
Service Discovery in Pervasive Multi-Agent Systems

Celeste Campo
Dept. Telematic Engineering

Universidad Carlos III de
Madrid

Avda. Universidad 30
Leganés (Madrid), Spain

celeste@it.uc3m.es

ABSTRACT
Agent technology will be of great help in pervasive comput-
ing. However, the use of Multi-Agent Systems in pervasive
environments poses important challenges. One of them is
to allow agents in different devices in an ad-hoc network to
share services between them when they are close enough. In
this paper, we will define a system agent, the Service Dis-
covery Agent, that helps other agents in search of services
offered by other agents or other systems in the network. We
will see that none of the service discovery protocols proposed
so far in the literature adapts well to the case of pervasive
systems, and we will propose a new service discovery proto-
col, called PDP.

Keywords
Pervasive Computing, Multi-Agent Systems, Service Discov-
ery Protocols, Pervasive Discovery Protocol

1. INTRODUCTION
Recent advances in micro-electronic and wireless technolo-

gies have fostered the proliferation of small devices with lim-
ited communication and processing power. They are what
are known as “pervasive systems”.

Personal Digital Assistants (PDAs) and mobile phones are
the more “visible” of these kinds of devices, but there are
many others that surround us, unobserved. For example,
today most household appliances have embedded micropro-
cessors. Each one of these small devices offers a specific
service to the user, but thanks to their capacity for commu-
nication, in the near future they will be able to collaborate
with each other to build up more complex services. In or-
der to achieve this, devices in such “ad-hoc” networks should
dynamically discover and share services between them when
they are close enough. For example, sensors and air condi-
tioning systems in intelligent buildings will talk with our
PDAs to automatically adapt the environment to our needs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop on Ubiquitous Agents on embedded, wearable, and mobile devices
2002 Bolonia, Italy
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

or preferences. As Arthur C. Clarke has said – any suffi-
ciently advanced technology is indistinguishable from magic.
We are approaching the time when “open sesame” is a valid
user command.

We think that agent technology will be of great help in
pervasive systems development. Pervasive systems are in-
herently dynamic, with devices continually coming and go-
ing. Agents are autonomous software entities that can inter-
act with their environment, and therefore they adapt well
to such frequent changes.

However, the use of Multi-Agent Systems (MAS) in per-
vasive environments poses important challenges, and it is
necessary to adapt their design to meet these challenges.
We are currently working on this. One key element in MAS
design is the “agent platform”. An agent platform provides a
runtime environment and a basic set of services that allows
agents to do their tasks. The FIPA [2] standard classifies
these services into three components:

• The Agent Management System (AMS): this manages
the life cycle of the agents, the local resources of the
platform and the communication channels, and it also
provides a “white-pages” service that allow agents to
locate each other by name.

• The Directory Facilitator: this is a “yellow-pages” ser-
vice which identifies which agent provides what ser-
vice.

• The Agent Communication Channel: this manages the
interchange of messages between agents on the same
or different platforms.

In this paper we present the problems associated with
building a Directory Facilitator when the Multi-Agent Sys-
tem is intended to work in a pervasive system. The paper is
organised as follows: in Section 2 we will present the “Ser-
vice Discovery Agent”, our implementation of the Directory
Facilitator. We will see that the Service Discovery Agent
needs to implement a service discovery protocol. In Sec-
tion 3 we will review the main service discovery protocols
proposed so far in the literature. We will see that none
of them adapts well to the case of pervasive systems. In
Section 4 we will propose a new service discovery protocol,
PDP. Finally, in Section 5 we sum up the main contributions
made in our paper and discuss some of the work we intend
to do in the future.

2. SERVICE DISCOVERY AGENT
To implement the Directory Facilitator, we propose an

agent, that we call the Service Discovery Agent (SDA). This
is a special kind of stationary agent that provides resources
for other agents on the same platform. Some authors call
this kind of agent “middle agents” or “system agents” [1].

The SDA is a system agent that helps other agents work-
ing on the same platform as it goes in search of services
offered by other devices in the network. It is a kind of “yel-
low pages” agent adapted to the peculiarities of pervasive
computing environments. One can think of it as a kind of
shop assistant. New entrants to the shop will want assis-
tance in order to better locate items of interest, and the
agent, because of its relative expertise in the environment,
will generally be able to provide the appropriate directions.

Other authors have proposed system agents which provide
yellow pages services using some of the dynamic service dis-
covery protocols which we will review in the next section.
Specifically, [5] describes an implementation using SSDP, for
its use in fixed local area networks. In our work we restrict
ourselves to a much more limited environment: a pervasive
system, i.e., an ad-hoc network of limited devices.

As we will see in the next section, service discovery pro-
tocols proposed for use in the Internet do not work well in
pervasive systems in ad-hoc networks. We have defined a
new protocol, the Pervasive Discovery Protocol, PDP (see
Section 4), specially designed to work in this environment.
The internal operation of the SDA will be based on this
protocol.

It is important to point out here that, since the SDA uses
the PDP, it will be able to inter-operate with any other
system that implements PDP, be it an agent platform or
not (e.g., sensors, air-conditioning system, lighting control,
etc.).

3. SERVICE DISCOVERY
Dynamic service discovery is not a new problem. There

are several solutions proposed for fixed networks, with dif-
ferent levels of acceptance. We will now briefly review some
of them: SLP, Jini, Salutation and UPnP’s SSDP.

The Service Location Protocol (SLP) [4] is an Internet En-
gineering Task Force standard for enabling IP network-based
applications to automatically discover the location of a re-
quired service. The SLP defines three “agents”: User Agents
(UA), that perform service discovery on behalf of client soft-
ware, Service Agents (SA), that advertise the location and
attributes on behalf of services, and Directory Agents (DA),
that store information about the services announced in the
network. SLP has two different modes of operation: when a
DA is present, it collects all service information advertised
by SAs and the UAs unicast their requests to the DA, and
when there is no DA, the UAs repeatedly multicast the re-
quest they would have unicast to a DA. SAs listen for these
multicast requests and unicast their responses to the UA.

Jini [6] is a technology developed by Sun Microsystems.
Its goal is to enable truly distributed computing by repre-
senting hardware and software as Java objects that can form
themselves into communities, allowing objects to access ser-
vices on a network in a flexible way. Service discovery in
Jini is based on a directory service, similar to the Directory
Agent in SLP, named the Jini Lookup Service (JLS). JLS is
necessary to the functioning of Jini, and clients should al-

ways discover services using it, and never can do so directly.
Salutation [8] is an architecture for looking up, discov-

ering, and accessing services and information. Its goal is
to solve the problems of service discovery and utilisation
among a broad set of applications and equipment in an en-
vironment of widespread connectivity and mobility. The
Salutation architecture defines an entity called the Saluta-
tion Manager (SLM) that functions as a directory of appli-
cations, services and devices, generically called Networked
Entities. The SLM allows networked entities to discover and
to use the capabilities of the other networked entities.

Simple Service Discovery Protocol (SSDP) [3] was created
as a lightweight discovery protocol for the Universal Plug-
and-Play (UPnP) initiative, and it defines a minimal pro-
tocol for multicast-based discovery. SSDP can work with
or without its central directory service, called the Service
Directory. When a service wants to join the network, first
it sends an announcement message to notify its presence to
the rest of the devices. This announcement may be sent by
multicast, so all other devices will see it, and the Service
Directory, if present, will record the announcement. Alter-
natively, the announcement may be sent by unicast directly
to the Service Directory. When a client wants to discover
a service, it may ask the Service Directory for it or it may
send a multicast message asking for it.

The solutions described above can not be directly applied
to the scenario we treat in this paper, because they were de-
signed for and are more suitable for (fixed) wired networks.
We see two main problems in the solutions enumerated:

• First, many of them use a central server, that main-
tains the directory of services in the network. Perva-
sive environments cannot be relied upon to have any
single device permanently present in order to act as
central server, and furthermore, maybe none of the
devices present at any moment may be suitable to act
as the server.

• Second, the solutions that may work without a cen-
tral server, are designed without considering the power
constraints typical in wireless networks. They make an
extensive use of multicast or broadcast transmissions
which are almost costless in wired networks but are
power hungry in wireless networks.

Accepting that alternatives to the centralised approach
are required, we consider two alternative approaches to dis-
tributing service announcements:

• The “Push” solution, in which a device that offers a
service sends unsolicited advertisements, and the other
devices listen to these advertisements selecting those
services they are interested in.

• The “Pull” solution, in which a device requests a ser-
vice when it needs it, and devices that offer that service
answer the request, perhaps with third devices taking
note of the reply for future use.

In pervasive computing, it is very important to minimise
the total number of transmissions, in order to reduce battery
consume. It is also important to implement mechanisms to
detect as soon as possible both the availability and unavail-
ability of services produced when a device joins or leaves the

network. These factors must be taken into account when se-
lecting between a push solution or a pull solution.

The DEAPspace group of the IBM Research Zurich Lab.
has proposed a solution to the problem of service discovery
in pervasive systems without using a central server. The
DEAPspace Algorithm [7] is a pure push solution, in which
all devices hold a list of all known services, the so-called
“world view”. Each device periodically broadcasts its “world
view” to its neighbours, which update their “world view” ac-
cordingly.

We think the DEAPspace algorithm has the following
problem: the “world view” of a device spreads from neigh-
bour to neighbour, perhaps arriving at a device where some
of those services are in fact not available.

In this paper we propose a new service discovery algo-
rithm, the Pervasive Discovery Protocol (PDP), which merges
characteristics of both pull and push solutions. This way we
think a better performance can be achieved.

4. PERVASIVE DISCOVERY PROTOCOL
The Pervasive Discovery Protocol (PDP) is intended to

solve the problem of enumerating the services available in a
local cell in a low power short-range wireless network, com-
posed of devices with limited transmission power, memory,
processing power, etc. The classical service discovery pro-
tocols use a centralised server that listens for broadcast or
multicast announcements of available services at a known
port address, and lists the relevant services in response to
enquiries. The protocol we propose does away with the need
for the central server. The kind of environments described
above cannot be relied upon to have any single device perma-
nently present in order to act as central server, and further,
none of the devices present at any moment may be suitable
to act as the server.

One of the key objectives of the PDP is to minimise bat-
tery use in all devices. This means that the number of trans-
missions necessary to discover services should be reduced as
much as possible. A device announces its services only when
other devices request the service. Service announcements
are broadcast to all the devices in the network, all of which
will get to know about the new service simultaneously at
that moment, without having to actively query for it.

In the remainder of this section, we present the application
scenario for PDP and some considerations to be taken into
account, and then we will formally describe the algorithm
used to implement it.

4.1 Application scenario
We will suppose that there are D devices, each one with

I network interfaces. Each device offers S services and ex-
pects to remain available for T seconds. This time T is
previously configured in the device, depending on its mo-
bility characteristics. The Service Discovery Agent has a
cache associated with each interface which contains a list
of the services that have been heard from on this interface.
Each element e of this list has two fields: the service de-
scription, e.description, and a time that it is calculated that
the service will be available for, e.timeout. The calculation
is exactly the minimum of two values: the time that the de-
vice has promised to remain available, T , and the time that
the server announced that the service would be available
for. Entries remove themselves from a cache when e.timeout
elapses.

Table 1: PDP request S

for (i = 0 to I) {

if (S ∈ cachei) return i;
}

for (i = 1 to I) {

remote_service = PDP request(S);
if (∃ remote_service) {

add_service(remote_service, cachei);

return i;
}

}

Table 2: PDP request ALL

for (i = 1 to I) {

remote_services_list= PDP request(ALL);
}

Services are not associated with any specific interface and
the availability time T of the device is always included in
the announcements of its services.

For simplicity, we suppose that local services are stored in
the cache associated with the loopback interface (cache0).

4.2 Algorithm description
The PDP has two messages: PDP request, which is used

to send service announcements and PDP reply, which is
used to answer a PDP request, announcing available ser-
vices.

Now, we will explain in detail how a Service Discovery
Agent uses these primitives.

4.2.1 PDP request
When an application or the final user of the device needs

a service, whether a specific service or any service offered by
the environment, it requests the service from the SDA. The
number of broadcast transmissions should be minimised, so:

• If a specific service has been requested, the SDA searches
for that service in all its caches. If it is not found, it
broadcasts a PDP request for that service (Table 1).

• If the request is for all available services in the net-
work, the SDA updates its caches by sending a PDP
request message through all the interfaces of the device
(Table 2).

4.2.2 PDP reply
The SDAs in all devices are continually listening on each

interface for all types of messages (PDP requests and PDP
replies).

When a PDP reply is received, announcing a service, the
SDAs update their caches accordingly.

When a PDP request for a specific service S (Table 3) is
received, the SDA:

• Checks whether the requested service, S, is one of its
local services and therefore is stored in the loopback
cache, or is not.

Table 3: PDP reply S

if (∃ e ∈ cache0 / S = e.description) {

t = generate_random_time(1
T
);

wait(t);

if (not listened PDP reply)

PDP reply(e);

}

Table 4: PDP reply ALL

t = generate_random_time(1
T∗cache size

);

wait(t);

if (not listened PDP reply)

PDP reply(cache0, cachei);

• If it is, it generates a random time t, inversely propor-
tional to the availability time of the device, T . So, the
more time the device is able to offer the service, the
higher the probability of the device answering first.

• During the interval t, the SDA listens to the network.
If another reply to this PDP request arrives, it aborts
its PDP reply, otherwise when the interval expires, it
sends its PDP reply.

When a PDP request for all services ALL (Table 4) is
received then the SDA:

• Generates a random time t, inversely proportional to
the availability time of the device, T , and to the num-
ber of elements stored in the cache of that interface.
So, the more time the device is able to offer the service
and the bigger the cache, the higher the probability of
answering first. We suppose the device with the high-
est availability time and the bigger cache is the one
with the most accurate view of the world.

• During the interval t, the SDA listens to the network.
If another reply to this PDP request arrives, it aborts
its PDP reply, otherwise when the interval expires, it
sends its PDP reply listing the services in the loopback
cache plus the services in the cache of that interface.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have demonstrated the need to adapt

some services in a MAS infrastructure to work in pervasive
environments, in particular the yellow-pages service. We
have defined a system agent, the Service Discovery Agent,
that implements this service, using a new service discovery
protocol, the PDP.

This paper describes our initial work in an important open
issue in MAS in ad-hoc networks: service discovery. Much
work in this area remains to be done, some of which we
intend to address in the future:

• We want to measure the efficiency of the PDP algo-
rithm by implementing it in a network simulator, and
analysing how well it adapts to different mobility sce-
narios.

• We will compare the performance of the PDP algo-
rithm with the classical solutions.

• We will improve the PDP algorithm, e.g. :

– By adding a new message “PDP bye” to be used
when a device is switched off or it roams to other
network. This will be only possible in certain net-
work technologies.

– By adding new parameters, besides the availabil-
ity time which weight the generation of the ran-
dom time a device waits before sending a “PDP
reply”, e.g. the QoS, the cost of the service, etc.

• We will define the format of PDP messages and service
descriptions.

• We will improve the security aspects of the protocol.

6. ADDITIONAL AUTHORS
Andrés Maŕın email: amarin@it.uc3m.es, Carlos Garćıa-

Rubio, email: cgr@it.uc3m.es, and Peter T. Breuer email:
ptb@it.uc3m.es.

7. REFERENCES
[1] K. Decker, K. Sycara, and M. Williamson.

Middle-agents for the Internet. In IJCAI-97
International Joint Conference on Artificial
Intelligence, 1997.

[2] Foundation for Intelligent Physical Agents.
http://www.fipa.org.

[3] Y. Y. Goland, T. Cai, P. Leach, and Y. Gu. Simple
service discovery protocol/1.0. Technical report, 1999.

[4] IETF Network Working Group. Service Location
Protocol, 1997.

[5] B. K. Langley, M. Paolucci, and K. Sycara. Discovery
of infastructure in multi-agent systems. In Agents 2001
Workshop on Infrastructure for Agents, MAS, and
Scalable MAS, 2001.

[6] S. Microsystems. Jini architectural overview. white
paper. Technical report, 1999.

[7] M. Nidd. Service Discovery in DEAPspace. IEEE
Personal Communications, Aug. 2001.

[8] I. Salutation Consortium. Salutation architecture
overview. Technical report, 1998.

