Introduction to Optical Burst Switching (OBS)

David Larrabeiti
Piotr Pacyna

Dpto. de Ingeniería Telemática
Universidad Carlos III de Madrid

Programme authors and contributors

Lecturers (Spanish course):
♦ David Larrabeiti López
♦ José Félix Kukielka

Supporting lecturers (English course):
♦ Jorg Diederich
♦ Huw Oliver
♦ Piotr Pacyna
Optical Switching

- Optical cross-connect switch
 - Can cross-connect:
 - fiber-to-fiber
 - wavelength-to-wavelength
 - timeslot-to-timeslot
 - Wavelength converter

Optical Circuit Switching
Wavelength routing
Today: overwhelmingly O/E/O

- Bottleneck

All-optical commercial products are imminent. Successful technology must demonstrate:

- Low Insertion loss, Polarization-dependent loss (PDL), WL dependency, Low Crosstalk High Speed,
- Scalability, Small Size, Low Cost, Manufacturability, Serviceability

Technologies

- Electromechanical: low switching time, large, large mass
- Guided-wave solid state switched: high losses, high crosstalk => low scalability
- MEMS: submillisecond switching times

OXC based on MEMS
(Micro ElectroMechanical Systems)

Micro electromechanical actuators and micro-optical integrated monolithically in the same substrate

NxN mirrors

Not advisable in cascasde (e.g. Clos networks)
MEMS mirrors

2D vs 3D
A 3D MEMS switch has mirrors that can rotate in 2 axes
Light can be directed with precision in multiple angles (at least as many as input)
Less loss from input
Less tx in open space

Agere Systems: 64x64
IL=6dB, T= 10ms

Source: IEEE Communications. Nov 2001

Lucent:
WaveStar MEMS mirror from a WaveStar Lambda router

Nortel X-1000 switch

Lens array
Fiber array
Optical path
MEMS mirror array

Xros 1152x1152 50ms
...already in development
New alternative for IP/WDM networks: OBS

Evolution

1995
2000

Optical Network Functionality

- Optical Burst Switching
- Meshed Networks
- Ring Networks
- Point-to-Point WDM Links

Optional Packet Switching

Label Switching
IP over WDM

- OWS or OCS (Optical wavelength switching)
 - Switching granularity = wavelength
 - Lightpaths between ingress-egress edge routers
 - Low overhead
 - Path per route, per LSP
 - Bandwidth inefficiency for bursty traffic
- OPS (Optical packet switching)
 - Switching granularity = (variable size) packet
 - More efficiency through statistical mux
 - Drawbacks
 - Optical memory technology not mature
 - High control overhead
 - DWDM multiples OC-192 or OC-768 (many packets!)
- OBS (Optical Burst switching)
 - Switching granularity = (variable size) burst
 - Objective: combine advantages of OWS & OPS
- OLS (Optical Label Switching)
 - Switching granularity = (variable size) flow -- data driven LSPs

OPS Node

Requires intelligence in the optical layer
Need to store packet during header processing
plus a variable contention resolution time (this implies variable delay arrays)

Optical buffers are extremely hard to implement
1 pkt = 12 kbits @ 10 Gbps requires 1.2 µs of delay => 360 m of fiber
FDL = Fiber Delay Loop
Optical Packet Switch still has a long way to go
OBS network

- G = Guard band
- CP = Control Packet

OBS Core Node

- Wavelength interface
- Optical Switch
- Switch Controller
- O/E/O
OBS Edge Node

Burst assembly/dissassembly

- **burstifier**

- **Burst**: same FEC (same egress, QoS,...)

- **OBS Controller**: Burst scheduler

- **Out of band signaling:**
 - Control packets carry info for switching/routing, resource reservation, etc.
 - Configures OXCs and reserves bandwidth only for the duration of the following data burst at each core router so that associated data burst can cut through core routers without O/E/O conversions.
 - ACK from egress node is not awaited

Advantages of OBS

- **All-optical O/O/O burst switching**
- **Data buffered at the edge (cheaper)**
- **No optical RAM or FDL in intermediate nodes required**
 - Optional FDLs and wavelength converters can reduce burst loss
- **Lower control overhead per bit than in OPS**
- **Less O/E conversions of control packets**
- **Statistical MUX at burst level (vs OCS)**
 - Benefits from transmission silence
 - Dealing with optical switches ∼100ms connection setup/teardown times
Comparison

![Comparison Diagram](image)

Aspects of OBS

- Burst Assembly
- Burst Reservation Protocols
- Burst switching
 - Scheduling
 - Contention resolution
Burst assembly

Burst assembly/dissassembly

- **burstifier**
- **OBS Controller: Burst scheduler**

Tasks:
- Create control packet for burst
- Determine offset
- Schedule burst in an output lambda
- Forward the burst

Burst Assembly

- **Assembly algorithms**
 - Timer-based: time > Timeout
 - Burstlength-based: l > b_threshold
 - Mixed (either condition happens first)

- **Optimizations**
 - Adaptation <Timeout , b_threshold> to the traffic in real time
 - Burst length prediction
 - Reserve for l + f(offset)
Burst Reservation Protocols

- **Origins:** TDMA, ATM 1990

- **Tell-and-wait**
 - Wait for confirmation of reservation by return (ACK) before sending burst (NAK => retransmisión)
 - Variant: Just In Time, with centralized scheduler

- **Tell-and-go**
 - Without pre-reservation. Need to wait only for each node control to establish a circuit. (NAK => retransmisión). It needs FDL.
 - Tell-and-wait better only if propagation delay is negligible compared to burst length.

- **Just-enough-time**
 - Prevailing distributed protocol
 - **Keys**
 - One-way reservation
 - Control packet carries offset time info
 - Makes “delayed reservation” for the corresponding burst
 - Reservation starts at the expected arrival time of the burst
Burst switching

- Optical switch: contention not resolved by buffering

- Scheduling
 - Choose a wavelength for the burst according to existing reservations (*latest available unused chann.*)
 - E.g. LAUC O(W), LAUC-VF O(WlogM),… Best-fit O(log^2M)
 - W= # lambdas in ports, M = Max. # of reservations

- Contention resolution
 - Resolution
 - Deflection (wavelength, space, time (FDL))
 - Dropping
 - Preemption
 - Other techniques
 - Burst segmentation

Optical Aggregation and GMPLS

- LOBS (Labeled OBS, 2000)
 - GMPLS OCS with lambda=label
 - Problem:
 - In order to groom or aggregate traffic carried over different lightpaths: O/E/O required
 - Solution:
 - control packet carries label info
 - Label-wavelength association in the burst-scale rather than in a connection-scale
 - Subwavelength granularity feasible
 - Statistical multiplexing
 - LSP merging
References

- “Optical Burst Switching (OBS) – A new paradigm for an Optical Internet”. Journal on High Speed Networking vol 8 n° 1 1999. C. Quiao, M. Yoo
- Kumar N. Sivarajan, “IP over Intelligent Optical Networks”, Jan 5, 2001
- Gaurav Agarwal, “A Brief Introduction to Optical Networks”, 2001
- Yang Lihong, “Optical Burst Switching”, CMU networking seminar presentation
- Ornan (Ori) Gerstel, Rajiv Ramaswami,, “Optical Layer Survivability—An Implementation Perspective”, IEEE Journal on selected areas in communications, October 2000
Optical MPLS

- Label not prepended to packet
- Instead is represented by a fiber number or a wavelength

MPLS - Label Hierarchy

- StatMux
- TimeSlot
- Fiber
- Bundle
- Waveband
- Wavelength
 - λ_0, λ_1, λ_2
 - $\{\lambda_0, \lambda_1\}$
Generalized MPLS (GMPLS)

What is GMPLS?
- A distributed control plane for dynamic provisioning of data paths within optical networks
- GMPLS - Extension to MPLS-TE
 - A single unified control plane
 - Integration of different switching paradigms (packet, L2, Time, Wavelength, Waveband, Port switching)
 - The separation of the control and forwarding planes.
 - Reuses IP routing (OSPF and ISIS) and MPLS tunnel LSP and traffic engineering mechanisms (RSVP-TE and CR-LDP)
 - The flexible control of topology constraints.

GMPLS Protocols and Functions

Routing
- OSPF/IS-IS
- OSPF/IS-IS
- OSPF/IS-IS

Signaling
- RSVP/CR-LDP
- RSVP/CR-LDP
- RSVP/CR-LDP

Management
- LMP
- LMP
- LMP

Data channels
- MPLS
- LSR
- OXC
- MPLS
- LSR
- OXC
- MPLS
- LSR
The Intelligent Optical Network

ITU-T G.8080 (2001)
Automatically Switched Optical Network (ASON)

Management System

Optical Topology Discovery, Routing, Signaling Layer

OCC: Optical Connection Control
CCI: Connection Control Interface
IrDI: Inter-Domain Interface NNI
UNI: User-Network Interface
NNI: Network-Network Interface
NMI: Network Management Interface

Client Traffic

Client Signaling I / F

OXC

OXC

OXC

IrDI

The Intelligent Optical Network

Services objective in the short term

◆ Long-haul
 - SONET/SDH private lines

◆ Metropolitan & Access
 - Gigabit ethernet
 - Metro-ethernet

◆ Application-oriented
 - FibreChannel

◆ Flexibility
 - Granularity in Mb/s, switch-over time (50ms-..)
Using MPLS, we can think of each of these as a label:
- Fiber number N in the bundle (N is the label)
- Wavelength λ on the fiber (λ is the label)
- Timeslot T on the fiber (T is the label)

Changing N, λ, or T going through an optical switch is thus a label swap.

Can use CR-LDP / RSVP-TE to set up the cross-connects.

ASON Building Block Development

<table>
<thead>
<tr>
<th>Architectural Component</th>
<th>Standards Activity</th>
<th>Standards Forums</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASON Architecture</td>
<td>Framework and Architecture Documents</td>
<td>Architecture and carrier service requirements are being defined in the ITU. In addition US activity is coordinated via T1X1.</td>
</tr>
<tr>
<td>UNI</td>
<td>LDP</td>
<td>Carrier service requirements driven via OIF. Detailed protocol work within IETF.</td>
</tr>
<tr>
<td>NNI</td>
<td>CR-LDP, OSPF, ISIS</td>
<td>Requirements driven via OIF. Detailed protocol work within IETF.</td>
</tr>
<tr>
<td>CCI</td>
<td>GSMP</td>
<td>Requirements driven via Multi-Service Switching Forum (MSF). Detailed protocol work within IETF.</td>
</tr>
<tr>
<td>IrDI</td>
<td>Detailed work to be commenced</td>
<td>Will be based on UNI with possible extensions for routing information exchange.</td>
</tr>
<tr>
<td>NMI</td>
<td>Detailed work to be commenced</td>
<td>SNMP MBs to be defined. Higher level managed capabilities to be based on existing management paradigms such as CORBA.</td>
</tr>
</tbody>
</table>