
 1

Abstract—This paper describes the work in progress in the

European Commission funded OneLab project to extend
PlanetLab nodes with multihoming functionalities. These
multihoming functionalities aim at enabling application
developers, for example, to test the impact of multihoming
solutions on their applications, or to find out appropriate
parameters for multihoming solutions according to the
requirements of their applications.

Key Wordss— Multihoming, OneLab, PlanetLab, REAP.

I. INTRODUCTION

Multihoming is the ability of having different connections to
Internet, potentially through different providers. As Internet
evolves, there are at least two different trends pushing the
importance of multihoming:

• Internet communications are nowadays seen as strategic
by companies and institutions. Reliability and degree of
independence from particular service providers are an
increasingly common requirement for these companies
and institutions, and multihoming provided at the site
level is the key to achieve the mentioned objectives.
Furthermore, nowadays, at least 60% of stub domains
are multihomed to two or more providers [8].

• There is a proliferation of access technologies
everywhere. Therefore, it is increasingly common to
have devices with several network interfaces (3G,
WLAN, Ethernet, Bluetooth…). To gain full advantage
of robustness in communications and ubiquitous access
by the ability of using the different accesses where they
are available, a multihoming solution at the host level is
required.

With these scenarios, it is expected that more and more
multihoming situations will become common in the near
future. As a consequence, a lot of work is being done in
different Working Groups of the IETF [1] to develop
multihoming solutions that can provide the appropriate
functionality while fulfilling requirements that guarantee that
the solutions are deployable.

In IPv4, multihoming is mainly provided by means of BGP,
i.e., multihoming is provided by routing. Such a solution,
however, suffers from limitations, in particular scalability, that
impede its full deployment up to small sites level, and much
less to the host level. Indeed, if a site announces different

This work was supported in part by EU IST OneLab project.
Antonio de la Oliva and Ignacio Soto are with the Universidad Carlos III

de Madrid; Av. Universidad 30; 28911 Leganés (Madrid); Spain (e-mail:
{aoliva, isoto}@it.uc3m.es)

Benoit Donnet is with the Université catholique de Louvain; CSE
Department; Belgium (e-mail: donnet@info.ucl.ac.be).

Thierry Parmentelat is with the INRIA; F-06902 Sophia-Antipolis; France
(e-mail: thierry.parmentelat@inria.fr)

address blocks with different priorities to obtain some load
balancing capabilities, different routes will be needed in the
core network for the address space of the site (on per address
block with different paths to follow). As more sites are getting
interest in obtaining capabilities, this can become a serious
concern. Multihoming research in IPv6 aims at providing the
full expected functionalities of multihoming. The multihoming
architecture solutions for IPv6 are host based and allow not
only sites, but also individual hosts, to take full benefit of
multihoming.

The European Commission funded OneLab project [2] is
currently working on extending the functionalities present in
the PlanetLab overlay network environment. OneLab, using
PlanetLab software as a starting point, will create an overlay
network environment federated with PlanetLab. Eventually,
the added functionality could be included in PlanetLab.
Among the extensions, OneLab aims at providing multihoming
functionalities by means of introducing multihoming
components in PlanetLab standard nodes. In this paper, we
describe these new components that should allow researchers
to experiment with multihoming in a realistic distributed
environment over the Internet. Examples of interesting issues
that can be studied are effects of multihoming mechanisms in
applications, improved performance of multihoming
mechanisms by interactions with applications, or even study
different multihoming methods.

The paper is structured as follows; section II describes the
components of the OneLab multihoming solution; section III
explains the requirements of the multihoming solution for
OneLab nodes; section IV describes how we introduce those
components in OneLab nodes; Sec. V details how researchers
can benefit from these functionalities; and finally, Sec. VI
concludes the paper.

II. MULTIHOMING COMPONENTS IN ONELAB

A. Objective

The objective of the multihoming solution in OneLab is to
enable OneLab nodes with the following host based
multihoming related functionalities:

• A failure detection and path exploration method.
• A transparent mechanism able to change the path used

by a flow.
• A mechanism to simulate link failures.

B. Architecture

The basis of the architecture is a OneLab node with more
than one network interface. The multihoming solution consists

A multihoming architecture for OneLab
Antonio de la Oliva, Benoit Donnet, Thierry Parmentelat, Ignacio Soto

A multihoming architecture for OneLab

Antonio de la Oliva, Benoit Donnet, Thierry Parmentelat, Ignacio Soto

 2

Physical Multiple Interfaces

IPTABLES/Socket Interface

Virtual Interface

Virtual IPTABLES/Socket Interface

REAP Module Link Failure Simulator Module Address Interchange Module

Configuration

Informational API Filesystem

Controller Daemon

VSLICE

PCAP/Socket Interface

Link
Failure

Indication

of three modules, each one providing one of the three

functionalities described in Sec. II.A. The functionality of
these modules is described in the following.
1) Failure Detection and Path Exploration Method:

In a multihoming solution, we need a way to assess the
current status of the path between two IP addresses, and detect
failures when they happen. If the path is disrupted, a path
exploration method is needed to find a new path between the
nodes (represented by a new pair of addresses) through which
the communication is possible, if it exists.

We have chosen to provide this functionality using a
protocol based on the REAchability Protocol (REAP) [3].
REAP is responsible for failure detection and recovery. REAP
periodically sends Keep Alive messages when no data is
transferred by upper layers. As a host is supposed to receive
Keep Alive messages or data, a failure can be detected due to a
timer expiry. Failure detection triggers a new path exploration
procedure. REAP is fully described in section IV.A. The
original REAP has been extended in order to support IPv4.
Other possible modifications are under consideration. For
instance, to provide information not only on path availability
but also on some path characteristics such as round trip time
(RTT).
2) Transparent mechanism for path modification:

This module modifies transparently the packets of the
applications in order to send those packets through the new
path discovered by REAP. The initial version uses a simple

static configuration but more complex options for dynamic
exchange of addresses (following SHIM6 [6] or MONAMI [7]
principles) could be introduced.
3) Link Failure Simulator:

This module simulates simplex/duplex, random/static
failures in a specific link. Notice that these failures do not
affect the real network service, only how applications perceive
it. It will be implemented using filters.

III. REQUIREMENTS

 Before going into the details of our multihoming
implementation in the OneLab testbed, we discuss, in this
section, the requirements for the software of OneLab nodes to
allow the implementation of the multihoming functionality.

• As we are possibly going to modify packet headers, we
require sudo or su capabilities in the host system and
the slice system.

• Support for several interfaces. As the multihoming
service requires access to the interfaces configuration, a
possible scheme to provide this functionality in a secure
way is to use one interface as primary (used for
managing the OneLab node) and having others with
unrestricted access for application use.

• The ifconfig and iproute2 commands are needed in
order to configure the non-primary interfaces.

• Raw sockets are needed. The VNET system must
support all the raw socket properties, including the

Figure 1: OneLab Multihoming Architecture

 3

possibility of opening sockets at the IP level.
• Ideally, IPv6 should be supported in order to obtain the

maximum benefit from the experimental capabilities
enabled by the proposed multihoming solution.
Unfortunately, OneLab does not support yet IPv6 and
its development within the kernel is not on the agenda.

IV. INTRODUCING THE MULTIHOMING COMPONENTS IN A

ONELAB NODE

The multihoming components defined in Sec. II.B must be
introduced in the architecture of OneLab nodes. This is done
following the PlanetLab architecture principles [4][5]. Having
these principles in mind we plan to implement the modules as
services in a sliver (see Figure 1). A sliver is the instantiation
in a node of a slice, and a slice is a set of virtual machines,
each one created in physical nodes in the overlay environment.
We argue that, implementing the link failure and multihoming
services inside the sliver and not inside the node itself, will
provide a greater deal of flexibility and the isolation between
slivers required by the PlanetLab design guides.

The three modules that compose the multihoming solution
for OneLab will be set up using configuration files that will
define settings like, for example, the addresses available for
the peers in a communication, the timer configuration or the
port to listen Probes.
 The architecture designed for the multihoming service at the
highest level will be made of a daemon which controls all the
rest of the processes. This daemon is in charge of parsing the
configuration files and of running the different REAP
instances, the Link Failure Simulator and, when needed, the
mechanism for path modifications. The global configuration
file will define the behavior of the various modules by
providing a set of variables affecting the modules behavior.

Each of the modules will provide information regarding its
operation by a file system structure. Each process will create a
folder in which all the state variables are stored and accessible
by user space applications. Examples of stored variables are
address information, timer configuration of REAP, and failure
characteristics.

Apart from the information accessible through the files, we
propose an API for accessing these variables and modifying
the running behavior of the processes. Through this API, for
instance, the timers used by REAP can be changed on the fly.

A. Failure Detection and Path Exploration Method

As explained in section II.B.1) the protocol selected to detect
failures and find a new pair of candidate locators is REAP.
The REAP protocol relies on two timers (the Keep Alive
Timer and the Send Timer), and a probe message, namely the
Keep Alive message. The Keep Alive Timer (TKA) is started
each time a node receives a data packet from its peer, and
stopped and reset, each time the node sends a packet to the
peer. When the Keep Alive Timer expires, a Keep Alive
message is sent to the peer. The Send Timer (TSend), defined
roughly as three times the Keep Alive Timer plus a deviation
to accommodate the Round Trip Time, is started each time the
node sends a packet and stopped each time the node receives a

packet from the peer. If no answer (either a Keep Alive or data
packet) is received in the Send Timer period a failure is
assumed and a locator path exploration is started.
Consequently, the Send timer reflects the requirement that
when a node sends a payload packet there should be some
return traffic within Send Timeout seconds. On the other hand,
the Keep Alive timer reflects the requirement that when a node
receives a payload packet there should be a similar response
towards the peer within Keep Alive seconds. Note that if no
traffic is exchanged, there is no Keep Alive signaling. As a
consequence, there is a tight relationship between the values of
the timers defined by the REAP protocol and the time required
by REAP to detect a failure. The current specifications suggest
a value of 3 seconds for the Keep Alive Timer, and of 10
seconds for the Send Timer, although these values are
supported by neither analytical studies nor experimental data.
Once a node detects a failure, it starts the path exploration
mechanism. A Probe message is sent to test the current locator
pair, and if no responses are obtained during a period of time
called Retransmission Timer TRTx, the nodes start sending
Probes testing the rest of the available address pairs, using all
possible source/destination address pairs. A more detailed
description of the REAP protocol and an analysis of its
behavior can be found on [15]. Recent work has shown that
the recovery time, i.e., the time needed to get a new
source/destination address pair, can be reduced by allowing

Figure 2: REAP Example

 4

REAP to send multiple probes upon failure detection [9].
Figure 2 presents a use case of the REAP protocol for better
understanding. It presents a packet exchange between two end
hosts, A and B. After a period of normal packet exchange the
path between them fails (T1) only in the direction from A to B.
TSend seconds after the failure, one of the hosts (on this case B)
detects a failure on the path and starts a path exploration
mechanism, which begins by sending a probe through the path
being used. On this case, the probe is received by A, which
answers the probe indicating that A can see B (state
Inbound_OK). As this probe is being sent through the failed
path, it does not reach the destination. After a Retransmission
Timer, A sends another probe using other path. On this case it
reaches B. After the reception of this probe, B is in
operational state (it can see A and A can see B) and sends one
more probe indicating its state to A. After reception of this last
probe, A is in operational state too and the protocol ends.
In order to work, this protocol needs information about the
incoming/outgoing application packets along with some
control packets (Keep Alive, Probe). REAP is being
implemented on OneLab as a service running on a sliver. The
notification about the incoming/outgoing packets is obtained
by the use of the PCAP library [10]. PCAP allows an
application to sniff packets of a given interface and to filter
these packets following selected criteria. On a OneLab sliver
the PCAP library works in a similar manner as on a normal
linux machine with the exception of only being able to sniffer
packets which source or destination is an application running
on the slice. Due to this limitation, the control packets are sent
and received by standard UDP sockets.
The Failure Detection and Path Exploration module is tightly
coupled to the Transparent mechanism for path modification
and Link Failure Simulator. In one hand, once the module has
detected a failure on the link and found a new path, it informs
the Path modification module of it. On the other hand, the Link
Failure simulator informs the REAP module of a failure so it
starts dropping the application packets and running the path
exploration mechanism defined in REAP.

B. Transparent mechanism for path modification

Once the Failure Detection and Path Exploration module has
detected a failure and found a new path, it informs this module
of the new source and destination addresses to use. This
module will use these new addresses to modify the IP header
of the application packets and restarting the routing process
followed by the packet. This modification is performed on the
reception of the application packets, so the modification of the
path is transparent to the application which receives the
packets exactly in the same way as before the path failure.
The modification of the packets is performed by using the
Libiptc [11] library. This library allows a packet captured on
an Iptables chain to be passed to user space. In user space the
packet may be modified and can be incorporated to the normal
packet kernel flow. On this basis, the mechanism for path
modification is composed of a set of iptables rules to extract
the packets from the kernel flow and a user space program
which modifies the IP header of the packets and recalculates
de IP checksum. The transport protocol checksum does not
need to be modified since on reception the IP header is set

again as the original packet and re-injected to the kernel which
then computes the transport checksum with the correct values.
When a packet has been modified, it is injected on the normal
kernel flow, the packet is again routed according with the new
IP headers and sent through the appropriate interface.

PREROUTING

INPUT

FORWARD

OUTPUT

POSTROUTING

LIBIPTC

USER’S SPACE

Figure 3: B. Transparent mechanism for path

modification

C. Link Failure Simulator

Based on the previous modules, the Link failure simulator
must provide the mechanisms to:

• Stop the application packets flow.
• Stop the REAP control packets flow.
• Stop the sniffering of packets used on the Failure

detection and Path exploration module.
To stop the application packets and control messages a rule in
Iptables can be used. A simple rule on the INPUT chain of
Iptables dropping the application packets and control messages
is used to stop all the traffic exchange on the slice.
However the PCAP library sniffs the packets directly from the
interface before these packets are processed by the kernel and
the Iptables rules does not apply over it. To overcome this
issue the Link Failure simulator sends an inter-process signal
to the Failure detection and Path exploration module which
bypass the processing of the messages sniffered by pcap,
actively triggering the failure detection mechanism.

V. USE OF THE MULTIHOMING FUNCTIONALITIES

 We envision several application scenarios for the
platform described above. For instance, a video content
distribution service might test, on the OneLab testbed, how the
video service is impacted by a link failure and how
multihoming can protect the content delivery. Further, a study
of the parameter configuration related to the recovery can be
done in a large-scale environment.

 5

 One can also imagine that REAP can be extended in
order to provide additional path characteristics. Indeed, with
the growing importance of the Internet combined with the
growth of multihoming [8], more and more Internet users
needs to better select the paths taken by their packets. Today,
although many of measurements techniques have been
developed within the IPPM working group of the IETF, an
application that needs to select a path must implement its own
measurement system to obtain data for performing its
selection. This implies that several applications running on the
same host or in the same campus will probably perform almost
the same kind of measurements. In the long term, duplicating
those measurements is not the appropriate solution. A better
solution would be to permit the REAP component to query a
service that is run continuously. This service would provide
information about:

• the topology of the visible part of the Internet. See
Donnet and Friedman [12] for further details on
topology discovery.

• the delay. See Wang et al. [13] for details on delay
measurements.

• the bandwidth. See Prasad et al. [14] for details about
the bandwidth estimation.

Researchers can use this platform to investigate the effects of
multihoming and failure recovery mechanisms on their
applications, including the study of parameter configurations
related with the recovery. If REAP is extended to provide
information about some characteristics of the paths,
researchers can study the impact of these characteristics on
their applications.

Besides, there is an ongoing discussion about what
information about path conditions and path changes would be
useful for the upper layers.

Such upper layers include transport layers with congestion
control procedures and applications that are sensitive to path
conditions. This mechanism would allow researchers to
explore how upper layers could use a more detailed network
layer information and conduct experiments with this.

Finally, this service could be used as a starting point to build
more complex multihoming solutions. For example, the
module that manages different addresses in the node assumes
static configuration, but researchers could use this basic
functionality to test a protocol for exchanging dynamically and
in a secure way end-point addresses information.

VI. CONCLUSION

In this paper, in the context of the OneLab project, we
explained how PlanetLab-like nodes can be extended in order
to support multihoming. The multihoming functionalities
chosen to be part of the solution are:

• A failure detection and path exploration method.
• A transparent mechanism able to change the path

used by a flow.
• A mechanism to simulate link failures.

First we have described the failure detection and path

exploration method. It is based on a modified version of REAP
so that it can work under an IPv4 network. We next discussed

how the multihoming component modifies packet headers to
change the IP addresses in case of a failure. This mechanism,
based on libiptc, is transparent to applications. Finally we
have described our link failure simulator which aims at
creating artificial failures.

A new feature in a testbed is useless if it cannot be used by
the community. We therefore described, in this paper, a bunch
of application scenarios for which our multihoming module is
suitable

The multihoming component described in this paper has
been developed for an IPv4 environment. A next step in the
multihoming development in OneLab would be to implement
IPv6.

ACKNOWLEDGMENT

Authors of this paper are supported by the European-
founded 034819 OneLab project. We would like to thank the
OneLab consortium for their support and suggestions that
improved this work..

REFERENCES

[1] IETF Home Page: http://www.ietf.org
[2] OneLab Home Page: http://www.one-lab.org
[3] J. Arkko and I. Van Beijnum, “Failure Detection and Locator Pair

Exploration Protocol for IPv6 Multihoming”, IETF draft draft-ietf-
shim6-failure-detection-07 (work in progress), December 2006.

[4] L. Peterson and T. Roscoe, “The Design Principles of PlanetLab”,
PlanetLab Design Note PDN-04-021, available at https://www.planet-
lab.org/doc/pdn, January 2006.

[5] L. Peterson, S. Muir, T. Roscoe, and Aaron Klingaman, “PlanetLab
Architecture: An Overview”, PlanetLab Design Note PDN-06-031,
available at https://www.planet-lab.org/doc/pdn, May 2006.

[6] E. Nordmark and M. Bagnulo, “Level 3 multihoming shim protocol”,
IETF draft-ietf-shim6-proto-08 (work in progress), May 2007.

[7] N. Montavont, R. Wakikawa, T. Ernst, C. Ng and K.. Kuladinithi,
"Analysis of Multihoming in Mobile IPv6", IETF draft-ietf-monami6-
mipv6-analysis-02 (work in progress), Feb. 2007.

[8] S. Agarwal, C.-N. Chuah and R. H. Katz, “OPCA: Robust Interdomain
Policy Routing and Traffic Control”, in Proc. OPENARCH, Apr. 2003.

[9] S. Barré and O. Bonaventure, “Improved Path Exploration in shim6-
based Multihoming”, in Proc. ACM SIGCOM IPv6 Workshop, Aug.
2007.

[10] V. Jacobson, C. Leres and S. McCanne, “tcpdump”, UNIX, man page,
1998. See also http://www.tcpdump.org

[11] M. Boucher, M. Josefsson, J. Kadlecsik, J. Morris, H. Welte and R.
Russel, “Netfilter: Firewall, NAT, and Packet Mangling for Linux”,
UNIX, man page, 1999. See also http://www.netfilter.org

[12] B. Donnet and T. Friedman, "Internet Topology Discovery: a Survey",
In IEEE Communications Survey and Tutorials. 2007. to appear.

[13] J. Wang, M. Zhou and L. Yuxia, "Survey on the End-to-End Internet
Delay Measurements", In Proc. 7th IEEE International Conference on
High Speed Networks and Multimedia Communications (HSNMC),
June/Jul. 2004.

[14] R. Prasad, C. Dovrolis, M. Murray and kc claffy, "Bandwidth
Estimation: Metrics, Measurement Techniques and Tools", In IEEE
Network, 6(17), Nov./Dec. 2003, pp. 27-35.

[15] A. de la Oliva, M. Bagnulo, A. Garcia-Martinez and I. Soto.
“Performance Analysis of the REAchability Protocol for IPv6
 Multihoming” Accepted for publication in NEW2AN 2007, Conference
on Next Generation Teletraffic and Wired/Wireless Advanced
Networking, September 2007.

