Design and Validation of an Open Source Cloud
Native Mobile Network

Nikolaos Apostolakis, Marco Gramaglia, and Pablo Serrano

Abstract—Network technologies are embracing the cloud-native
paradigm, following the current best practices in cloud com-
puting. Cloud-native technologies might be applied to different
types of network functions in a mobile network, but they are
particularly relevant nowadays for core network functions, as
the recent standard introduces the Service-Based Architecture
that matches modern cloud-native technologies such as Docker
or Kubernetes. In parallel, a number of open source software
initiatives already provide researchers and practitioners with
usable software that implements the key functionality of a mobile
network (both for LTE and 5G). These software solutions, how-
ever, are monolithic and not integrated into state-of-the-art cloud-
native frameworks. In this paper, we fill this gap by describing the
implementation of a cloud-native mobile network, which supports
channel emulation and provides an affordable and scalable
way of testing orchestration algorithms with standardized VIM
interfaces. Our experimental evaluation shows the applicability
of our solution, which is released as open-source and illustrates
its flexibility.

Index Terms—Cloud-native system, Mobile Network, Open-
Source.

I. INTRODUCTION

OLLOWING the recent needs for higher levels of network

flexibility, programmability, and automation, the Network
Function Virtualization (NFV) [1]] technology can be consid-
ered as one of the most important drivers for the 5G networks
(and beyond). When compared to (legacy) 4G/LTE services,
5G network services exhibit very diverse characteristics, e.g.,
they may operate in very short timescales, should be restricted
to certain geographic locations, may require more integrated
means of interacting with the network, and eventually may
require higher degrees of flexibility. Because of this, propri-
etary hardware and telecommunication protocols, especially
the ones related to network management, have often been
considered a severe impediment to the development of novel
technologies.

The characteristics of NFV cope well with the increasingly
demanding requirements of 5G Networks and beyond. Besides
the advantages in terms of operational costs, due to the
commoditization of the network through its softwarization,
the extreme flexibility of this paradigm for (re-)configuration,
scaling, and continuous deployment and integration matches
the very diverse 5G network stakeholder ecosystem. With

N. Apostolakis is with the IMDEA Networks Institute, 28918 Leganés,
Spain, and also with the Telematic Engineering Department, Uni-
versity Carlos III of Madrid, 28911 Leganés, Spain (e-mail: niko-
laos.apostolakis@imdea.org).

M. Gramaglia and P. Serrano are with the Telematic Engineering De-
partment, University Carlos III of Madrid, 28911 Leganés, Spain (e-mail:
{mgramagl,pablo} @it.uc3m.es).

this new approach, it is possible to deploy services on com-
modity off-the-shelf servers (COTS), traditionally used for
cloud computing. This has enabled communication providers
to multiplex services over the same physical infrastructure,
share resources between the different functions, deploy on-
demand per user load and, consequently, reduce operational
expenses (OPEX).

However, even though virtualization technologies based on
virtual machines provide full hardware independence, they are
based on hypervisors, an intermediate virtualization layer that
is considered difficult to operate and manage, and that may
include unacceptable loads when dealing with fast timescale
operations. Also, the deployment, configuration, and man-
agement of novel networking services are prone to a series
of drawbacks, resulting from the tight dependency between
software and hardware. This constitutes an obstacle to the
effective deployment of the NFV technology and has moti-
vated significant efforts to migrate from these “static” physical
network functions (PNFs) to “dynamic” network functions
(VNFs). As a result, the operators have been reluctant to
discard their investments in PNFs for a solution that struggles
to yield the desired levels of resiliency [2].

To overcome the above issue, cloud network functions
(CNF) have gained a lot of attention, as they are already
widely used in cloud computing environments, thus tested
for their robustness. CNFs rely on a very thin virtualization
layer, and have a minimal footprint on the infrastructure,
allowing to implement modern software architectures such as
microservices [3l], and providing a very high degree of con-
figurability. In fact, CNF is attracting a lot of interest: on the
one hand, standardization bodies such as ETSI have adopted
orchestration frameworks tailored to this paradigm [4], while
on the other hand, the open source Cloud Native Computing
Foundation (CNCF) [3] has already defined a roadmap com-
posed by technologies, tools, and patterns for Contenarization,
CI/CD, Observability, Messaging, Distributed Databases and,
most importantly, Networking. However, as CNFs are just
arriving in the telecommunications domain, they are lacking
the required maturity levels prior to their adoption in produc-
tion environments (beyond the proprietary solutions). Since
the use of CNFs in mobile networking requires overcoming
many challenges [6], a democratization of the corresponding
software components (e.g. released as open source) shall foster
the development and testing of the required solutions.

Motivated by the above, in this paper we present an end-
to-end mobile network with channel emulation capabilities,
monitored and managed by a CNF orchestrator, which is
released as open-source. Our contributions are:

« We provide researchers and practitioners with an open-
source scalable solution to emulate a complete SG mobile
network, building on well-known cloud-native tools.

« We develop the required modules and tools to support the
network operation, namely: (i) a module to support the
channel emulation, which is particularly useful for those
scenarios where specialized hardware is not available, or
in repeatable experiments with varying channel conditions
are to be performed; (if) data shippers to monitor the dif-
ferent network functions, supporting the implementation
of autonomous network management decisions; and (ii7) a
collection of configuration blueprints (i.e., Helm charts)
to automatize the orchestration processes.

o We develop two use cases to illustrate the features of
our solution and to validate the behavior of the tools and
modules developed.

As mentioned, the interested practitioners can experi-
ment with our proposed cloud-native mobile network, as
it is available in open source (including the code re-
quired to deploy the use cases). For consistency reasons
we split the codebase into core and orchestration (available
at https://github.com/kaposnick/k8s-openSgs), and the access
(available at https://github.com/kaposnick/srslte).

The rest of the paper is structured as follows: Section
presents the design of the solution, introducing the differ-
ent building blocks required to build a cloud-native mobile
network; Section [IT] describes the procedures to deploy the
network; Section [[V]introduces the experiments we performed
to benchmark the solution and assess its performance; Sec-
tion |V| discusses related research work and initiatives; finally,
Section [VI] concludes the paper.

II. DESIGN OF A CLOUD-NATIVE ECOSYSTEM

The softwarization of mobile network functions allowed
network operators to reduce their operational expenditure
by using open software and also enabled researchers and
practitioners to experiment with new network functionalities.
This software-driven transition is being accelerated with the
introduction of cloud-native architectures [7], which greatly
increases the flexibility and scalability of the software. In what
follows, we introduce the different components of our cloud-
native mobile network design, several of them chosen among
the set of open-source solutions that have become available
during the last few years (we review them in Section [V).

A. Overview

The different components of our design are illustrated in
Figure E} For orchestration, we chose Kubernetes, an open-
source system for deploying and managing containerized ap-
plications. For the core network implementation, we selected
Open5Gs, motivated by its adaptability to the cloud native
paradigm. For the UE and the Access network, we rely on
srsRAN, an open-source software that provides a full mobile
network stack implementation for those elements. Further-
more, stsSRAN community is very active and its contributors
keep intensively improving the product to keep up with
the latest 3GPP standards. To simplify the deployment and

Orchestration

kubernetes
J
UE RAN Core
srsRAN Channel srsRAN open5GS
Emulation
O - (s N
/4 %GNURadio /4 OpensGS
SRSRAN SRSRAN
_ J
Q Prometheus
J
Monitoring

Fig. 1: The solutions that build the end-to-end architecture
presented in this paper.

support repeatability, we developed a simple channel emulator,
which enables deploying a fully programmable end-to-end
network without requiring expensive hardware. Finally, we
chose Prometheus, one of the monitoring solutions promoted
by the CNCF [5]], as the monitoring framework to collect the
status of the whole system. In what follows, we detail these
components.

B. Management and Orchestration

Kubernetes (also known as k8s) is a container orchestration
platform, widely adopted in the cloud computing domain
for more than five years. A typical cloud native application
consists of a set of container images (e.g. Docker images) that
are deployed and managed by Kubernetes, using configuration
files that describe the functionality and the services they pro-
vide. Its scaling and redundancy capabilities have already been
demonstrated in production environments, and it is envisioned
that telco operators will rely on Kubernetes for next-generation
networks, motivated by the need to make more efficient use
of the heterogeneous virtualized infrastructure (which spans
over central and edge data centers). To manage the additional
management complexity, a huge ecosystem of open source
projects that extend the possible operational tasks has been
created under the umbrella of the Cloud Native Computing
Foundation (CNCEF [3])).

C. Core Network functions

Open5Gs is a very popular open-source implementation
of a mobile network core. Written in C, it stands as a
reference among researchers and mobile telecommunications
practitioners for experimentation and future enhancements.
Currently supporting up to 3GPP 5G Release 16, it contains
the most important components of the 5G Core (5GC) and
4G Evolved Packet Core (EPC) with Control-User Plane
Separation (CUPS) [8], meaning it can operate on both 5G
Non-Standalone (NSA) and Standalone (SA) modes, as it
can serve both 4G E-UTRAN NodeB (eNBs) and 5G next
Generation NodeB (gNBs). Its straightforward build procedure

https://github.com/kaposnick/k8s-open5gs
https://github.com/kaposnick/srslte

Prometheus Pods
ﬁﬁ@ --------------- > ARLLEI RN

srsENB Containers

_, I
/

Worker VM /
Master Worker VM /
V|rtua| Infrastructure / /
L_7/
ii -, as
Core Host RAN ITIost

Physical Infrastructure

Fig. 2: Core and RAN Infrastructure setup.

makes its deployment in small-scale private networks very
easy, while its modular architecture could be considered as
a natural candidate for running it into microservices-based
cloud-native environments powered by Kubernetes, as we are
going to focus in this paper. As illustrated in Fig. 2} Open5Gs
pods will be deployed over the virtual infrastructure, while
srsENB is directly running on top of Docker containers.

D. RAN functions

srsSRAN [9], formerly srsLTE, is another open-source soft-
ware framework, developed by Software Radio Systems, that
provides the functionality from the PHY up to RRC layer for
eNB/gNBs, while also supporting 4G/5G UEs. It is written in
C/C++, and its configuration parameters cover a wide range of
base station and UE possible configurations. Regarding the RF
interface, its contributors have developed drivers for various
commercial hardware RF-frontends like URSP, Soapy SDR
and BladeRF.

Additionally, srsRAN provides a software RF-frontend
based on ZeroMQ, an open source message queueing library
written in C. When using this driver, the transmitted 1I/Q base-
band symbols between UE and base station are transferred over
various transport methods, like inter-process communication
(IPC) or TCP sockets. Choosing this driver avoids the need
for high expertise in RF channel configuration and facilitates
the introduction of researchers who want to simulate a radio
access network environment, but whose RF channel is not their
main area of interest or would be reluctant to invest in actual
hardware transceivers. We next discuss how we take advantage
of ZeroMQ to implement a channel emulation model.

E. Channel emulation: the GRC broker

As mentioned, the use of ZeroMQ enables running the net-
work in a fully softwarized way. Furthermore, it also enables
the emulation of complex topologies via programming (e.g.,
arbitrary complex topologies can be created by dynamically
connecting endpoints, as they do in large-scale emulators
using hardware in the loop [[10]). The main challenge when

emulating complex mobility scenarios relies on the handling
of I/Q symbols, e.g., sending low power symbols from the
eNB to trigger a Handover Request from the UE.

Following the srsSRAN Documentation, we utilized the GNU
Radio Companion (GRC), which is another open source
project mainly used for software-defined radio (SDR), and,
among others, contains modules for the ZeroMQ library. We
coded in Python a GRC Broker, located between the UE
and the cells of the eNB(s) implementing the RF interface,
as illustrated in Fig. 3] This module intercepts the transmitted
I/Q symbols and performs operations on them to emulate the
channel condition for the two traffic directions:

o In the downlink direction, in order to simulate the dis-
tance between the UE and the cells, we made use of
multiplier blocks followed by an adder. Multiplier blocks
multiply the time-domain cells’ transmitted samples with
a constant gain value in the range [0, 1], adjusting UE’s
perception of the cells’ signal strength. The adder block
simply performs the superposition of the modified sam-
ples, as would be the case in the real environment.

« In the uplink direction, we used a throttle block that re-
transmits the I/Q symbols towards the cells of the eNB(s).

We leverage this setup to create different evaluation sce-
narios (discussed in Section [[V) and leave as future work the
implementation of additional features into the GRC Broker.

F. Monitoring

In order to have a consistent view of the mobile network’s
current status in a unified platform, we deployed the cloud-
native version of Prometheus (kube-prometheus-stack) in the
same Kubernetes cluster used for the Open5Gs. In this section,
we describe the steps taken in order to monitor both Core and
RAN through Prometheus.

1) Core Network: When kube-prometheus-stack is de-
ployed in a Kubernetes cluster, by default it installs exporters
in all the master and worker nodes, which collect and ex-
pose metrics like CPU usage, RAM, Networking status, and
IOPS on different granularity levels (node, pod, container).

™> _ GRC Broker
Cell 1 ———>» Multiplier \ RX
Adder —» srsUE
> — A
Cell 2 ——>» Multiplier RX
. | Cell1
srSUE ———— > Throttle <
> cell 2 Single-user €—>»
RX
Multi-user <- - -)
"""" . Intra-eNB <€ - - >
............. srsENB Inter-eNB/S1 (........)
q i P SrsENB
| Sy, e » | STLTTTI R
srg > S _ = = = PGRC Broker €=y srunuunuloni
srsUE (- =" L L Cell 1 Open5Gs
\ ..
1)
\ \
~ ~ o
_ | Cell2

Fig. 3: The evaluated scenarios.

By exporting those metrics we can monitor the health of
the virtual infrastructure running the different core network
functions, as depicted in Figure [2] Prometheus operator pods
have set those exporters as targets and will start polling
them in fixed intervals using HTTP in a well-known path:
(/metrics). Those metrics are directly accessible either
through the Prometheus WebUI or Grafana, a visualization
tool, using PromQL, a functional query language.

2) RAN: srsRAN produces an array of metrics for the lower
layers of the networking stack which can be exported to the
console or to a text file. However, srsSRAN does not have an
agent acting as a metrics exporter toward 3rd party software.
Therefore, we modified the source code of the srsENB in
order to develop and integrate a new one into the final binary.
The first step towards this direction was to integrate lighttpd
project, a lightweight open-source HTTP server written in C
programming language. Then, we developed the REST API
through which the metrics, in key-value pair format, will be
exported to the Prometheus operator. Afterward, we developed
Kubernetes manifests which comprise a pod, whose role is
to proxy the HTTP requests, received by the Prometheus
operator, towards the end srsENB process. Those manifests
are deployed to the Kubernetes cluster with the IP address
of the srsENB as an input parameter. Last, facilitating the
discovery capabilities of Prometheus, we deployed a Service-
Monitor configuration resource, which automatically discovers
the ’proxy’ pods existing in the cluster and sets them as
Prometheus targets.

Thus, for every srsENB process we instantiate, an auto-
discovery service is performed and, once it is completed a
few seconds later, the eNB starts getting polled (or scraped,
using the Prometheus terminology).

III. BUILDING AND DEPLOYING THE NETWORK

One of the main advantages of cloud-native solutions is
their extreme flexibility thanks to the easy templating and

parametrization of the software components. In the following,
we discuss how we use two key components of our setup,
manifests and Helm charts, to perform the mobile network
configuration.

A. Kubernetes Manifests

To be able to manage very heterogeneous software compo-
nents, Kubernetes needs to abstract the specific parameters
associated with them. To this aim, the so-called Manifests
are used to define the information model (i.e., the parameters
associated with each function) for each network function.
Thus, we had to provide the Kubernetes resource files for each
software component in the network architecture. Open5Gs
provides software implementing the Network Functions (NFs)
for both EPC and 5GC under the same umbrella, as depicted
in Figure [}

o Control-plane functions: MME, HSS, PCRF, SGW-C,
PGW-C (for the 4G/LTE); AMF, SMF, UDM, UDR, NRF,
NSSF, AUSF, PCF, BSF (for the 5GC).

o User-plane functions: SGW-U, PGW-U (for the 4G/LTE),
and UPF (for the 5GC).

Hence, manifests include information such as the exposed
ports, the internal interconnections, and the software compo-
nents to be deployed by Kubernetes. Each NF is instantiated
within the context of a StatefulSet controller, instead of a
standalone Pod, so that it is appropriately managed in case of
termination. Additionally, to support realistic use-case scenar-
i0s, where control plane and user plane NFs should be closely
located but in distinct nodes, we set the nodeSelector attribute
to mobile—core: control for control plane NFs and
mobile-core: user for user plane NFs. This attribute is
enforced by Kubernetes at the scheduling stage.

For the inter-pod communication, we use the ClusterIP
service type, so that the corresponding service pods are acces-
sible only within the Kubernetes cluster (preventing external

5G gNB 4G/5G Control Plane NFs
N2
_ T a 'AMF||PCF||UDR||UDM||NRF||NSSF||AUSF|
Iz |2(g|8|2 |
x =8|«
MME PCRF | SGW-c | = SMF (PGW-c) HSS BSF
w
= | [|
= g Al E
4G eNB o él él |z
’—‘ N3 UPF (PGW-u) SGi/N6 i \
- T o 1
1 g Q O O
> (@)
Y E % <§(El E % T SGW-u Internet
4G/5G User Plane NFs
[15GCNF EPC NF 5GC/EPC NF

Fig. 4: The network functions included in Open5Gs and srsRAN.

access), while for the interfaces exposed towards the RAN
(i.e., SI-MME/N2 by the MME/AMEF, S1-U/N3 by the SGW-
U/UPF) we use the LoadBalancer service type. This type of
service is used in cloud environments to enable the external
connectivity towards the cluster’s pods, and typically uses a
load balancer at the frontier of the cloud DC.

B. Helm Charts

The deployment stage of a cloud computing service (a
mobile network core, in this case) has proven to be prone
enough to human errors for a number of reasons:

« A considerable amount of Kubernetes manifests (~ 3
manifests per NF) has to be applied for every single
iteration of an experiment. During the de-provisioning
of the service, the reverse procedure has to be executed
taking care to de-instantiate all the network functions.

« A few manifests attributes have to be provided at the
initial stage, as they depend on the current state of
the environment. Such attributes are the IP addresses
that must be accessible by the RAN. Statically defining
them, such as in a production environment like in an
operator’s DC is a solution that limits the flexibility of
the deployment in a local environment, as they depend
on the Network Interface Card (NIC) IPs, which are
obtained through DHCP and are renewed upon reboot.
Those IPs are used for setting the LoadBalancer service
configuration as described above and the IP address that
the UPF advertises to the SMF (and consequently to the
AMF and the gNB) when addressing a service request.

Thus, as already done by major cloud computing services,
we employ Helm charts to automate those configuration tasks
by storing parameterized Kubernetes manifests along with a
single configuration file (containing all the global parameters)
in a centralized location (this chart can be uploaded to an
online registry for accessibility reasons, as for the case of
the Docker images). Then Helm automatically generates the
equivalent Kubernetes manifests and afterward provides them
to the Kubernetes API server. This results in a single command

executed for (de)provisioning of the entire core network, thus
greatly improving the automation.

IV. EXPERIMENTS

We ran the Kubernetes cluster on a KVM cloud platform
using Ubuntu 18.04.6. We then used Ubuntu 20.04.1 LTS as
the image of all the nodes of the cluster (one master and
two workers, as illustrated in Fig. Q), with Docker 20.10.8 as
the container runtime, as well as kubelet and kubectl.
The control plane was set using the kubeadm utility and
Flannel as the Container Networking Interface (CNI). The
network functions were connected to an internal network
for control plane and inter-pod communication, and NAT
forwarding is enabled for management purposes through SSH.
The two worker nodes had an additional network adapter
of type Bridged Adapter attached to another Ethernet
Adapter of the host machine, exposing the N2 and N3 in-
terfaces towards the gNB(s). The two worker nodes were
also annotated with the labels mobile—core:control and
mobile-core:user, which are taken into account during
the deployment stage of the CNFs. The RAN (srsENB/srsUE)
is set up using Docker in a commercial laptop with the 4 cores
CPUs at 1.8 Ghz and 16 GB of RAM. Each srsUE process runs
in a separate networking namespace in order to have distinct
routing tables.

In what follows, we deploy two different scenarios to
illustrate the use of our platform and validate the adequate
behavior of the developed modules. For each considered
scenario, the Open5Gs helm chart had to be deployed from
scratch to fully decommission software components from
previous runs. Also, the UDR database had to be populated
with UEs information for authentication purposes. At each
chart deployment, the core network reached a healthy state
after about approx. 2 minutes, with several pods restarts
due to unfulfilled interdependencies: for instance, the UDM
container has to wait for the UDR database container to start
up, otherwise, it is restarted. To check the end-to-end state
of the core network, we access the Prometheus REST API
(which exposes the retrieved metrics, as discussed before). We

B 5GC1 - UPF m 5GC2 -UPF mmm Other NFs

17.54

New 5GC Instance

N

15.0 1

=
N
w

CPU Usage (%)
=
o
o

7.5
5.0
2.5
0.0 -
0 500 1000 1500 2000
Time (s)

Fig. 5: CPU Utilization of two 5G Core instances.

then analyze the performance of the system for the following
scenarios. We remark that, in addition to these two scenarios,
the platform can be used for several other research activities,
e.g., prototyping new radio schedulers, developing novel fine-
grained orchestration algorithms involving CPU pinning or
thread-level quota, or building on the GRC broker for the
emulation of more complex scenarios with multiple users.

A. Scenario I: Dynamic orchestration

In this case, the objective is to stress the u-plane network
functions. We start the experiment by deploying one mobile
network instance, consisting of one 5GC, and one gNB with
one associated UE, and configure the UE to runs an iperf
test towards an iperf server connected to the UPF through
the N6 interface. We measure the amount of CPU resources
consumed by the different components via the Prometheous
exporter, with the results being depicted in Figure 5] According
to the results, the user plane function occupies most of the
CPU, while the rest of the network functions have an almost
negligible footprint.

To illustrate the dynamic orchestration capabilities of our
system, which may be leveraged by e.g., Al algorithms in
combination with the monitoring capabilities, we then trigger
the instantiation of another network at approx. 1000 s. While
this procedure is done manually for this experiment, in an
autonomous environment the data shippers provide all the
needed information about e.g., the network function load,
to support this operation. As the figure illustrates, the two
instances create a peak usage of 18% of the CPU, and again
most of the resources are consumed by the UPF with minimal
consumption by other network functions. According to these
results, our platform can be used to emulate e.g. horizontal
scaling scenarios, where additional resources are added to
guarantee a given performance level.

B. Scenario 1I: UE Mobility

Next, we illustrate the ability of our platform to emulate
situations where one or more UEs perform handovers between
different cells. For this experiment, we rely on 4G connectivity

0
o
Q
X
.AE‘ 500 A
=
3
8 o
79 — enB1 — enB2
Q
X
Z 20+
=
E
o- T T T T T
500 1000 1500 2000 2500
Time (s)

Fig. 6: RAN throughput.

since the srsRAN version we use (i.e., 22.04) does not support
handovers on the 5G network.

We start by deploying a mobile network instance, with one
EPC and two eNBs, where each eNB generates two cells. We
then deploy two UEs, both associated with the same eNB but
in a different cell, since the current implementation of ZeroMQ
limits the number of UEs per cell to one. Like in the previous
case, each UE generates bi-directional iperf traffic towards
a server connected to the PGW-U.

From the above scenario, we trigger the handovers by taking
advantage of the GRC broker to emulate a change in the
channel conditions. More specifically, we program the GRC
broker to emulate the movement of UEs between cells, by
judiciously changing the received power from the UEs to each
eNB (in the uplink) and from the eNBs to the UE (in the
downlink). This is done by modifying the gains that multiply
the samples from the eNBs, and throttling the samples from the
UEs (see Fig. [3), achieving the effect of slowly moving away
from one eNB and getting closer to the other one. The inverse
procedure is applied to emulate the movement back to the
previous cell, and the whole process is repeated indefinitely.

We depict in Fig. [f] the resulting downlink (top) and uplink
(bottom) throughput at the MAC layer of the two eNBs.
Firstly, it is worth noting the relatively small throughput
values, which are caused by the emulation of the channel
that “enlarges” the duration of the TTIs (thus decreasing the
actual throughput). Secondly, the figure clearly illustrates how
the throughput moves between eNBs, which approximately
only one eNB sending and receiving traffic at a time. These
results showcase the flexibility of the implementation of the
GRC broker, which can be used and extended to support more
complex radio scenarios, and be used as a sandbox for the
development of mobility-triggered mechanisms (e.g., follow-
the-load orchestration) in a controlled environment.

V. RELATED WORK

The rapid, easy, and cost-efficient deployment of end-to-
end mobile networks using open source software has been
studied in various works and different implementations have
been published mostly for large deployments. Works such
as and leverage on the Open Air Interface (OAI)
as the RAN solution, using a hardware-based radio interface

(i.e., USRPs) as the front-end, thus preventing the evaluation
of more complex channels conditions and mobility scenarios
(note that channel emulation is available with the latest version
of OAI). Additionally, the core network is provided and
orchestrated as a single container without management capa-
bilities at NF granularity and without providing control and
user plane separation. In [[14]], certain extensions are proposed
in Kubernetes resources’ specification to support NFV loads.
In general, the experimental work in this field focuses on the
RAN component: for instance [15]] leverages a network slicing
aware modified version of srsSRAN to provide a slice-aware
orchestration solution. Still, as this setup is also leveraging
real radio front-ends, the extensibility to more UEs or different
radio conditions is limited. On the other hand, large-scale
radio testbeds like Colosseum [10] have less focus on the
core part, which is a fundamental aspect when testing end-
to-end solutions. Hence, to the best of the knowledge of the
authors, there has not been any open source effort for end-to-
end mobile network stack emulation using cloud technologies,
exclusively conventional hosts, and no RF hardware front-end,
which would be ideal for small experimental deployments for
research and educational purposes.

VI. CONCLUSION

Telecommunication operators’ infrastructure is currently
being migrated to cloud environments, with statically deployed
PNFs being replaced by dynamic and flexible CNFs. The
observability of heterogeneous network components is crucial
to achieving predictability, fast fault detection, and scala-
bility. With these new concepts being adopted, networking
researchers need the ability to deploy end-to-end mobile
networks for experimentation and development in an easy and
affordable manner. In this paper, by leveraging existing open-
source software projects and developing new modules and
tools, we have designed and developed an end-to-end cloud-
native open-source 4G/5G mobile network. This solution is
a cost-efficient tool for the development and validation of
novel control and orchestration algorithms since it does not
require specialized hardware. We have illustrated the use of our
solution with two use cases, leveraging the data shippers, the
automatic deployment, and the channel emulation capabilities
that have been developed.

ACKNOWLEDGEMENTS

This work is partially supported by the European Union’s
Horizon 2020 research and innovation programme under grant
agreements no.101017109 (DAEMON) and no. 101015956
(Hexa-X). This work is also partially supported by the Spanish
Ministry of Economic Affairs and Digital Transformation and
the European Union-NextGenerationEU through the UNICO
5G I+D 6G-CLARION and SORUS projects.

REFERENCES

[1] D. Bega, M. Gramaglia, C. J. Bernardos Cano, A. Banchs, and X. Costa-
Perez, “Towards the Network of the Future: From Enabling Technolo-
gies to 5G Concepts,” Transactions on Emerging Telecommunications
Technologies, vol. 28, no. 8, p. €3205, 2017, 3205 ett.3205.

[2] A. Morris, “The Long Voyage to NFV: Vodafone And
Orange Outline The Challenges Ahead — fiercewire-
less.com,” https://www.fiercewireless.com/special-report/

long- voyage-to-nfv-vodafone-and-orange-outline-challenges-ahead,
[Accessed 25-Aug-2022].

[3] S. R. Chowdhury, M. A. Salahuddin, N. Limam, and R. Boutaba, “Re-
Architecting NFV Ecosystem with Microservices: State of the Art and
Research Challenges,” IEEE Network, vol. 33, no. 3, pp. 168-176, 2019.

[4] ETSI, “Network Functions Virtualisation (NFV) Release 4; Management
and Orchestration; Requirements for Service Interfaces and Object
Model for OS Container Management and Orchestration Specification,”
Group Specification (GS) ETSI GS NFV-IFA 040, 11 2020, v4.1.1.

[5] “Cloud Native Computing Foundation landscape,” https://landscape.
cncf.i0/, [Accessed 05-May-2022].

[6] K. C. Apostolakis, G. Margetis, C. Stephanidis et al., “Cloud-Native 5G
Infrastructure and Network Applications (NetApps) for Public Protection
and Disaster Relief: The 5G-EPICENTRE Project,” in 2021 Joint
European Conference on Networks and Communications & 6G Summit
(EuCNC6G Summit), 2021, pp. 235-240.

[7]1 M. Gramaglia, P. Serrano, A. Banchs, G. Garcia-Aviles, A. Garcia-
Saavedra, and R. Perez, “The Case for Serverless Mobile Networking,”
in 2020 IFIP Networking Conference (Networking), 2020, pp. 779-784.

[8] 3GPP, “Architecture Enhancements for Control and User Plane Sepa-
ration of EPC Nodes,” Technical Specification (TS) 23.214, 2016, v.
14.2.2.

[9] 1. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,

C. Cano, and D. J. Leith, “SrsLTE: An Open-Source Platform for LTE

Evolution and Experimentation,” in Proceedings of ACM WiNTECH’16.

New York, NY, USA: Association for Computing Machinery, 2016, p.

25-32.

L. Bonati, P. Johari, M. Polese et al., “Colosseum: Large-Scale Wireless

Experimentation Through Hardware-in-the-Loop Network Emulation,”

in Proc. of IEEE Intl. Symp. on Dynamic Spectrum Access Networks

(DySPAN), Virtual Conference, December 2021.

B. Dzogovic, V. T. Do, B. Feng, and T. van Do, “Building Virtualized

5G networks Using Open Source Software,” in 2018 IEEE Symposium

on Computer Applications Industrial Electronics (ISCAIE), 2018, pp.

360-366.

0. Arouk and N. Nikaein, “5G Cloud-Native: Network Management &

Automation,” in NOMS 2020 - 2020 IEEE/IFIP Network Operations

and Management Symposium, 2020, pp. 1-2.

N. M. Rekoputra, R. Harwahyu, and R. F. Sari, “Performance Study

of OpenAirlnterface 5G System on the Cloud Platform Managed by

Juju Orchestration,” in 2019 International Seminar on Research of

Information Technology and Intelligent Systems (ISRITI), 2019, pp. 211-

216.

B. Chun, J. Ha, S. Oh, H. Cho, and M. Jeong, “Kubernetes Enhancement

for 5G NFV Infrastructure,” in 2019 International Conference on Infor-

mation and Communication Technology Convergence (ICTC), 2019, pp.

1327-1329.

G. Garcia-Aviles, C. Donato, M. Gramaglia, P. Serrano, and A. Banchs,

“ACHO: A Framework for Flexible Re-orchestration of Virtual Network

Functions,” Computer Networks, vol. 180, p. 107382, 2020.

[10]

[11]

(12]

[13]

[14]

[15]

Nikolaos Apostolakis is a Ph.D. student at IMDEA Networks Institute,
Madrid. He received his Diploma degree in Electrical and Computer Engi-
neering at National Technical University of Athens and his Master degree in
NFV/SDN for 5G Networks at Universidad Carlos III of Madrid.

Marco Gramaglia is a visiting professor at University Carlos III of Madrid,
where he received M.Sc (2009) and Ph.D (2012) degrees in Telematics
Engineering.

Pablo Serrano (M’09, SM’16) is an Associate Professor at the University
Carlos III de Madrid. He has over 100 scientific papers in peer-reviewed
international journals and conferences. He currently serves as Editor for IEEE
Open Journal of the Communication Society.

https://www.fiercewireless.com/special-report/long-voyage-to-nfv-vodafone-and-orange-outline-challenges-ahead
https://www.fiercewireless.com/special-report/long-voyage-to-nfv-vodafone-and-orange-outline-challenges-ahead
https://landscape.cncf.io/
https://landscape.cncf.io/

	Introduction
	Design of a Cloud-Native ecosystem
	Overview
	Management and Orchestration
	Core Network functions
	RAN functions
	Channel emulation: the GRC broker
	Monitoring
	Core Network
	RAN

	Building and Deploying the Network
	Kubernetes Manifests
	Helm Charts

	Experiments
	Scenario I: Dynamic orchestration
	Scenario II: UE Mobility

	Related Work
	Conclusion
	References
	Biographies
	Nikolaos Apostolakis
	Marco Gramaglia
	Pablo Serrano

