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Abstract—This paper describes the work in progress in the 

European Commission funded OneLab project to extend 
PlanetLab nodes with multihoming functionalities. These 
multihoming functionalities aim at enabling application 
developers, for example, to test the impact of multihoming 
solutions on their applications, or to find out appropriate 
parameters for multihoming solutions according to the 
requirements of their applications.   
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I. INTRODUCTION 

Multihoming is the ability of having different connections to 
Internet, potentially through different providers. As Internet 
evolves, there are at least two different trends pushing the 
importance of multihoming: 

• Internet communications are nowadays seen as strategic 
by companies and institutions. Reliability and degree of 
independence from particular service providers are an 
increasingly common requirement for these companies 
and institutions, and multihoming provided at the site 
level is the key to achieve the mentioned objectives. 
Furthermore, nowadays, at least 60% of stub domains 
are multihomed to two or more providers [8]. 

• There is a proliferation of access technologies 
everywhere. Therefore, it is increasingly common to 
have devices with several network interfaces (3G, 
WLAN, Ethernet, Bluetooth…). To gain full advantage 
of robustness in communications and ubiquitous access 
by the ability of using the different accesses where they 
are available, a multihoming solution at the host level is 
required. 

With these scenarios, it is expected that more and more 
multihoming situations will become common in the near 
future. As a consequence, a lot of work is being done in 
different Working Groups of the IETF [1] to develop 
multihoming solutions that can provide the appropriate 
functionality while fulfilling requirements that guarantee that 
the solutions are deployable.  

In IPv4, multihoming is mainly provided by means of BGP, 
i.e., multihoming is provided by routing. Such a solution, 
however, suffers from limitations, in particular scalability, that 
impede its full deployment up to small sites level, and much 
less to the host level. Indeed, if a site announces different 
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address blocks with different priorities to obtain some load 
balancing capabilities, different routes will be needed in the 
core network for the address space of the site (on per address 
block with different paths to follow).  As more sites are getting 
interest in obtaining capabilities, this can become a serious 
concern. Multihoming research in IPv6 aims at providing the 
full expected functionalities of multihoming. The multihoming 
architecture solutions for IPv6 are host based and allow not 
only sites, but also individual hosts, to take full benefit of 
multihoming.  

The European Commission funded OneLab project [2] is 
currently working on extending the functionalities present in 
the PlanetLab overlay network environment. OneLab, using 
PlanetLab software as a starting point, will create an overlay 
network environment federated with PlanetLab. Eventually, 
the added functionality could be included in PlanetLab. 
Among the extensions, OneLab aims at providing multihoming 
functionalities by means of introducing multihoming 
components in PlanetLab standard nodes. In this paper, we 
describe these new components that should allow researchers 
to experiment with multihoming in a realistic distributed 
environment over the Internet. Examples of interesting issues 
that can be studied are effects of multihoming mechanisms in 
applications, improved performance of multihoming 
mechanisms by interactions with applications, or even study 
different multihoming methods. 

The paper is structured as follows; section II describes the 
components of the OneLab multihoming solution;  section III 
explains the requirements of the multihoming solution for 
OneLab nodes; section IV describes how we introduce those 
components in OneLab nodes; Sec. V details how researchers 
can benefit from these functionalities; and finally, Sec. VI 
concludes the paper. 

II. MULTIHOMING COMPONENTS IN ONELAB 

A. Objective 

The objective of the multihoming solution in OneLab is to 
enable OneLab nodes with the following host based 
multihoming related functionalities: 

• A failure detection and path exploration method. 
• A transparent mechanism able to change the path used 

by a flow. 
• A mechanism to simulate link failures. 
 

B. Architecture 

The basis of the architecture is a OneLab node with more 
than one network interface. The multihoming solution consists  
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of three modules, each one providing one of the three 

functionalities described in Sec. II.A. The functionality of 
these modules is described in the following.  
1) Failure Detection and Path Exploration Method: 

In a multihoming solution, we need a way to assess the 
current status of the path between two IP addresses, and detect 
failures when they happen. If the path is disrupted, a path 
exploration method is needed to find a new path between the 
nodes (represented by a new pair of addresses) through which 
the communication is possible, if it exists. 

We have chosen to provide this functionality using a 
protocol based on the REAchability Protocol (REAP) [3]. 
REAP is responsible for failure detection and recovery.  REAP 
periodically sends Keep Alive messages when no data is 
transferred by upper layers.  As a host is supposed to receive 
Keep Alive messages or data, a failure can be detected due to a 
timer expiry.  Failure detection triggers a new path exploration 
procedure.  REAP is fully described in section IV.A. The 
original REAP has been extended in order to support IPv4. 
Other possible modifications are under consideration. For 
instance, to provide information not only on path availability 
but also on some path characteristics such as round trip time 
(RTT).  
2) Transparent mechanism for path modification: 

This module modifies transparently the packets of the 
applications in order to send those packets through the new 
path discovered by REAP. The initial version uses a simple  
 

static configuration but more complex options for dynamic 
exchange of addresses (following SHIM6 [6] or MONAMI [7] 
principles) could be introduced.  
3) Link Failure Simulator: 

This module simulates simplex/duplex, random/static 
failures in a specific link. Notice that these failures do not 
affect the real network service, only how applications perceive 
it. It will be implemented using filters. 

III.  REQUIREMENTS 

    Before going into the details of our multihoming 
implementation in the OneLab testbed, we discuss, in this 
section, the requirements for the software of OneLab nodes to 
allow the implementation of the multihoming functionality. 

• As we are possibly going to modify packet headers, we 
require sudo or su capabilities in the host system and 
the slice system.  

• Support for several interfaces.  As the multihoming 
service requires access to the interfaces configuration, a 
possible scheme to provide this functionality in a secure 
way is to use one interface as primary (used for 
managing the OneLab node) and having others with 
unrestricted access for application use. 

• The ifconfig and iproute2 commands are needed in 
order to configure the non-primary interfaces. 

• Raw sockets are needed.  The VNET system must 
support all the raw socket properties, including the 

Figure 1: OneLab Multihoming Architecture  
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possibility of opening sockets at the IP level. 
•  Ideally, IPv6 should be supported in order to obtain the 

maximum benefit from the experimental capabilities 
enabled by the proposed multihoming solution.  
Unfortunately, OneLab does not support yet IPv6 and 
its development within the kernel is not on the agenda. 

IV. INTRODUCING THE MULTIHOMING COMPONENTS IN A 

ONELAB NODE 

The multihoming components defined in Sec. II.B must be 
introduced in the architecture of OneLab nodes. This is done 
following the PlanetLab architecture principles [4][5]. Having 
these principles in mind we plan to implement the modules as 
services in a sliver (see Figure 1). A sliver is the instantiation 
in a node of a slice, and a slice is a set of virtual machines, 
each one created in physical nodes in the overlay environment. 
We argue that, implementing the link failure and multihoming 
services inside the sliver and not inside the node itself, will 
provide a greater deal of flexibility and the isolation between 
slivers required by the PlanetLab design guides. 

The three modules that compose the multihoming solution 
for OneLab will be set up using configuration files that will 
define settings like, for example, the addresses available for 
the peers in a communication, the timer configuration or the 
port to listen Probes.  
 The architecture designed for the multihoming service at the 
highest level will be made of a daemon which controls all the 
rest of the processes. This daemon is in charge of parsing the 
configuration files and of running the different REAP 
instances, the Link Failure Simulator and, when needed, the 
mechanism for path modifications. The global configuration 
file will define the behavior of the various modules by 
providing a set of variables affecting the modules behavior.  

Each of the modules will provide information regarding its 
operation by a file system structure. Each process will create a 
folder in which all the state variables are stored and accessible 
by user space applications. Examples of stored variables are 
address information, timer configuration of REAP, and failure 
characteristics. 

Apart from the information accessible through the files, we 
propose an API for accessing these variables and modifying 
the running behavior of the processes. Through this API, for 
instance, the timers used by REAP can be changed on the fly.  

 

A. Failure Detection and Path Exploration Method 

As explained in section II.B.1) the protocol selected to detect 
failures and find a new pair of candidate locators is REAP.  
The REAP protocol relies on two timers (the Keep Alive 
Timer and the Send Timer), and a probe message, namely the 
Keep Alive message. The Keep Alive Timer (TKA) is started 
each time a node receives a data packet from its peer, and 
stopped and reset, each time the node sends a packet to the 
peer. When the Keep Alive Timer expires, a Keep Alive 
message is sent to the peer. The Send Timer (TSend), defined 
roughly as three times the Keep Alive Timer plus a deviation 
to accommodate the Round Trip Time, is started each time the 
node sends a packet and stopped each time the node receives a 

packet from the peer. If no answer (either a Keep Alive or data 
packet) is received in the Send Timer period a failure is 
assumed and a locator path exploration is started. 
Consequently, the Send timer reflects the requirement that 
when a node sends a payload packet there should be some 
return traffic within Send Timeout seconds. On the other hand, 
the Keep Alive timer reflects the requirement that when a node 
receives a payload packet there should be a similar response 
towards the peer within Keep Alive seconds. Note that if no 
traffic is exchanged, there is no Keep Alive signaling. As a 
consequence, there is a tight relationship between the values of 
the timers defined by the REAP protocol and the time required 
by REAP to detect a failure. The current specifications suggest 
a value of 3 seconds for the Keep Alive Timer, and of 10 
seconds for the Send Timer, although these values are 
supported by neither analytical studies nor experimental data. 
Once a node detects a failure, it starts the path exploration 
mechanism. A Probe message is sent to test the current locator 
pair, and if no responses are obtained during a period of time 
called Retransmission Timer TRTx, the nodes start sending 
Probes testing the rest of the available address pairs, using all 
possible source/destination address pairs. A more detailed 
description of the REAP protocol and an analysis of its 
behavior can be found on [15]. Recent work has shown that 
the recovery time, i.e., the time needed to get a new 
source/destination address pair, can be reduced by allowing 

Figure 2: REAP Example 
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REAP to send multiple probes upon failure detection [9].  
Figure 2 presents a use case of the REAP protocol for better 
understanding. It presents a packet exchange between two end 
hosts, A and B.  After a period of normal packet exchange the 
path between them fails (T1) only in the direction from A to B. 
TSend seconds after the failure, one of the hosts (on this case B) 
detects a failure on the path and starts a path exploration 
mechanism, which begins by sending a probe through the path 
being used. On this case, the probe is received by A, which 
answers the probe indicating that A can see B (state 
Inbound_OK). As this probe is being sent through the failed 
path, it does not reach the destination. After a Retransmission 
Timer, A sends another probe using other path. On this case it 
reaches B.  After the reception of this probe, B is in 
operational state (it can see A and A can see B)  and sends one 
more probe indicating its state to A. After reception of this last 
probe, A is in operational state too and the protocol ends. 
In order to work, this protocol needs information about the 
incoming/outgoing application packets along with some 
control packets (Keep Alive, Probe). REAP is being 
implemented on OneLab as a service running on a sliver. The 
notification about the incoming/outgoing packets is obtained 
by the use of the PCAP library [10]. PCAP allows an 
application to sniff packets of a given interface and to filter 
these packets following selected criteria. On a OneLab sliver 
the PCAP library works in a similar manner as on a normal 
linux machine with the exception of only being able to sniffer 
packets which source or destination is an application running 
on the slice. Due to this limitation, the control packets are sent 
and received by standard UDP sockets. 
The Failure Detection and Path Exploration module is tightly 
coupled to the Transparent mechanism for path modification 
and Link Failure Simulator. In one hand, once the module has 
detected a failure on the link and found a new path, it informs 
the Path modification module of it. On the other hand, the Link 
Failure simulator informs the REAP module of a failure so it 
starts dropping the application packets and running the path 
exploration mechanism defined in REAP.  

B. Transparent mechanism for path modification 

Once the Failure Detection and Path Exploration module has 
detected a failure and found a new path, it informs this module 
of the new source and destination addresses to use. This 
module will use these new addresses to modify the IP header 
of the application packets and restarting the routing process 
followed by the packet. This modification is performed on the 
reception of the application packets, so the modification of the 
path is transparent to the application which receives the 
packets exactly in the same way as before the path failure. 
The modification of the packets is performed by using the 
Libiptc [11] library. This library allows a packet captured on 
an Iptables chain to be passed to user space. In user space the 
packet may be modified and can be incorporated to the normal 
packet kernel flow. On this basis, the mechanism for path 
modification is composed of a set of iptables rules to extract 
the packets from the kernel flow and a user space program 
which modifies the IP header of the packets and recalculates 
de IP checksum. The transport protocol checksum does not 
need to be modified since on reception the IP header is set 

again as the original packet and re-injected to the kernel which 
then computes the transport checksum with the correct values. 
When a packet has been modified, it is injected on the normal 
kernel flow, the packet is again routed according with the new 
IP headers and sent through the appropriate interface. 
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FORWARD

OUTPUT

POSTROUTING

LIBIPTC

USER’S SPACE

 
Figure 3: B. Transparent mechanism for path 

modification 

C. Link Failure Simulator 

Based on the previous modules, the Link failure simulator 
must provide the mechanisms to: 

• Stop the application packets flow. 
• Stop the REAP control packets flow. 
• Stop the sniffering of packets used on the Failure 

detection and Path exploration module. 
To stop the application packets and control messages a rule in 
Iptables can be used. A simple rule on the INPUT chain of 
Iptables dropping the application packets and control messages 
is used to stop all the traffic exchange on the slice. 
However the PCAP library sniffs the packets directly from the 
interface before these packets are processed by the kernel and 
the Iptables rules does not apply over it. To overcome this 
issue the Link Failure simulator sends an inter-process signal 
to the Failure detection and Path exploration module which 
bypass the processing of the messages sniffered by pcap, 
actively triggering the failure detection mechanism. 

V. USE OF THE MULTIHOMING FUNCTIONALITIES 

 We envision several application scenarios for the 
platform described above. For instance, a video content 
distribution service might test, on the OneLab testbed, how the 
video service is impacted by a link failure and how 
multihoming can protect the content delivery. Further, a study 
of the parameter configuration related to the recovery can be 
done in a large-scale environment. 
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 One can also imagine that REAP can be extended in 
order to provide additional path characteristics.  Indeed, with 
the growing importance of the Internet combined with the 
growth of multihoming [8], more and more Internet users 
needs to better select the paths taken by their packets.  Today, 
although many of measurements techniques have been 
developed within the IPPM working group of the IETF, an 
application that needs to select a path must implement its own 
measurement system to obtain data for performing its 
selection.  This implies that several applications running on the 
same host or in the same campus will probably perform almost 
the same kind of measurements.  In the long term, duplicating 
those measurements is not the appropriate solution.  A better 
solution would be to permit the REAP component to query a 
service that is run continuously.  This service would provide 
information about: 

• the topology of the visible part of the Internet.  See 
Donnet and Friedman [12] for further details on 
topology discovery. 

• the delay.  See Wang et al. [13] for details on delay 
measurements. 

• the bandwidth.  See Prasad et al. [14] for details about 
the bandwidth estimation. 

Researchers can use this platform to investigate the effects of 
multihoming and failure recovery mechanisms on their 
applications, including the study of parameter configurations 
related with the recovery. If REAP is extended to provide 
information about some characteristics of the paths, 
researchers can study the impact of these characteristics on 
their applications.  

Besides, there is an ongoing discussion about what 
information about path conditions and path changes would be 
useful for the upper layers.  

Such upper layers include transport layers with congestion 
control procedures and applications that are sensitive to path 
conditions. This mechanism would allow researchers to 
explore how upper layers could use a more detailed network 
layer information and conduct experiments with this.  

Finally, this service could be used as a starting point to build 
more complex multihoming solutions. For example, the 
module that manages different addresses in the node assumes 
static configuration, but researchers could use this basic 
functionality to test a protocol for exchanging dynamically and 
in a secure way end-point addresses information.   

VI.  CONCLUSION  

In this paper, in the context of the OneLab project, we 
explained how PlanetLab-like nodes can be extended in order 
to support multihoming. The multihoming functionalities 
chosen to be part of the solution are: 

• A failure detection and path exploration method. 
• A transparent mechanism able to change the path 

used by a flow. 
• A mechanism to simulate link failures. 

 
First we have described the failure detection and path 

exploration method. It is based on a modified version of REAP 
so that it can work under an IPv4 network.  We next discussed 

how the multihoming component modifies packet headers to 
change the IP addresses in case of a failure.  This mechanism, 
based on libiptc, is transparent to applications.  Finally we 
have described our link failure simulator which aims at 
creating artificial failures. 

A new feature in a testbed is useless if it cannot be used by 
the community.  We therefore described, in this paper, a bunch 
of application scenarios for which our multihoming module is 
suitable 

The multihoming component described in this paper has 
been developed for an IPv4 environment. A next step in the 
multihoming development in OneLab would be to implement 
IPv6. 
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