A multihoming architecture for OnelLab

Antonio de la Oliva, Benoit Donnet, Thierry Parmedat, Ignacio Soto

Abstract—This paper describes the work in progress in the
European Commission funded OnelLab project to extend
PlanetLab nodes with multihoming functionalities. These
multihoming functionalities aim at enabling applicaion
developers, for example, to test the impact of muhloming
solutions on their applications, or to find out appopriate
parameters for multihoming solutions according to he
requirements of their applications.

Key Wordss— Multihoming, OnelLab, PlanetLab, REAP.

address blocks with different priorities to obtaome load
balancing capabilities, different routes will beeded in the
core network for the address space of the sitepésraddress
block with different paths to follow). As moreestare getting
interest in obtaining capabilities, this can becoanserious
concern.Multihoming research in IPv6 aims at providing the
full expected functionalities of multihoming. Theulthoming
architecture solutions for IPv6 are host based afav not
only sites, but also individual hosts, to take fo#nefit of
multihoming.

The European Commission funded OnelLab project §2] i

[. INTRODUCTION currently working on extending the functionalitipsesent in
Multihoming is the ability of having different connections tothe PlanetLab overlay network environment. Oneliading
Internet, potentially through different providems Internet PlanetLab software as a starting point, will createoverlay
evolves, there are at least two different trendshing the network environment federated with PlanetLab. Ewaihy,
importance of multihoming: the added functionality could be included in Plaaét
« Internet communications are nowadays seen asgitrateAmong the extensions, OnelLab aims at providing itnuthing
by companies and institutions. Reliability and @éegof functionalites by means of introducing multihoming
independence from particular service providersare components in PlanetLab standard nodes. In thierpape
increasingly common requirement for these companigfescribe these new components that should allogaresers
and institutions, and multihoming provided at i s to experiment with multihoming in a realistic dibtrted
level is the key to achieve the mentioned objestiveenvironment over the Internet. Examples of inténgsissues
Furthermore, nowadays, at least 60% of stub domaifigat can be studied are effects of multihoming rae@ms in
are multihomed to two or more providers [8]. _applications, improved performance of multihoming
There is a proliferation of access technologiegechanisms by interactions with applications, cerestudy

everywhere. Therefore, it is increasingly common tQi¢arent multihoming methods.

have devices with several network interfaces (3G
WLAN, Ethernet, Bluetooth...). To gain full advantage
of robustness in communications and ubiquitous secce

by the ability of using the different accesses whéey
are available, a multihoming solution at the hesel is
required.

With these scenarios, it is expected that more rmode

' The paper is structured as follows; section Il déess the
components of the OneLab multihoming solution; tisaclll

explains the requirements of the multihoming solutifor
OnelLab nodes; section IV describes how we introdhose
components in OnelLab nodes; Sec. V details hovarelkers
can benefit from these functionalities; and finalfyec. VI

multihoming situations will become common in theane concludes the paper.

future. As a consequence, a lot of work is beingedin

different Working Groups of the IETF [1] to develop

multihoming solutions that can provide the apprateri
functionality while fulfilling requirements that guantee that
the solutions are deployable.

In IPv4, multihoming is mainly provided by meansB&P,
i.e., multihoming is provided by routing. Such alusion,
however, suffers from limitations, in particulaatability, that
impede its full deployment up to small sites leald much
less to the host level. Indeed, if a site annourdiéferent

This work was supported in part by EU IST OneLadjgut.

Antonio de la Oliva and Ignacio Soto are with theiwérsidad Carlos IlI
de Madrid; Av. Universidad 30; 28911 Leganés (MdydriSpain (e-mail:
{aoliva, isoto}@it.uc3m.es)

Benoit Donnet is with the Université catholique deuvain; CSE
Department; Belgium (e-mail: donnet@info.ucl.ac.be)

Thierry Parmentelat is with the INRIA; F-06902 SaplAntipolis; France
(e-mail: thierry.parmentelat@inria.fr)

Il. MULTIHOMING COMPONENTS INONELAB

A. Objective

The objective of the multihoming solution in Oneliabto
enable OnelLab nodes with the following host based
multihoming related functionalities:

« Afailure detection and path exploration method.

« Atransparent mechanism able to change the path use

by a flow.

« A mechanism to simulate link failures.

B. Architecture

The basis of the architecture is a OneLab node witine
than one network interface. The multihoming soluttonsists

[VSLICE

‘ Configuration ‘

|
‘ Informational API Filesyjem/m

Controller Daemon

1 1

Link
Failure
REAP Module leIndication | | ink Failure Simulator Module Address Interchange Module
£ f 1
v v v

PCAP/Socket Interface

Virtual IPTABLES/Socket Interface

! !

Virtual Interface

A

A4

IPTABLES/Socket Interface

'

Physical Multiple Interfaces

Figure 1: OnelLab Multihoming Architecture

static configuration but more complex options fgmamic

of three modules, each one providing one of theehrexchange of addresses (following SHIM6 [6] or MONAM]

functionalities described in Sec. IlLA. The funaciddity of
these modules is described in the following.
1) Failure Detection and Path Exploration Method:

In a multihoming solution, we need a way to assbss
current status of the path between two IP addreaselsdetect
failures when they happen. If the path is disrupt@doath
exploration method is needed to find a new pathwéen the
nodes (represented by a new pair of addresses)ginnwhich
the communication is possible, if it exists.

We have chosen to provide this functionality usiag
protocol based on the REAchability Protocol (REAB).
REAP is responsible for failure detection and recgy REAP
periodically sends Keep Alive messages when no data
transferred by upper layers. As a host is supptsedceive
Keep Alive messages or data, a failure can be tetatue to a
timer expiry. Failure detection triggers a newhpexploration
procedure. REAP is fully described in section 1V.Bhe
original REAP has been extended in order to supfiord.
Other possible modifications are under considenatiBor
instance, to provide information not only on patkaitability
but also on some path characteristics such as rtrsijdime
(RTT).

2) Transparent mechanism for path modification:

This module modifies transparently the packets loé t
applications in order to send those packets thrahghnew
path discovered by REAP. The initial version usesmple

principles) could be introduced.
3) Link Failure Smulator:

This module simulates simplex/duplex, random/static
failures in a specific link. Notice that these dads do not
affect the real network service, only how applicasi perceive
it. It will be implemented using filters.

Before going into the details of our multihognin
implementation in the OnelLab testbed, we discussthis
section, the requirements for the software of Ohehades to
allow the implementation of the multihoming functadity.

As we are possibly going to modify packet headees,
require sudo or su capabilities in the host systewh
the slice system.

» Support for several interfaces. As the multihoming
service requires access to the interfaces configurea
possible scheme to provide this functionality iseaure
way is to use one interface as primary (used for
managing the OnelLab node) and having others with
unrestricted access for application use.

* The ifconfig and iproute2 commands are needed in
order to configure the non-primary interfaces.

» Raw sockets are needed. The VNET system must
support all the raw socket properties, including th

REQUIREMENTS

possibility of opening sockets at the IP level.
. Ideally, IPv6 should be supported in order to obthe

maximum benefit from the experimental capabilities
the proposed multihoming solution.
Unfortunately, OneLab does not support yet IPv6 and

enabled by
its development within the kernel is not on theratze
V.

INTRODUCING THEMULTIHOMING COMPONENTS IN A
ONELAB NODE

The multihoming components defined in Sec. II.B mbe
introduced in the architecture of OneLab nodessThidone
following the PlanetLab architecture principles[$}] Having
these principles in mind we plan to implement thedoles as
services in aliver (see Figure 1)A diver is the instantiation
in a node of alice, and adlice is a set of virtual machines,
each one created in physical nodes in the overlayament.
We argue that, implementing the link failure andtihaming
services inside the sliver and not inside the node itseif
provide a greater deal of flexibility and the is@a between
slivers required by the PlanetLab design guides.

The three modules that compose the multihomingtisolu
for OneLab will be set up using configuration filggat will
define settings like, for example, the addresseslable for
the peers in a communication, the timer configorator the
port to listen Probes.

The architecture designed for the multihoming ieerat the
highest level will be made of a daemon which cdstedl the
rest of the processes. This daemon is in chargeusing the
configuration files and of running the different RE
instances, the Link Failure Simulator and, whendeede the
mechanism for path modifications. The global camfidion
file will define the behavior of the various modsildy
providing a set of variables affecting the modddekavior.

Each of the modules will provide information regaglits
operation by a file system structure. Each proeébsreate a
folder in which all the state variables are stoaed accessible
by user space applications. Examples of storechbias are
address information, timer configuration of REARddailure
characteristics.

Apart from the information accessible through thesf we
propose an API for accessing these variables antifyimg
the running behavior of the processes. Through ARlg for
instance, the timers used by REAP can be changéukdty.

A. Failure Detection and Path Exploration Method

As explained in section 11.B.1) the protocol sedecto detect
failures and find a new pair of candidate locatslREAP.

The REAP protocol relies on two timers (the Keepvél
Timer and the Send Timer), and a probe messagesindhe

Keep Alive message. The Keep Alive Timer(T is started
each time a node receives a data packet from #s, @ad

stopped and reset, each time the node sends atpacte

peer. When the Keep Alive Timer expires, a Keepveli
message is sent to the peer. The Send Timgrd Tdefined

roughly as three times the Keep Alive Timer pludeaiation

to accommodate the Round Trip Time, is started ¢éawhthe

node sends a packet and stopped each time the@oeiees a

Peer A Peer B
IP1, IP2 IP3,1P4
(IP1, IP3) Payload Packet————————»|

#— (IP3, IP1) Payload Packet

L {IP1,IP3) Payload Pack614>®

«———(IP3, IP1) Payload Packet

f——(IP1, IP3) Payload Packez%

e—— (IP3, IP1) Payload Packet

L {IP1,1P3) Payload Packei4>®

Time T1 Path
IP1->IP3 is
broken

Tsend seconds after T1,
B sends a complaint that
itis not receiving
e———(IP3, IP1) state=Exploring anything
Peer A realices
that it needs to
start the

exploration

— |)] slate=|nbound_OK4>8

Retransmission
to a different
address

But it gets lost due
to broken path

This one gets
through, Peer B
would also have
retransmitted soon

(IP1, IP4) state=Inbound_OK

Fallure detection
and path discovery
finished

f—————————(IP4, IP1) state=Operational

——(IP1, IP4) Payload Packet—————»|

«———(IP4, IP1) Payload Packet

Figure 2: REAP Example

packet from the peer. If no answer (either a Kebye/or data
packet) is received in the Send Timer period aufailis
assumed and a locator path exploration
Consequently, the Send timer reflects the requingntieat
when a node sends a payload packet there shoukbrne
return traffic within Send Timeout seconds. Ondtiger hand,
the Keep Alive timer reflects the requirement then a node
receives a payload packet there should be a simdkponse
towards the peer within Keep Alive seconds. Nota ihno
traffic is exchanged, there is no Keep Alive sigmal As a
consequence, there is a tight relationship betweeralues of
the timers defined by the REAP protocol and thestieqjuired
by REAP to detect a failure. The current speciftcad suggest
a value of 3 seconds for the Keep Alive Timer, afidlO
seconds for the Send Timer, although these values a
supported by neither analytical studies nor expenial data.
Once a node detects a failure, it starts the paghoeation
mechanism. A Probe message is sent to test thentuoicator
pair, and if no responses are obtained during egef time
called Retransmission Timergf, the nodes start sending
Probes testing the rest of the available addreiss, psing all
possible source/destination address pairs. A mataildd
description of the REAP protocol and an analysisitef
behavior can be found on [15]. Recent work has shthat
the recovery time, i.e., the time needed to geteav n
source/destination address pair, can be reducedllbwing

is started.

REAP to send multiple probes upon failure detectjeh
Figure 2 presents a use case of the REAP protocdbdtter

again as the original packet and re-injected td#rael which
then computes the transport checksum with the covaues.

understanding. Ipresents a packet exchange between two eMdhen a packet has been modified, it is injectedhennormal

hosts, A and B. After a period of normal packettenge the
path between them fails {jTonly in the direction from A to B.
TsengS€CONds after the failure, one of the hosts (nctse B)
detects a failure on the path and starts a pathoetjpn
mechanism, which begins by sending a probe thréglpath
being used. On this case, the probe is received,byhich

answers the probe indicating that A can see B gsta

Inbound_OK). As this probe is being sent through fhiled

path, it does not reach the destination. After gd@smission
Timer, A sends another probe using other path.Hncgse it
reaches B. After the reception of this probe, Bins
operational state (it can see A and A can seerig) sands one
more probe indicating its state to A. After receptof this last
probe, A is in operational state too and the pratteads.

In order to work, this protocol needs informatiomoat the

incoming/outgoing application packets along withmso
control packets (Keep Alive, Probe). REAP
implemented on OnelLab as a service running ornvarsiihe
notification about the incoming/outgoing packetsolgtained

by the use of the PCAP library [10]. PCAP allows at

application to sniff packets of a given interfaged &o filter
these packets following selected criteria. On al@hbesliver
the PCAP library works in a similar manner as onoamal
linux machine with the exception of only being atdesniffer
packets which source or destination is an apptinatunning
on the slice. Due to this limitation, the contralcgets are sent
and received by standard UDP sockets.

The Failure Detection and Path Exploration modsléghtly
coupled to the Transparent mechanism for path neadiibn
and Link Failure Simulator. In one hand, once treduate has
detected a failure on the link and found a new piathforms
the Path modification module of it. On the othendhgthe Link
Failure simulator informs the REAP module of aueal so it
starts dropping the application packets and runtiry path
exploration mechanism defined in REAP.

B. Transparent mechanism for path modification

Once the Failure Detection and Path Exploration utedhas
detected a failure and found a new path, it infotinis module
of the new source and destination addresses to Tse.

module will use these new addresses to modify Fhbdader
of the application packets and restarting the ngufprocess
followed by the packet. This modification is perfad on the
reception of the application packets, so the maddiidbn of the
path is transparent to the application which rezeithe
packets exactly in the same way as before thefpiitine.

The modification of the packets is performed byngsthe

Libiptc [11] library. This library allows a packegaptured on
an Iptables chain to be passed to user spaceeinspace the
packet may be modified and can be incorporatetigabrmal
packet kernel flow. On this basis, the mechanism gfath

modification is composed of a set of iptables ruteextract
the packets from the kernel flow and a user spaocgram

which modifies the IP header of the packets andlcetates
de IP checksum. The transport protocol checksuns chod

need to be modified since on reception the IP he&lset

is being i

kernel flow, the packet is again routed accordirit) Wthe new
IP headers and sent through the appropriate ictrfa

PREROUTING

INPUT

LIBIPTC

FORWARD USER’S SPACE

OUTPUT

POSTROUTING

Figure 3: B. Transparent mechanism for path
modification

C. Link Failure Smulator

Based on the previous modules, the Link failure utitor
must provide the mechanisms to:

» Stop the application packets flow.

» Stop the REAP control packets flow.

» Stop the sniffering of packets used on the Failure

detection and Path exploration module.

To stop the application packets and control messagele in
Iptables can be used. A simple rule on the INPU@irclof
Iptables dropping the application packets and cbmtessages
is used to stop all the traffic exchange on theesli
However the PCAP library sniffs the packets direfitbm the
interface before these packets are processed tiethel and
the Iptables rules does not apply over it. To owere this
issue the Link Failure simulator sends an intercpss signal
to the Failure detection and Path exploration meduhich
bypass the processing of the messages snifferegchp,
actively triggering the failure detection mechanism

V. USE OF THEMULTIHOMING FUNCTIONALITIES

We envision several application scenarios for the
platform described above. For instance, a videoterin
distribution service might test, on the OneLabliedt how the
video service is impacted by a link failure and how
multihoming can protect the content delivery. Farfta study
of the parameter configuration related to the recp\can be
done in a large-scale environment.

One can also imagine that REAP can be extended
order to provide additional path characteristitsdeed, with
the growing importance of the Internet combinedhwtihe
growth of multihoming [8], more and more Internetets
needs to better select the paths taken by thekepac Today,

how the multihoming component modifies packet heade
change the IP addresses in case of a failure. méchanism,
based on libiptc, is transparent to applicatiorfsinally we
have described our link failure simulator which sinat
creating artificial failures.

although many of measurements techniques have beerA new feature in a testbed is useless if it catm@otised by

developed within the IPPM working group of the IET&nh
application that needs to select a path must imgierts own
measurement system to obtain data for performirgy
selection. This implies that several applicatiomming on the
same host or in the same campus will probably perfimost
the same kind of measurements. In the long teupliachting
those measurements is not the appropriate solutforetter
solution would be to permit the REAP component terg a
service that is run continuously. This service ldoprovide
information about:

» the topology of the visible part of the InterneSee
Donnet and Friedman [12] for further details o
topology discovery.

» the delay. See Wang et al. [13] for details orayel
measurements.

» the bandwidth. See Prasad et al. [14] for detdhilsut
the bandwidth estimation.

Researchers can use this platform to investigateetfects of
multihoming and failure recovery mechanisms on rthe
applications, including the study of parameter mpmhtions
related with the recovery. If REAP is extended towvde

information about some characteristics of the path&!

researchers can study the impact of these chasditteron
their applications.

Besides, there
information about path conditions and path chamvgasld be
useful for the upper layers.

Such upper layers include transport layers withgestion
control procedures and applications that are seadiv path
conditions. This mechanism would allow research&rs
explore how upper layers could use a more detaigdork
layer information and conduct experiments with.this

Finally, this service could be used as a startivigtgo build
more complex multihoming solutions. For exampleg th
module that manages different addresses in the assigmes
static configuration, but researchers could uses thasic
functionality to test a protocol for exchanging dymically and
in a secure way end-point addresses information.

VL.

In this paper, in the context of the OnelLab progjeet
explained how PlanetLab-like nodes can be extemdedder
to support multihoming. The multihoming functionis
chosen to be part of the solution are:

A failure detection and path exploration method.
A transparent mechanism able to change the path
used by a flow.

A mechanism to simulate link failures.

CONCLUSION

First we have described the failure detection amdh p
exploration method. It is based on a modified wersif REAP
so that it can work under an IPv4 network. We mkgtussed

is an ongoing discussion about what

the community. We therefore described, in thisgpag bunch
of application scenarios for which our multihomimgpdule is
isuitable

The multihoming component described in this papas h
been developed for an IPv4 environment. A next tethe
multihoming development in OneLab would be to inmpéat
IPv6.

ACKNOWLEDGMENT

Authors of this paper are supported by the Eunopea
founded 034819 OnelLab project. We would like tanththe

"OneLab consortium for their support and suggestitirag

improved this work..

REFERENCES
[1]
2]
3]

IETF Home Pagehttp:/www.ietf.org

OnelLab Home Pagéttp://www.one-lab.org

J. Arkko and I. Van Beijnum, “Failure Detection amhdcator Pair
Exploration Protocol for IPv6 Multihoming”, IETF &ift draft-ietf-

shim6-failure-detection-07 (work in progress), Daber 2006.

L. Peterson and T. Roscoe, “The Design PrinciplesPlanetLab”,
PlanetLab Design Note PDN-04-021, available atshtypww.planet-
lab.org/doc/pdn, January 2006.

L. Peterson, S. Muir, T. Roscoe, and Aaron KlingaméPlanetLab
Architecture: An Overview”, PlanetLab Design NotéON06-031,
available at https://www.planet-lab.org/doc/pdn,y\2806.

E. Nordmark and M. Bagnulo, “Level 3 multihomingirshprotocol”,

IETF draft-ietf-shim6-proto-08 (work in progres§jay 2007.

N. Montavont, R. Wakikawa, T. Ernst, C. Ng and Kuladinithi,

"Analysis of Multihoming in Mobile IPv6", IETF dréfetf-monami6-
mipv6-analysis-02 (work in progress), Feb. 2007.

S. Agarwal, C.-N. Chuah and R. H. Katz, “OPCA: Rstbimterdomain
Policy Routing and Traffic Control”, in Proc. OPER&H, Apr. 2003.

S. Barré and O. Bonaventure, “Improved Path Exgilmmain shim6-
based Multihoming”, in Proc. ACM SIGCOM IPv6 Worlaggh Aug.

2007.

[10] V. Jacobson, C. Leres and S. McCanne, “tcpdump”[XJkhan page,
1998. See also http://www.tcpdump.org

M. Boucher, M. Josefsson, J. Kadlecsik, J. MorHs,Welte and R.
Russel, “Netfilter: Firewall, NAT, and Packet Mamg for Linux”,

UNIX, man page, 1999. See also http://www.netfittey

B. Donnet and T. Friedman, "Internet Topology Disry: a Survey",
In IEEE Communications Survey and Tutorials. 20@Y appear.

J. Wang, M. Zhou and L. Yuxia, "Survey on the EaeEnd Internet
Delay Measurements"”, In Proc. 7th IEEE Internatiddanference on
High Speed Networks and Multimedia CommunicatiorlSSNMC),

June/Jul. 2004.

R. Prasad, C. Dovrolis, M. Murray and kc claffy, aiglwidth
Estimation: Metrics, Measurement Techniques andIsTodn IEEE

Network, 6(17), Nov./Dec. 2003, pp. 27-35.

[15] A. de la Oliva, M. Bagnulo, A. Garcia-Martinez and Soto.

“Performance Analysis of the REAchability Protocdbr IPv6

Multihoming” Accepted for publication in NEW2AN 2@, Conference
on Next Generation Teletraffic and Wired/Wirelessdvanced
Networking, September 2007.

(5]

(6]
(71

(8]

[9]

[11]

(12]

(13]

[14]

