

4G Access Network Architectures

James Kempf Research Fellow *kempf@docomolabs-usa.com* DoCoMo USA Labs

Outline

- Current trends in access networks.
 - Multihop architecture for 4G?
 - The IP hourglass and access networks.
 - Access points as IP architectural elements.
- Summary.

Do Co M

(Ir

Current Trends in Access Networks

(JD)

M/S/

Problems with 3G

- UMTS deployments stalling.
 - High license costs.
 - High infrastructure costs.
- cdma2000 deployments proceeding, business prospects uncertain.
 - Lower infrastructure costs.
 - Will business data drive the need for higher bandwidth?
 - And hopefully some revenue...
- WLAN potential high but there are uncertainties.
 - Limited coverage area.
 - Power problems.
 - Not suitable for high speed mobility.
 - Will the hotspot business model succeed? 11/8/2002

0

What's Needed for 4G?

- Cheaper access point deployment cost.
 - 90% of access network deployment cost is in the radio access points.
 - 10% is in the network.
- Cheaper network costs.
 - Combined voice/data for VoIP to the mobile terminal.
 - Removes need for dual circuit-switched/packet switched backbone.
 - Reduction in network operating costs.
- IP friendly radio protocol.
 - 3G latency too high (200-300 ms) for VoIP.
 - Is high per mobile terminal bandwidth really necessary?

High Bandwidth 4G

- ITU-R targeting standard for 100 mbps downlink/50 mbps uplink aggregate bandwidth by 2010/2012.
 - Radically increased cell capacity.
 - Support millions of small, sensor devices.
- Traditional cellular architecture will require 300-500 MHz.
 - Bandwidth allocation problems.
 - Impossible to allocate below 5 GHz.
 - Difficult around 5 GHz.
 - Probably around 10 GHz.
 - Line of sight effects become important.
 - Requires many more access points.
 - Wired network access difficult.
 - Corresponding cost increase with traditional cellular architecture.
 - Is a multihop architecture a viable alternative?

11/8/2002

Do Co Mo

(JO)

0000000

Multihop Architecture

90

17/V

30)|//|(0)

 $\overline{\bigcirc}$

Example Multihop Architecture Internet ~~~ \mathbf{X} h. ZE 11/1 11/1

11/8/2002

Copyright ©2002 DoCoMo USA Labs. All Rights Reserved

Multihop Architecture

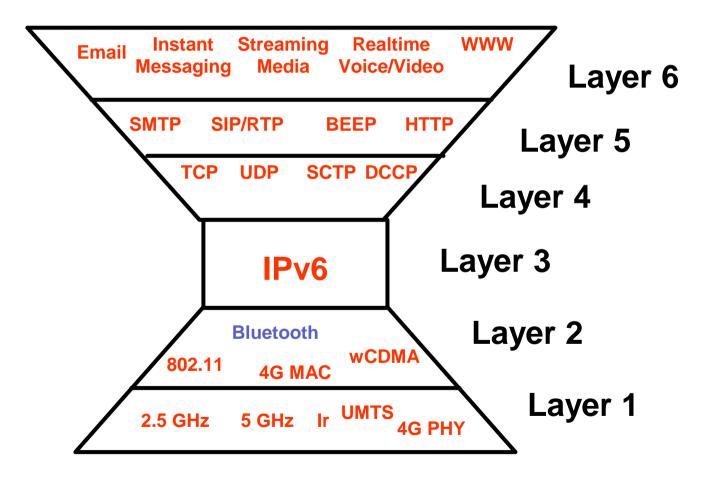
- Property owners can install their own access points.
 - Spreads infrastructure cost.
- Reduced network access operational cost.
 - Backbone access through wireless.
 - Wired access through DSL at aggregation points.
- Ad hoc-like characteristics:
 - Access points configure into access network.
 - Some access points may be moving (bus, train).
- COMO 1 Multihop also could reduce costs in heterogeneous 3G networks.
 - 802.11 to GPRS for example.
 - Can multihop deliver low latency, real time IP?

Do Co N

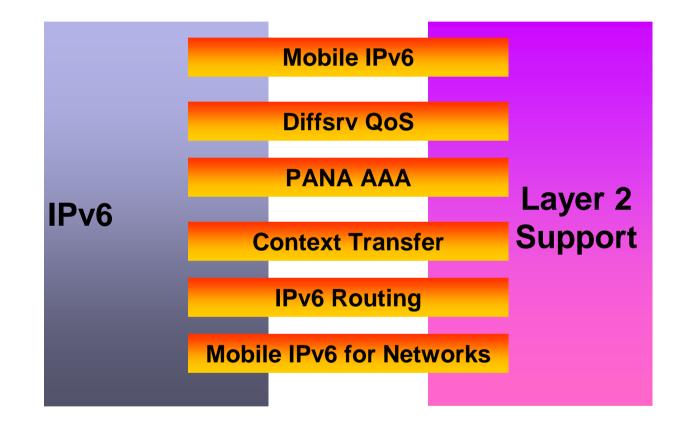
(Ir

AD.

VI/S


 $\overline{0}$

The IP Hourglass


IP as the Unifying Abstraction

11/8/2002

The IP Waist and Wireless Layer 2

11/8/2002

D D

0(C(0)|V||

Example 1: Handover Triggers

- Mobile IP movement detection depends only on Layer 3 information slow!
 - Router Advertisement Layer 3 beacon
 - ICMP Redirect
 - ICMP Host Not Found
- Idea: synchronize Mobile IP handover with Layer 2 link change.
- Handover triggers:
 - Prehandover notification
 - Link down
 - Link up
- Problem: existing wireless link protocols don't entirely fit the model.

(0) T

R

0C0M0

Example 2: AAA to Host

- AAA is more important in wireless because medium is broadcast.
- Existing wireless protocols use Layer 2 AAA.
 - Complex interaction with IP AAA.
- Example 802.11
 - Association.Request/Reply
 - 802.1x
 - Required on each access point handover!
- Idea: Split AAA into two:
 - Initial Layer 2 phase for link access authorization only.
 - Subsequent Layer 3 phase with IP for off-link access.
 - PANA, Diameter for Layer 3 common for multiple Layer 2 protocols.
- Problem: existing wireless link protocols don't fit this model.
 - 802.1x

Barriers

- IP over Wired doesn't need any special Layer 2 support. – Except for path MTU discovery.
- Changing AAA requires inter-standardization group cooperation.
- IETF participants concerned exclusively with wired networks see Layer 2 triggers as a network management issue.
 - Proposed use of SNMP.
 - Too slow and complex for real time handover.
- PANA, Diameter only address part of the problem.
 - The other part is simplifying 802.11 authentication.

Do Co M

(Y R

(90.

17/J

 $\langle 0 \rangle$

Access Points as IP Devices

 $\left(\overline{0} \right)$

Recognizing Access Points as IP Layer Devices

- In 4G networks, some multihop devices will be access points only, others will be routers.
- In heterogeneous 3G networks, cheap, simple access points can provide a more cost effective deployment scenario.
- IETF view: access points are Layer 2 devices, COM therefore, they can be ignored by IETF.
 - But access points have important IP layer functions.
 - Not visible to the host.

17/22

IP Layer Functions of Access Points

- Tunnel end points for fast IP handover.
 - Provide routers with radio link information:
 - Triggers for handover if router handles the tunnel.
 - Radio quality information for QoS if router handles.
- MOS Network Access Server (NAS) for AAA.
 - Distributed radio resource management.

Summary

- Research in 4G networks should seek to address the problems that cropped up in 3G networks.
 - Don't do high bandwidth, etc. just for the sake of doing new technology.
- 4G wireless protocols may require multihop due to high frequency.
 - Multihop can reduces costs in heterogeneous 3G networks too.
- Coordinating Layer 2 and IP necessary for fast, efficient wireless IP service.
- Barriers to standardization in wired network culture, inter-standardization co-ordination.
- Multihop, cheap access points may provide a more cost effective deployment than traditional cellular architectures.

11/8/2002

Do Co Mo

R

C) R

O(C,O)