
ate our belief space. This space represents beliefs
about a device which allow us to establish rules
of access control to the services offered by the de-
vices.

This way, we establish a reliable ad-hoc network
within which we may use services and exchange
information without risk of deceit.

IV. Conclusions and Future Work

Ad-hoc networks are becoming increasingly
common thanks to the development of mobile de-
vice technology. When a device connects to an ad-
hoc network, it wants to know the services offered
by the network and in turn it may offer its own
services. Client applications in the device want to
discover trustworthy services automatically, while
server applications want to be used by trustworthy
clients that will not misuse or attack them. Addi-
tionally, secure network communication is also an
important issue. These goals are carried out by
SPDP.

SPDP is a good service discovery protocol for
ad-hoc networks since:

• It is based on a distributed open architecture,
therefore, it does not require central servers;
• It has a simple architecture which contains only
two type of components, user agents and service
agents;
• It provides autonomous and mobile agents with
an simple method for discovering services that are
available;
• It minimises battery use in all devices since the
number of transmissions necessary to discover ser-
vices is reduced as much as possible;
• It integrates a security model in order to guar-
antee the required security level by devices. Se-
curity issues includes mutual authentication be-
tween devices, data integrity, confidentiality, non-
repudiation, and access control based on degree of
trust.

Thus, we fulfil the challenges imposed by ad-hoc
networks.

In order to evaluate the SPDP performance in
different mobility scenarios, we have implemented
the SPDP protocol on the well-known simulator
Network Simulator [14]. Now, we are obtaining
the first simulation results, and we are carrying
our experiments:

8 EUNICE 2003

• To obtain the number of messages transmitted
to discover an available service in the ad-hoc net-
work, and to compare that with other protocols,
• To determine the probability of discovering a ser-
vice that is not available in the ad-hoc network.
• To evaluate security issues on different scenarios.

Besides that, we are also implementing the
SPDP for Java 2 Micro Edition (J2ME) in order
to deploy it in real devices.

Finally, we are studying IPSec for ad-hoc net-
works and its interoperability with our trust
model.

Acknowledgments

The authors thank their contributions to Carlos
Garćıa-Rubio and Andrés Maŕın.

References

[1] “Service location protocol, version 2”, 1999.
[2] “Jini Architectural Overview. White Paper”, 1999.
[3] Brent A. Miller and Robert A. Pascoe, “Salutation service

discovery in pervasive computing environments”, Tech.
Rep., IBM White Paper, Feb. 2000.

[4] Yaron Y. Goland, Ting Cai, Paul Leach, and Ye Gu, “Sim-
ple service discovery protocol/1.0”, Tech. Rep., Microsoft,
1999.

[5] Michael Nidd, “Service Discovery in DEAPspace”, IEEE
Personal Communications, Aug. 2001.

[6] Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes, An-
thony D. Joseph, and Randy H. Katz, “An architecture for
a secure service discovery service”, in Proc. Mobicom’99,
1999.

[7] F. Zhu, M. Mutka, and L. Ni, “Splendor: A secure, private,
and location-aware service discovery protocol supporting
mobile services”, in Proceedings of the First IEEE Interna-
tional Conference on Pervasive Computing and Communi-
cations (Percom’03). IEEE Computer Society, Mar. 2003,
pp. 235–242.

[8] S. Kent and R. Atkinson, “Security architecture for the
internet protocol (IPSec)”, NOV 1998.

[9] T. Beth, M. Borcherding, and B. Klein, “Valuation of
trust in open networks”, in Proceedings of the European
Symposium on Research in Computer Security (ESORICS
’94, Brighton, UK), Heidelberg, Germany, Nov. 1994, num-
ber 875 in Lecture Notes in Computer Science, pp. 3–18,
Springer-Verlag.

[10] Matt Blaze, Joan Feigenbaum, and Jack Lacy, “Decentral-
ized trust management”, in Proceedings of the IEEE Sym-
posium on Research in Security and Privacy, Oakland, CA,
May 1996, IEEE Computer Society, Technical Committee
on Security and Privacy, number 96-17, IEEE Computer
Society Press.

[11] Alfarez Abdul-Rahman and Stephen Hailes, “A distributed
trust model”, in Proceedings of the ACM Workshop on
New Security Paradigms, Cumbria, United Kingdom, Sept.
1997, pp. 48–60, ACM SIGSAC, ACM Press.

[12] A. Jøsang and S. J. Knapskog, “A metric for trusted sys-
tems”, in Proc. 21st NIST-NCSC National Information
Systems Security Conference, 1998, pp. 16–29.

[13] A. Jøsang, “An algebra for assessing trust in certification
chains”, in Proceedings of the Network and Distributed Sys-

tems Security (NDSS’99) Symposium, The Internet Soci-
ety, 1999.

[14] “The network simulator - ns-2”.

