
An Active Network Approach to Support
Multimedia Relays

Manuel Urueña1, David Larrabeiti1, Maŕıa Calderón1, Arturo Azcorra1, Jens
E. Kristensen2, Lars Kroll Kristensen2, Ernesto Exposito3, David Garduno4,

and Michel Diaz4

1 Universidad Carlos III de Madrid. 20, Av. Unidersidad, Leganés 28913, Spain
{muruenya,dlarra,maria,azcorra}@it.uc3m.es

2 Ericsson Telebit A/S. Skanderborgvej 232, DK-8260 Viby J., Denmark
{jens.kristensen,lars.k.kristensen}@lmd.ericsson.se

3 ENSICA, DMI 1 Place Emile Blouin 31056, Toulouse Cedex, France
ernesto.exposito@ensica.fr

4 LAAS CNRS. 7, Avenue du Colonel Roche, 31077 Toulouse, France
{dgarduno,diaz}@laas.fr

Abstract. This paper summarizes a pragmatic technical approach to
active networks that supports prototyping of multimedia transport pro-
tocols. One of the targets of the architecture defined is the extension
of the processing capabilities of existing routers trying to keep up the
forwarding performance of regular packets. This work presents practical
results obtained from the development of a Java execution environment
based on the design principles presented and proposes a method for the
transparent deployment of multimedia relays over a source-destination
path, tested in several experiments.

1 Introduction

Processing multimedia flows inside the network is known to be a rather con-
venient way to support multi-QoS (reflectors) or multi-coding (translators) in
multipoint sessions. Usually the approach followed is to locate such relays in
servers. This has the major drawback that the users usually have not the abil-
ity to choose the optimum place to run these services (usually this optimum
place is in the heart of the network) nor the possibility to adapt the server be-
haviour to their specific needs (new codecs, specific bitrates, partial reliability,
etc). The former problem can cause suboptimal delay and bandwidth usage, and
the latter, simply prevents the development of new ways of processing multime-
dia flows, if the server is not open to this possibility. This could be overcome by
bringing in to scene some concepts developed in the light of the active network
paradigm, namely, actually locating relays on the nodes on the source-destination
path rather than on a remote off-the-way host. The main drawback for this is
that multimedia flow processing is a CPU-intensive task and currently available
routers are not designed for such work.

This paper summarizes the experience obtained from a design process aimed
at building an active network framework useful for new multimedia services.
This framework was developed and applied to multimedia processing in the con-
text of the IST project GCAP [1] 5 6. Two outputs of this project were directly
related to active network support of multimedia flows. One of them was a soft-
ware/hardware prototype designed to demonstrate the way commercial routers
could be easily enhanced to support a few active processing capabilities. The sec-
ond one was the practical application of this system to support the deployment
of multimedia multicast protocol entities running as active applications.

This paper has the following structure: the second section reviews the cur-
rently available Java extensions for multimedia applications over IP and its rela-
tionship with active networks. The next section describes SARA, an architecture
defined to integrate only practical principles from active networks technology, in-
cluding innovative solutions to keep most router’s architecture unchanged. This
third section also includes a description of a prototype developed to demonstrate
the feasibility of this approach. The fourth section discusses a case study to ap-
ply this framework to the deployment of multimedia processing, in particular to
multimedia relays. Finally, some conclusions are drawn.

2 Java for Networked Multimedia Applications

The Java language [2] developed by Sun Microsystems has achieved a notice-
able success among application developers. Initially marketed as “the Internet
language” with its “Write Once, Run Anywhere” slogan, it was employed to
develop “applets”, small programs embedded in web pages to be downloaded
and executed by browsers. This phase lost momentum and most of current Java
applications do not reside in desktops but in servers, as Java, plus XML tech-
nologies as SOAP, turned to be the ideal platform to develop web applications
and services.

Standard Java libraries have been in continuous growth and nowadays in-
cludes many packages that ease multimedia development:

– Java Media Framework (JMF) [3] is an extension package to develop mul-
timedia applications and services using the Java language. This package is
cross-platform as it has been implemented in pure Java. However there are
some other implementations for widely deployed operating systems (Win-
dows, Solaris and Linux) with native code to enhance capture and playback
performance.

5 This work has been funded by the IST project GCAP (Global Communication Ar-
chitecture and Protocols for new QoS services over IPv6 networks) IST-1999-10
504. Further development is being supported by the Spanish MCYT under project
AURAS TIC2001-1650-C02-01.

6 Disclaimer: this paper reflects the view of the authors and not necessarily the view
of the referred projects.

– The Real-Time Specification for Java had been also released [4]. It defines
the javax.realtime package that extends the Java language so it can be ap-
propiate to develop real-time applications by adding predictable scheduling
models, memory management, synchronization and resource sharing, asyn-
chronous event handling and many others mechanisms needed by real-time
applications, as multimedia processing ones.

However, Java has been designed as a high level language, that is, to develop
applications, not to offer a system programming platform, although some efforts
as the above mentioned Real-Time Specification may change that in the next
future. Moreover, Java programs must be able to run in a variety of platforms
from different vendors, thus only the common features of all platforms can be
offered by the standard API.

These factors had led to a limited Java networking API. The standard library
version 1.4, recently released, supports IPv4, IPv6, TCP, UDP and multicast
sockets. Enough for most of networked applications but quite constrained for
low-level advanced network programming. For example, the current API provides
socket options but IP options still cannot be set. During the community process
that led towards the latest release, raw socket support was discussed but it was
later dropped off from the final specification due to security considerations.

To overcome the lack of several features needed for the development of ad-
vanced multimedia services and, in particular, the target packet processing ca-
pabilities of the active network platform here described, a new Java networking
library was needed. That is the motivation of a raw socket library, which is
described later in this article.

Due to its multiplatform design, Java has always been heavily associated with
mobile code, such as agents and active applications. That feature, absolutely vital
in such an heterogeneous environment as an active network, is able to overtake
other Java drawbacks such as its limited networking API and lower performance.
This, together with Java’s enhanced multimedia capabilities, made it the choice
to prototype the system described in the next section.

3 Simple Active Router Assistant Architecture

As already introduced, our aim is the definition of a pragmatic framework to
implement basic active networking functions, valid both for IPv4 and IPv6, and
realistic in an industrial context. This section defines this framework which we
will refer to in the remainder of the paper as the ”router-assistant” approach.
This way of building active networks is based on a set of techniques selected
according to its industrial applicability.

3.1 Motivations

The key features of the defined framework and the rationale behind them are:

– Current Routers have been designed to forward packets, no to
process them up. Most high speed commercial routers have a distributed
architecture controled and supported by a CPU with a capacity far below
todays hosts’ capacity; in principle, they needn’t have it because a CPUs
main function is system management and routing, and most of a router’s
performance is due to its interface processors specialised in packet forward-
ing. Therefore, a router CPU cannot spare so much horsepower itself to
CPU-intensive processes as e.g. multimedia transcoding is. Thus an Execu-
tion Environment with Active Applications cannot be run without disrupting
forwarding performance for both, active packets and ’regular’ ones.

– Can you add capacity without buying a new router? Active Applica-
tions should, by definition itself, be able to make a broad set of operations,
from traffic probing to multimedia flow transcoding. Therefore resource re-
quirements of active nodes should be able to be changed in a very dynamic
fashion. Scalability must be considered as a primary issue in order to evaluate
active network proposals.

– Internet is not active. Most of current Active Networks platforms rely on
overlay networks, that is, building an parallel active Internet [5] with its own
routing protocols. Clearly this effort requires a lot of work to be added to the
development of active network entities, a quite complex task by itself. The
experience with current middleware devices (NAT, firewall,...) shows that
most intelligent services should be transparent to the end user. Therefore,
explicit addressing, as overlayed active networking is, should be allowed but
not mandatory.

– Active Capsules poses a great security risk. Capsules, that is, active
packets carrying the code to process them, allow end users to inject its
own protocols. This mechanism provides the greatest level of flexibility in
protocol deployment ever seen for the price of security checking. Mobile code
must be checked for security and safety reasons before being executed. Many
mechanisms have been proposed, from signed code [6] to safety checking [7],
each one has advantages and drawbacks but none has been able to fulfill all
requirements. Capsules cannot be justified as they are inherently harmful,
as they could compromise the security of the whole network. This problem
limits in practice the degree of dynamism of active code.

– Active Applications must be dynamically deployed... but what is
dynamic enough? Current network services and protocols are ’static’; the
deployment of a new protocol is really a painful task (IPv6 is a perfect ex-
ample). Preventing this problem is one major objective of the active network
community and the reason for the theoretical capsules approach. However,
dynamic code deployment requirements can be lowered considering that ser-
vice and protocol deployment are not tasks to be done on a daily basis.

3.2 Design principles

Considering these facts and introducing practical constraints, an architecture
named Simple Active Router Assistant Architecture (SARA) has been defined

with the purpose of giving a pragmatic approach to the most important services
provided by active networks.

Fig. 1. Simple Active Router Assistant Architecture.

A summary of architecture characteristics follows:

– Active node = Router + Assistant. Legacy routers can be upgraded
to active nodes by delegating active processing to an attached host (or host
cluster) called Assistant via a high speed interface. The assistant host runs
the NodeOS, Execution Environment and Active Applications, thus avoiding
such process to consume router’s resources. This architecture allows adminis-
trators to increase active processing capacity by adding more assistants, thus
adapting nodes to the resource requirements of active applications deployed
on them.

– Router diverts packets to Assistant. In order to adapt easily routers
to this architecture, its requirements are reduced to simply forward certain
packets to its assistant, in particular those defined as active. Hence, router’s
performance cost is limited to just to identifying such packets. To accomplish
this task without a severe performance penalty, the Router Alert IP option
[8] [9] should be employed. This option forces routers to get the packet off
the fast-path and deliver it to the appropriate software entity to handle it.

– Transparent active processing. As it can be inferred from the previous
paragraphs, packets to be processed are not explicitly addressed to active
nodes but captured as they are forwarded to their final destination. An
overlay network of active nodes is not necessary as they are truly integrated
with real network nodes. Adding an active node to the network requires
no routing protocols other than the one running on the network itself. Of
course, active nodes may be made aware of other active nodes in the network
and build an overlay if necessary, to override the routing tables. Nevertheless
transparency is a desirable property for the sake of end-system simplicity.

– Assistant processes diverted packets. Packets diverted by the router
are dispatched by the assistant’s Execution Environment and put on the
input queue of the corresponding active application. An active application
can alter anything in the packet from network to application level and may
reinject the packet to the router so that it can be routed as any other packet.

– Dynamic Active Application deployment. Any code loading/execution
approach can be applied under SARA architecture. However, the recom-
mended method is that active packets carry references to active code that
processes them (and security credentials if necessary). If code has not been
yet loaded it can be retrieved on demand from code servers by existing meth-
ods (e.g. ftp), and then loaded dynamically onto the Execution Environment
as a new active application.

– Monitoring the router state. One of the drawback of this approach is
the need for greater interaction complexity between router and assistant as
they reside in separate hosts. This communication is necessary to provide
active applications with the sense of actually being run on the router. In
order to make it possible to adapt the active behavior to the real-time net-
work status, active applications need to access the router’s state. As one of
SARA objectives is to cooperate with legacy routers, the Simple Network
Management Protocol (SNMP) [10] was selected, as it is the standard man-
agement protocol, supported by most of network devices. However, a more
efficient management protocol could be used instead, to avoid some problems
associated to SNMP. In order to avoid the router performance hit when the
router’s state is constantly polled. A small cache, managed by the Execu-
tion Environment, storing recent state variables may improve both router
performance and applications response time.

– Router-Assistant Protocol. Two conformance levels have been defined
for routers supporting SARA. Level 1, for routers that only divert active
packets and accept SNMP queries, and level 2, for routers that also support
Router-Assistant Protocol (RAP) operations. This protocol allows assistants
to configure somehow its attached router. Some examples of RAP operations
may include setting tunnel endpoints or configuring firewall rules. One of
the most important operations requested by assistants to level 2 conformant
routers is to divert non-active flows as it is done with active ones. This mech-
anism enables active applications to capture and process non-active packets;
that is, to enhance communications without modifying current applications
and services. At this scenario active packets are relegated to the control
plane.

– Trusted code. From the authors’ viewpoint, end users freely injecting mo-
bile code in the network is not a realistic scenario. Instead of evaluating
mobile code safety techniques, a more pragmatic approach has been taken.
Each network administrator must be able to control exactly what active ap-
plications are allowed to execute into his domain and never load untrusted
ones. In this scenario trusted active applications may be provided by the
network administrator itself, by customers or by any trustable third party.
Active Applications stored in code repositories of a certain administrative
domain are allowed to execute in that domain as they have trusted code.
Code safety can be checked in advance by multiple techniques as auditing
source code or just trusting the application supplier. In fact, this is the com-
mon procedure of today’s mobile code, as it is the casew of software packages

downloaded from internet: applications from known vendors are trusted and
installed directly.

– Latency. SARA architecture is not well suited to support applications that
require a tight interaction with low level router resources (e.g. selective drop-
ping of packets buffered at the router queues). Although latency might be
reduced by increasing the bandwidth of the link between the router and the
assistant, the fact is, that most diverted packets need to be routed twice.
Depending on the platform chosen, this may be an important issue for some
real-time multimedia applications. However, it should be noted that a sim-
ilar delay is found when we choose the alternative server-based approach,
as packets are forwarded to the server and sent back to the network once
processed.

– Active processing isolation. As the Execution Environment and the Ac-
tive Applications are executed on a separate host, the router is quite shielded
from many kinds of active processing errors. In the worst case scenario a
buggy active application could crash the assistant host, and diverted pack-
ets may get lost; however any other flow passing through the router will
remain unaffected. To reduce the packet loss due to assistant’s crash, the
RAP protocol defines a heartbeat mechanism to detect when an assistant
has become unreachable.

3.3 Implementation

To demonstrate the feasibility of the proposed architecture, a SARA prototype
has been developed [11]. Two testing platforms are available today. One fully
based on linux (playing both roles: router and assistant as a development/testing
scenario) and a hybrid platform where the router used is an Ericsson-Telebit
AXI462 running a modified kernel adapted to interwork with an active assistant.
As already mentioned, a main goal of this latter platform, currently under con-
formance level 1, is to demonstrate that it is possible to build an active network
platform based on commercial routers without a significant drop of performance
on regular packets.

Active applications and the developed execution environment are based on
Java. However, given the limitiations of the current JVM interface reviewed in
section 2, a small native extension was needed. In particular, java.net package
does not contain any object that allows Java applications to open raw sock-
ets or set IP options. Both characteristics are needed by SARA prototype, the
first one to capture active-packets while the second one is needed to add the
router alert option to active packets. To fulfill these requirements, a networking
library for Java providing support for IPv4, IPv6, UDP and TCP sockets with
advanced options was developed. This library defines a number of classes, resem-
bling standard API ones, that actually wraps system calls to the standard BSD
C socket API, using the Java Native Interface (JNI). Multiplatform capability
is somewhat kept as SARA native code is small and easily portable.

Although the current implementation is still at an early development stage
and there is much room for performance improvements, the basic throughput

measures look promising. As it can be seen in figure 2, flows up to 10 Mbps of
mid-sized active packets can be processed by the current SARA prototype.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

R
x

R
at

e
(M

bp
s)

Tx Rate (Mbps)

Teorical
 AA forwarding

 no AA
 no EE

Fig. 2. Effective throughput for EE and simple AA with 1024-byte packets.

4 Multimedia relay deployment

Several authors have highlighted the benefits obtained from applying the active
network paradigm to multimedia flows. Many research initiatives propose the
deployment of active relays inside the network to provide solutions as transcoding
[12] [13] or multimedia multicast [14] [15]. However the problem related to where
these proxies must be deployed has been scarcely addressed.

4.1 Relay location

First of all, the “right places” for relay deployment need to be studied. As a
rule of thumb, it can be said that network nodes with some sort of discontinuity
are ideal points to set up a multimedia relay or, in general, an active entity. Its
behavior depends upon what kind of gap is found. A list with some examples:

– Border routers or ISP gateways. This is the most obvious place, and many
existing technologies as NAT or firewalls need to be deployed into such nodes.
An active node deployed at an edge device could build automatic tunnels to
forward multicast flows whenever its ISP does not provide multicast service.

– Bandwidth discontinuity, as a router with different speed interfaces, such as
a pool of modems, an ATM interface with several channels configured with
different service categories and rates, etc. This can be a good candidate to
deploy for example a multimedia codec translator.

– Lossy links, as wireless access segments, and high delay links, as satellite
segments. Buffering packets until the corresponding acknowledgement is re-
ceived prevents longer delayed end-to-end retransmissions, in fully and par-
tially reliable transport services.

– Nodes involved in a muticast delivery tree branching to several destinations,
specially in the case of multi-QoS support. Network processing in these nodes
could resolve many problems of reliable multicast protocols as ACK/NACK
implosion.

– Congested nodes. Selective packet discarding could dynamically adapt multi-
media flows traversing congested links to achieve a better quality, for example
by dropping video frames and priorizating sound packets.

Many of these discontinuities are rather static, therefore the requirement to
deploy a proxy dynamically is lowered as active applications can be continuously
running at such places. However, some others services, as automatic tunnels,
multicast nodes or congestion spots have a very variable nature, and hence relay
deployment must be more flexible, and the framework that supports such proxies
should be able to detect the best place to run these applications. Active networks
can provide such deployment framework, as well as the mechanisms to compute
optimal relay placement.

4.2 Relay deployment methods

By definition, all existing active network platforms provide dynamic code de-
ployment, however not every platform may be suitable to detect the optimum
active location, mainly due to the need of defining an overlay network. Overlay
networks hide underneath path characteristics as all links between two active
nodes are aggregated as a virtual circuit. Another problem is the deployment of
short-lived proxies, as the overlay network needs to be reconfigured to add new
nodes.

SARA architecture allows the transparent deployment of active entities while
avoiding these problems. As SARA does not require defining an overlay network,
overlay routing is not an issue, and, thanks to SNMP, an assistant could have
an influence area around its attached router. By setting SNMP traps, active
applications can react more quickly to network changes. SARA ability to inject
any kind of IP packet could be used to monitor flow paths by sending pings to
check response times, packet loss or any other parameter interesting for active
applications. For instance, tools like A-clink [16] can be very useful to optimize
the placement of multimedia proxies. This active application is a path charac-
terization application based on the freely available clink tool, enhanced with
active support to improve the efficiency and accuracy of estimations yielded by
existing end-to-end performance estimation tools such as pathchar, pchar, clink
and nettimer.

5 A case study

While the previous section refers to theoretical aspects of proxy deployment using
active networks, the following describes an experiment carried out in the context
of GCAP, with a real active application running over a SARA implementation.
Firstly, we describe the active application involved: a proxy running the FPTP
protocol, and then the setup is described.

5.1 Fully Programmable Transport Protocol (FPTP)

FPTP is transport protocol sub-layer located between the application and the
traditional transport protocols. Multimedia applications are able to access to
the FPTP API directly (FPTP sockets) or using an XML-based, QoS config-
uration. In both cases applications have to specify the QoS transport required
in terms of order, reliability, bandwidth, time and synchronization constraints.
FPTP protocol is able to instantiate standard transport protocols or to deploy
new protocol mechanisms and services, following the QoS transport constraints
specified by the application.

FPTP protocol consists of 2 kinds of transport connections:

– The multimedia connection control allows communicating both sides of the
multimedia connection. This connection is a bidirectional connection and
based on XML messages exchanged (SOAP).

– The monomedia connections allow transferring the media data following the
QoS constraints required. Each monomedia connection is a unidirectional
connection.

A FPTP monomedia session is established between a sender and a receiver en-
tity. In both sides the transport protocol mechanisms can be instantiated and/or
programmed according the QoS constraints required. If the QoS constraints can
be assured by the standard transport protocols, the FPTP monomedia connec-
tion will be instantiated using these available protocols. If the requirements are
applications specific, the transport protocol services can be instantiated using
the available FPTP transport protocol services or programming and deploying
new mechanisms and services.

5.2 Deploying FPTP proxies with SARA.

An experiment was held to stream video between two sites connected across
the Internet. The FPTP protocol was employed to adapt video quality to QoS
offered by such a connection. As the video server and the client were executing
traditional RTP multimedia applications, intermediate proxies were needed to
issue the QoS enhancements. The SARA prototype did provide active network
support for such proxy deployment as well as path QoS characterization between
sites.

Fig. 3. FPTP-RTP proxy deployment.

The video server run at Ensica (France) while the client application was
running in Universidad Carlos III de Madrid (Spain). Proxies were deployed over
two different platforms, a 6Wind edge device located at France and an active
node formed by a Ericsson-Telebit AXI462 router and a linux box running SARA
Execution Environment where the FPTP-RTP proxy was automatically loaded
on demand by downloading code from a local server via HTTP.

As seen in figure 3, three sessions were established, an traditional RTP session
between server and the French proxy, a FPTP session between both proxies and
another RTP session as the Spanish proxy received FPTP packets and sent
the video flow to the client using RTP. An asymmetrical deployment method
was used (transparent and explicit deployment respectively) and the experiment
succeed in demonstrating cross-platform interoperation of FPTP proxies and
dynamic code deployment thanks to SARA platform.

6 Conclusions

This paper has reviewed the preeminent position of Java as a multiplatform lan-
guage to develop active network applications, along with the multimedia frame-
work it provides. Both features converts Java platform in the ideal tool to develop
active applications to handle multimedia flows, in spite of some drawbacks as
performance and lack of low level communication facilities. That is why Java
was the chosen language to implement the Simple Active Router Assistant Ar-
chitecture (SARA).

SARA is an architecture that allows upgrading legacy high-speed routers to
work as active nodes by delegating active processing to an external entity called
assistant. This design is based on a set of existing network technologies, that were
selected because they could be applied in a production environment oriented to
multimedia flow processing. The experience has shown that, such a pragmatic

approach is a suitable way to support multimedia relays, and also to compute
accurately the optimum places to deploy them, a problem partially addressed
nowadays. Transparent processing of active packets is the most important feature
claimed by this system. It avoids the need of defining an overlay network as many
other active network platforms have to do. To accomplish that task, a new library
has been designed to overtake certain limitations of Java networking API.

The feasibility of SARA architecture has been demonstrated by running sev-
eral multimedia experiments employing active FPTP-RTP proxies. These enti-
ties ran over a prototype of SARA assistant working together with a commercial
router. The router was an Ericsson-Telebit AXI462, slightly modified to divert
active packets containing the router alert IP option, both for IPv4 and IPv6.

References

1. GCAP IST project home page: http://www.laas.fr/GCAP
2. J. Gosling, B. Joy, G. Steele: The Java Language Specification. Addison-Wesley

1996.
3. Java Media Framework home page: http://java.sun.com/products/java-

media/jmf/index.html
4. G. Bollella et al.: The Real-Time Specification for Java. Addison-Wesley 2000.
5. Abone home page: http://www.isi.edu/abone/
6. L. Gong, R. Schemers: Signing, sealing, and guarding Java objects. In Mobile Agents

and Security, volume 1419 of Lecture Notes in Computer Science. Springer-Verlag,
1998.

7. P. Fong, R. Cameron: Proof linking: An architecture for modular verification of
dynamically-linked mobile code. Proc. of the 6th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE-6), pages 222-230,
Orlando, Florida. November 1998.

8. D. Katz: IETF RFC 2113: IP Router Alert Option. February 1997.
9. C. Partridge, A. Jackson: IETF RFC 2711: IPv6 Router Alert Option. October

1999.
10. J. Case, M. Fedor, M. Schoffstall, J. Davin: IETF RFC 1157: A Simple Network

Management Protocol (SNMP). May 1990.
11. SARA home page: http://enjambre.it.uc3m.es/ sara.
12. E. Amir, S. McCanne, R. Katz: An Active Service Framework and its Application

to Real-time Multimedia Transcoding. Proc. of ACM SIGCOMM ’98. 1998.
13. I. Kouvelas, V. Hardman, J. Crowcroft: Network Adaptive Continuous-Media Ap-

plication Through Self Organised Transcoding. 1998.
14. B. Banchs, W. Effelsberg, C. Tschudin, V. Turau: Multicasting Multimedia

Streams with Active Networks. Proc. of the 23rd. Annual Conference on Local
Computer Networks. 1998.

15. S. Kang, H. Yong Youn, Y. Lee, D. Lee, M. Kim: The Active Traffic Control
Mechanism for Layered Multimedia Multicast in Active Network. Proc. of the 8th
International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems. 2000.

16. M. Sedano, B. Alarcos, M. Calderón, D. Larrabeiti: Caracterización de los en-
laces de Internet utilizando tecnoloǵıa de Redes Activas. III Jornadas de Ingeneŕıa
Telemática. Barcelona. September 2001.

